JPS6376464A - Thin film cooling apparatus - Google Patents

Thin film cooling apparatus

Info

Publication number
JPS6376464A
JPS6376464A JP61219355A JP21935586A JPS6376464A JP S6376464 A JPS6376464 A JP S6376464A JP 61219355 A JP61219355 A JP 61219355A JP 21935586 A JP21935586 A JP 21935586A JP S6376464 A JPS6376464 A JP S6376464A
Authority
JP
Japan
Prior art keywords
thin film
heat
metal
junction part
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61219355A
Other languages
Japanese (ja)
Inventor
Masaaki Kurebayashi
榑林 正明
Yoshitsugu Miura
三浦 義従
Hisashi Katahashi
片橋 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61219355A priority Critical patent/JPS6376464A/en
Publication of JPS6376464A publication Critical patent/JPS6376464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To manufacture a miniaturized and highly efficient thin film cooling apparatus suitable for cooling down a fine objective device to be cooled down by a method wherein the metallic thin film in high Seebeck coefficient takes the shape bent zigzag to diminish the projecting length in the lateral direction from the junction part on the exothermic side. CONSTITUTION:Conductive electrodes 11 comprising a metal in low Seebeck coefficient are junctioned at both ends in the long direction of a metallic thin film 12 formed of a metal in high Seebeck coefficient on a substrate 10 while both electrodes 11 are supplied with direct current to cool down a device to be cooled down arranged at a junction part 15 on the endothermic side by means of making one junction part 16 haet generating while the other junction part 15 endothermic. The metallic thin film 12 in such a device is bent zigzag at specified interval in the long direction to diminish the projecting length zigzag in the lateral direction as approaching from the junction part 16 on the exothermic side to the junction part 15 on the endothermic side. For example, the conductive electrodes 11 comprising Cu and the metallic film 12 comprising Bi taking said shape are formed on a sapphire substrate 10 furthermore an Al2O3 film 13 is formed to provide the device 14 to be cooled down thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゼーベック係数が比較的に大きい金属を薄膜
に形成したものにペルチェ効果による発熱、吸熱、吸熱
を起こさせてその吸熱側接合部1:配置した微小な冷却
対象物、例えばIC(半導体集積回路)デバイス、を効
率良く冷却させる薄膜冷却装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a thin film made of a metal with a relatively large Seebeck coefficient, which generates heat, absorbs heat, and absorbs heat due to the Peltier effect, so that the heat-absorbing side joint of the thin film is produced. 1: This invention relates to a thin film cooling device that efficiently cools a minute object to be cooled, such as an IC (semiconductor integrated circuit) device.

〔従来の技術〕[Conventional technology]

従来、熱電材料のペルチェ効果を利用して発熱、吸熱を
起こさせるペルチェ素子としては、高橋著「半導体工学
」疎化出版、19751F−8行、225頁に記載のよ
うな、バルク型4111のものがある。
Conventionally, as a Peltier element that generates heat and absorbs heat using the Peltier effect of a thermoelectric material, there is a bulk type 4111 as described in "Semiconductor Engineering" by Takahashi, Houka Publishing, 19751, line F-8, p. 225. There is.

上記文献にあるように、従来のペルチェ素子はバルク型
であり、ペルチェ効果を生じさせる熱電材料としては、
V−VI族化合物半導体であるBi2Te3  (テル
ル化ビスマス)あるいはBi25t)3(アンチモン化
ビスマス)等が用いられていた。
As stated in the above literature, the conventional Peltier element is a bulk type, and the thermoelectric material that produces the Peltier effect is
V-VI group compound semiconductors such as Bi2Te3 (bismuth telluride) or Bi25t)3 (bismuth antimonide) have been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術には、ICデバイスや薄膜磁気ヘッドなど
の微小物の冷却を対象とした微細冷却素子を実現すると
いう点の、配慮はなかった。すなわち、従来技術におい
ては、熱電材料としてB12Te3 、Bi25bs等
のV−VI族化合物半導体が用いられており、ベルチェ
素子の薄膜化を図るに際して、次に述べるような問題が
あった。
The above-mentioned conventional technology does not give consideration to the realization of a microcooling element intended for cooling microscopic objects such as IC devices and thin-film magnetic heads. That is, in the prior art, V-VI group compound semiconductors such as B12Te3 and Bi25bs are used as thermoelectric materials, and when attempting to reduce the thickness of the Vertier element, there are problems as described below.

1)化合物半導体は多元系であるため、薄膜化の際に組
成変動が生じ、組成制御が困難である。
1) Since compound semiconductors are multi-component systems, compositional fluctuations occur during thinning, making composition control difficult.

2)薄膜状態では、バルク状態に比べ結晶性が劣るため
に所望性能が得にくい。
2) In a thin film state, it is difficult to obtain desired performance because the crystallinity is inferior to that in a bulk state.

3)これに対処してペルチェ素子用材料に金属を用いて
これを薄膜に形成することが考えられるが、しかし、短
冊状の金属薄膜のままの形状で用いるのでは、熱伝導率
が高く、外部への放熱効果が少なく、冷却効率が悪い。
3) To deal with this, it is possible to use metal as the material for the Peltier element and form it into a thin film, but if it is used in the form of a strip-shaped metal thin film, the thermal conductivity is high, There is little heat dissipation effect to the outside, and cooling efficiency is poor.

ICデバイスや薄膜磁気ヘッド等はその環境温度を下げ
ることによって性能が向上することが知られており、こ
れに対処して、これらの微小デバイスを被冷却対象とす
る微小構造の冷却装置の実現が要望されている。ICデ
バイス等は、現在、より微細化が進み、超小形システム
化へと進んでいる。このような被冷却物に従来のバルク
型ベルチェ素子を用いた場合には、冷却システムが大屋
化してしまい、超小屋システム指向の流れに逆行する。
It is known that the performance of IC devices, thin-film magnetic heads, etc. improves by lowering the environmental temperature. It is requested. IC devices and the like are currently becoming more miniaturized and are progressing towards ultra-small systems. If a conventional bulk-type Bertier element is used for such an object to be cooled, the cooling system will become a large building, going against the trend toward a super-small system.

本発明の目的は、従来技術での上記した問題点を解決し
、微小な対象物を冷却するのに適する、微小構造、シか
も高効率とすることのできる薄膜冷却装置を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a thin film cooling device that is suitable for cooling minute objects, has a small structure, and is highly efficient. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ペルチェ効果を起こさせる材料として、ゼ
ーベック係数の比較的大きな金属を用い、これを薄膜に
形成し、かつ、この金属薄膜の形状を、特に発熱側にお
いて放熱しやすい形状とすることにより、達成される。
The above purpose is achieved by using a metal with a relatively large Seebeck coefficient as a material that causes the Peltier effect, forming it into a thin film, and making the shape of this metal thin film easy to dissipate heat, especially on the heat generating side. , achieved.

さらに詳述すれば、本発明は、基板上にゼーベック係数
がより大きい金属で形成された金属薄膜の長手方向の両
端にゼーベック係数がより小さい金属より成る導電電極
な接合し両電極間に直流電流を流して一方の接合部に発
熱を他方の接合部に吸熱を起こさせて吸熱側接合部に配
置した微小な被冷却対象物を冷却させる構成であって、
上記金属薄膜の形状が長手方向の一定間隔ごとにつづら
折れ状シニ折れ曲っており、かつ、っづら折れの横方向
への突出長さを、発熱側接合部から吸熱側接合部に近づ
くに従って漸次短かくする構成とすることで、前記問題
点を解決しようとするものである。
More specifically, in the present invention, conductive electrodes made of a metal with a smaller Seebeck coefficient are connected to both longitudinal ends of a metal thin film formed of a metal with a larger Seebeck coefficient on a substrate, and a direct current is applied between the two electrodes. The structure is configured to cause heat generation in one joint part and absorption of heat in the other joint part by flowing water to cool a minute object to be cooled disposed at the heat absorption side joint part,
The shape of the metal thin film is bent in a zigzag manner at regular intervals in the longitudinal direction, and the protruding length of the zigzag folds in the lateral direction gradually increases from the heat-generating side joint to the heat-absorbing side joint. This problem is attempted to be solved by shortening the length.

ベルチェ素子の作動原理を第3図を用いて説明する。第
3図は、従来のベルチェ素子の断面図で、31.31は
それぞれ金属より成る導電電極、32はペルチェ効果を
生じさせる熱電材料で、例えは、n形あるいはP形の半
導体、33.34は導電電極と熱電材料との接合部であ
る。また、矢印で示した1は直流電流の流れる方向を示
す。熱電材料32がP形の半導体の場合、接合部33が
吸熱側となり、接合部34が発熱側となる。吸熱側接合
部における吸熱tQは、発熱側接合部における発熱量に
等しい。
The operating principle of the Beltier element will be explained using FIG. FIG. 3 is a cross-sectional view of a conventional Vertier element, in which 31 and 31 are conductive electrodes made of metal, 32 are thermoelectric materials that produce the Peltier effect, for example, n-type or p-type semiconductors, 33 and 34 is the junction between the conductive electrode and the thermoelectric material. Further, the arrow 1 indicates the direction in which the direct current flows. When the thermoelectric material 32 is a P-type semiconductor, the joint 33 is on the heat absorption side and the joint 34 is on the heat generation side. The heat absorption tQ at the heat-absorbing side joint is equal to the amount of heat generated at the heat-generating side joint.

ベルチェ素子における冷部の限界温度は、吸熱量Qと、
発熱側接合部から熱伝導により伝播する熱量と、素子自
身が発生するジュール熱との関係で決まり、これらの関
係は一般的に性能指数Zにより評価される。性能指数2
は+11式により定義される。
The limit temperature of the cold part in the Beltier element is the amount of heat absorbed Q,
It is determined by the relationship between the amount of heat propagated by heat conduction from the heat-generating side joint and the Joule heat generated by the element itself, and these relationships are generally evaluated by the figure of merit Z. Performance index 2
is defined by the formula +11.

2=α/(K・ρ)    ・旧・・(11ここで、α
はゼーベック係数、Kは熱伝導率、ρは比抵抗である。
2=α/(K・ρ) ・Old...(11Here, α
is the Seebeck coefficient, K is the thermal conductivity, and ρ is the specific resistance.

主なペルチェ素子用材料のd1ρ、におよびZを第1表
に示す。
Table 1 shows d1ρ and Z of main materials for Peltier elements.

第  1  表 第1衣に示したように、半導体材料の性能指数2は、金
属材料に比べ一桁ないし二桁程度大きい。
As shown in Table 1, the figure of merit 2 of semiconductor materials is one to two orders of magnitude higher than that of metal materials.

その原因は、金属材料の方が(1)ゼーベック係数αが
小さいこと、(2)熱伝導率にkが大きいことにある。
The reasons for this are that metal materials (1) have a smaller Seebeck coefficient α and (2) have a larger thermal conductivity k.

特に熱伝導率に関しては、半導体材料に比べて金属材料
の方が一桁程度大きい。したがって、熱伝導率を等節約
に小さくすることにより、大幅な性能指数の向上が期待
でき、半導体材料を用いた場合と四等の冷却能力を有す
るベルチェ素子が金属薄膜により実現できることが期待
される。さらに、基板上ε二金属薄膜を形成する場合、
前述した組成変動の問題はなく、かつ、半導体材料に比
較して良好な結晶性薄膜を形成し得ることは衆知の事実
である。
In particular, regarding thermal conductivity, metal materials are about an order of magnitude higher than semiconductor materials. Therefore, by reducing the thermal conductivity evenly and sparingly, a significant improvement in the figure of merit can be expected, and it is expected that a Vertier element with a cooling capacity comparable to that of semiconductor materials can be realized using metal thin films. . Furthermore, when forming an ε bimetallic thin film on a substrate,
It is a well-known fact that there is no problem of compositional fluctuation mentioned above and that a thin film with better crystallinity than semiconductor materials can be formed.

〔作用〕[Effect]

本発明の要点は、基板上に形成した金属薄膜をベルチェ
素子に用いる構造と、この金属薄膜の形状を最適化して
高温部から低温部に至る経路中での放熱効率を向上させ
て低温部での冷却効果を上げる点にある。放熱効率を向
上させるために、本発明において採用する、金属薄膜の
形状構成の原理的な考え方を第4図(a) 、 (b)
を用いて説明する。第4図において、41はゼーベック
係数がより小さい金属材料、例えばCu(銅)、で形成
される薄膜状導電電極、42はペルチェ効果により発熱
、吸熱を起こす、ゼーベック係数がより大きな金属材料
、例えばBi(ビスマス)、で形成される金属薄膜、4
5.44はそれぞれ導電電極41と金属薄膜42との接
合部である。直流電源により電流1を矢印方向に流すと
、BiとCuの組合せの場合、接合部43が吸熱側、接
合部44が発熱側となる。!J4図(b)に示す温度分
布において、横軸は(a)図のA 7A’上の位置を示
し、縦軸は温度を示している。破線温度は室温であり、
上方が高温、下方が低温である。発熱側の接合部44が
最も高温となり、吸熱側の接合部43が最も低温となる
。その途中の温度分布は、図示のように直線状に低下す
る分布となる。実際には、外部からの熱流入や、金属薄
膜42自身のジュール熱による発熱等が関係し、温度分
布はさらに複雑になる。
The main points of the present invention are a structure in which a metal thin film formed on a substrate is used as a Vertier element, and the shape of this metal thin film is optimized to improve heat dissipation efficiency in the path from a high temperature part to a low temperature part. The point is to increase the cooling effect of In order to improve heat dissipation efficiency, the basic concept of the shape configuration of the metal thin film adopted in the present invention is shown in Fig. 4 (a) and (b).
Explain using. In FIG. 4, 41 is a thin film conductive electrode made of a metal material with a smaller Seebeck coefficient, such as Cu (copper), and 42 is a metal material with a larger Seebeck coefficient, such as Cu (copper), which generates heat and heat absorption due to the Peltier effect. Metal thin film formed of Bi (bismuth), 4
5 and 44 are joint portions between the conductive electrode 41 and the metal thin film 42, respectively. When a current 1 is passed in the direction of the arrow by a DC power source, in the case of a combination of Bi and Cu, the joint 43 becomes the heat absorbing side and the joint 44 becomes the heat generating side. ! In the temperature distribution shown in Figure J4 (b), the horizontal axis indicates the position on A7A' in Figure (a), and the vertical axis indicates the temperature. The dashed line temperature is room temperature,
The upper part is high temperature and the lower part is low temperature. The joint portion 44 on the heat generating side has the highest temperature, and the joint portion 43 on the heat absorbing side has the lowest temperature. The temperature distribution along the way is a distribution that decreases linearly as shown in the figure. In reality, heat inflow from the outside, heat generated by the Joule heat of the metal thin film 42 itself, etc. are involved, and the temperature distribution becomes even more complicated.

ベルチェ素子においては、これらの発熱、吸熱が複雑に
関係し、素子に流れる電流1と、発熱側接合部44と吸
熱側接合部43との温度ΔTとが関係づけられる。した
がって、吸熱側接合部43の温度をより低くしようとす
るならば、まず、発熱側接合部44とその近傍での金属
薄膜42の温度をできるだけ下げて室温に近く保つ必要
がある。
In the Bertier element, these heat generation and heat absorption are intricately related, and the current 1 flowing through the element is related to the temperature ΔT between the heat-generating side joint 44 and the heat-absorbing side joint 43. Therefore, in order to lower the temperature of the heat-absorbing joint 43, it is first necessary to lower the temperature of the heat-generating joint 44 and the metal thin film 42 in its vicinity as much as possible to keep it close to room temperature.

このため、本発明においては、発熱側接合部44から吸
熱側接合部43に至る経路において、金属薄膜の形状を
、発熱側接合部近傍において、横方向への突出長さの大
きいつづら折れ伏とし、吸熱側接合部に近づくに従いっ
づら折れの横方向への突出長さを小さくする構成とする
ことにより、発熱側での放熱効率を向上させ、逆に吸熱
側では、あまり放熱しない構造としている。
For this reason, in the present invention, in the path from the heat generating side joint 44 to the heat absorbing side joint 43, the shape of the metal thin film is bent in the vicinity of the heat generating side joint with a large lateral protrusion length. By creating a structure in which the lateral protrusion length of the folds decreases as it approaches the joint on the heat absorption side, the heat dissipation efficiency on the heat generation side is improved, and conversely, on the heat absorption side, the structure is such that it does not dissipate much heat. .

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) 第1図は本発明の第1の実施例を示し、(a)は平面図
、(b)はそのA −A’断面図である。第1図におい
て、10は基板として用いた8面サファイア、11はC
uより成る導電電極(膜厚;3μm)、12はB1より
成る金属薄膜(膜厚;4μm)、15は電気的絶縁を図
るためのAt20.(酸化アルミニウム)膜(膜厚;1
μm)、14は被冷却デバイス、15は吸熱側接合部、
16は発熱側接合部である。B1膜およびCu膜の形成
は真空蒸着法で、At203膜の形成はB1膜の融点が
271℃であることを考慮してブレーナ型マグネトロン
スパッタリング法によって行った。また、各部のパター
ニングは通常のフォトエツチング技術を用いて行った。
(Example 1) FIG. 1 shows a first example of the present invention, in which (a) is a plan view and (b) is a sectional view taken along line A-A'. In Figure 1, 10 is 8-sided sapphire used as a substrate, 11 is C
12 is a metal thin film (thickness: 4 μm) made of B1, and 15 is At20.0 for electrical insulation. (aluminum oxide) film (thickness: 1
μm), 14 is the device to be cooled, 15 is the heat absorption side junction,
16 is a heat generating side joint portion. The B1 film and the Cu film were formed by vacuum evaporation, and the At203 film was formed by Brehner magnetron sputtering considering that the melting point of the B1 film was 271°C. Further, patterning of each part was performed using a normal photoetching technique.

第1図(11)に示したようにB1膜はつづら折れ状に
パターニングされており、さらに、つづら折れ形状の横
方向への突出長さは、発熱側接合部16から吸熱側接合
部15に近づくに従って小さくなりており、これにより
発熱側接合部16から吸熱側接合部15への熱流入が阻
止され讐かつ、金属薄膜12自身の電気抵抗による発熱
による吸熱側接合部15への熱流入もまた阻止できる。
As shown in FIG. 1 (11), the B1 film is patterned in a zigzag shape, and furthermore, the length of the zigzag shape's protrusion in the lateral direction is from the heat-generating side joint 16 to the heat-absorbing side joint 15. As it gets closer, it becomes smaller, and this prevents heat from flowing from the heat-generating side joint 16 to the heat-absorbing side joint 15, and also prevents the heat from flowing into the heat-absorbing side joint 15 due to the heat generated by the electrical resistance of the metal thin film 12 itself. It can also be stopped.

発熱側接合部16およびその近傍では、ベルテ工効果に
よる発熱および金属薄膜12それ自身の電気抵抗による
発熱を放散させる必要がある。一方、吸熱側接合部15
ではペルチェ効果による吸熱作用により冷却されること
から、外部からの熱流入および発熱側接合部16からの
熱流入が生じ冷却効率を低下させる原因となる。そこで
、発熱側接合部16付近の放熱効率を高めるため、金属
薄膜12をより大きなつづら折れ形状とし、吸熱側接合
部15に近づくに従ってつづら折れを小さ′<シ、吸熱
側接合部15では外部からの熱流入をなくすために直線
状とな、っている。
At the heat-generating side joint 16 and its vicinity, it is necessary to dissipate the heat generated by the Berté effect and the heat generated by the electrical resistance of the metal thin film 12 itself. On the other hand, the heat absorption side joint part 15
Since it is cooled by the endothermic action due to the Peltier effect, heat inflow from the outside and heat inflow from the heat generating side joint portion 16 occur, causing a decrease in cooling efficiency. Therefore, in order to improve the heat dissipation efficiency near the heat-generating side joint 16, the metal thin film 12 is made into a larger serpentine shape, and as it approaches the heat-absorbing side joint 15, the serpentine fold becomes smaller. It is straight to eliminate heat inflow.

本実施例構造とすることにより、金属薄膜12を直線状
の均一パターンとする場合に比べて低温部の温度が一2
0℃改善された。
By adopting the structure of this embodiment, the temperature of the low-temperature part is lower than that when the metal thin film 12 is formed into a linear uniform pattern.
Improved by 0℃.

(実施例2) 本発明の1!42の実施例を第2図(a) 、 (b)
を用いて説明する。(a)は平面図、(b)はそのA 
−A’断面図を示す。本実施例が第1の実施例と異なる
点は、つづら折れ状パターン部の、少なくとも発熱側接
合部16に近い一部の下面側に、電気絶縁層を介して、
熱の良伝導材で形成される放熱用薄膜17を具備する点
である。電気絶縁層としては、被冷却デバイス14の下
面g二相いたと同じAt205膜13を用いることがで
きる。放熱用薄膜17としては、Cu膜を用いることが
できる。
(Example 2) Figures 2 (a) and (b) show 1!42 examples of the present invention.
Explain using. (a) is a plan view, (b) is its A
-A' cross-sectional view is shown. The difference between this embodiment and the first embodiment is that at least the lower surface of a portion of the zigzag pattern portion near the heat generating side joint portion 16 is provided with an electric insulating layer interposed therebetween.
It is provided with a heat dissipation thin film 17 made of a material with good thermal conductivity. As the electrical insulating layer, the same At205 film 13 used on the lower surface g of the cooled device 14 can be used. As the heat dissipation thin film 17, a Cu film can be used.

第1の実施例で述べたように、発熱側接合部16近傍は
放熱効果をより高め、吸熱側接合部15近傍はできるだ
け断熱することが冷却装置として有効である。そこで、
本実施例では、発熱側接合部16と吸熱側接合部15と
のほぼ中間付近から発熱側接合部16に寄った側のつづ
ら折れパターン部の下面側に、At20s膜13を介し
て、放熱用薄膜17が形成しである。放熱用薄膜17と
してCu膜を採用すれは、導電電極11をCuで形成す
る時に同時に放熱用薄膜17が形成できて便利である。
As described in the first embodiment, it is effective for the cooling device to further enhance the heat dissipation effect in the vicinity of the heat-generating side joint 16, and to insulate the vicinity of the heat-absorbing side joint 15 as much as possible. Therefore,
In this embodiment, an At20s film 13 is provided on the lower surface side of the zigzag pattern on the side nearer to the heat generating side joint 16 from approximately midway between the heat generating side joint 16 and the heat absorbing side joint 15. A thin film 17 is then formed. Adopting a Cu film as the heat dissipation thin film 17 is convenient because the heat dissipation thin film 17 can be formed at the same time when the conductive electrode 11 is formed of Cu.

本実施例の構成とすることにより、第1の実施例に比べ
、さらに、低温部の温度について一5℃の改善効果が認
められた。
By adopting the configuration of this example, an improvement effect of 15° C. in the temperature of the low-temperature portion was observed as compared to the first example.

以上、本発明の実施例ではペルチェ効果を起こさせる金
属薄膜の構成材料にB1を、導電電極の構成材料にCu
を用いるとして説明したが、本発明は、構成材料がBi
’やCu以外でも有効であることは言うまでもない。
As described above, in the embodiments of the present invention, B1 is used as the constituent material of the metal thin film that causes the Peltier effect, and Cu is used as the constituent material of the conductive electrode.
Although the present invention has been described as using Bi as a constituent material,
Needless to say, it is effective for materials other than ' and Cu.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、金属材料を用い
た薄膜ペルチェ素子の提供が可能となり、従来のバルク
型のペルチェ素子を用いた冷却装置に比べて、微小構造
の冷却装置とすることができ、特にICデバイスのよう
な微小な対象物を冷却する冷却能率の良い冷却装置の提
供が可能である。
As explained above, according to the present invention, it is possible to provide a thin film Peltier element using a metal material, and the cooling device has a microstructure compared to a cooling device using a conventional bulk type Peltier element. In particular, it is possible to provide a cooling device with high cooling efficiency for cooling minute objects such as IC devices.

【図面の簡単な説明】[Brief explanation of the drawing]

!J1図は本発明の一実施例図で(a)は平面図、(b
)はそのA −A’断面図、第2図は本発明の他の実施
例図で(a)は平面図、(b)はそのA −A’断面図
、第3図は従来のバルク型ペルチェ素子の断面図、′!
i&4図は本発明における薄膜ペルチェ素子の原理説明
図で(a)は構成図、(k、)は温度分布図である。 く符号の説明〉 10・・・基板(サファイア) 11・・・導電電極(
Cu )12−=−金属薄膜(Bi)    15−A
t205膜14・・・被冷却デバイス   15・・・
吸熱側接合部16・・・発熱側接合部    17・・
・放熱用薄膜見1図 16・・発熟債目(合叶 !12  図 (α) z 17・・力欠愁用涌ハ艮
! Figure J1 is an embodiment of the present invention, (a) is a plan view, (b)
) is an A-A' sectional view of the same, FIG. 2 is a diagram of another embodiment of the present invention, (a) is a plan view, (b) is an A-A' sectional view, and FIG. 3 is a conventional bulk type. Cross-sectional view of a Peltier element, ′!
Figures i & 4 are explanatory diagrams of the principle of the thin film Peltier element in the present invention, (a) is a configuration diagram, and (k,) is a temperature distribution diagram. Explanation of symbols> 10... Substrate (sapphire) 11... Conductive electrode (
Cu ) 12-=-metal thin film (Bi) 15-A
t205 film 14... Cooled device 15...
Heat-absorbing side joint 16... Heat-generating side joint 17...
・Thin film for heat dissipation 1 Diagram 16・・Issuing bond item (Agai! 12 Diagram (α)

Claims (1)

【特許請求の範囲】 1、基板上にゼーベック係数がより大きい金属で形成さ
れた金属薄膜の長手方向の両端にゼーベック係数がより
小さい金属より成る導電電極を接合し両電極間に直流電
流を流して一方の接合部に発熱を他方の接合部に吸熱を
起こさせて吸熱側接合部に配置した被冷却デバイスを冷
却する装置であり、上記金属薄膜の形状が長手方向の一
定間隔ごとにつづら折れ状に折れ曲っており、かつ、つ
づら折れの横方向への突出長さを、発熱側接合部から吸
熱側接合部に近づくに従って漸次短かくしたことを特徴
とする薄膜冷却装置。 2、前記金属薄膜は、少なくとも発熱側接合部に近い一
部の下面側に、電気絶縁層を介して、熱伝導材より成る
放熱用薄膜を具備する金属薄膜であることを特徴とする
特許請求の範囲第1項記載の薄膜冷却装置。
[Claims] 1. Conductive electrodes made of a metal with a smaller Seebeck coefficient are bonded to both longitudinal ends of a thin metal film made of a metal with a larger Seebeck coefficient on a substrate, and a direct current is passed between the two electrodes. This device cools a device to be cooled placed at the heat-absorbing joint by causing heat to be generated at one joint and heat absorption at the other joint, and the shape of the metal thin film is folded at regular intervals in the longitudinal direction. What is claimed is: 1. A thin film cooling device characterized in that the thin film cooling device is bent in a shape, and the protruding length of the zigzag folds in the lateral direction is gradually shortened from the heat generating side joint portion to the heat absorbing side joint portion. 2. A patent claim characterized in that the metal thin film is a metal thin film that is provided with a heat dissipating thin film made of a thermally conductive material on at least a portion of the lower surface near the heat-generating side joint with an electrical insulating layer interposed therebetween. The thin film cooling device according to item 1.
JP61219355A 1986-09-19 1986-09-19 Thin film cooling apparatus Pending JPS6376464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219355A JPS6376464A (en) 1986-09-19 1986-09-19 Thin film cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219355A JPS6376464A (en) 1986-09-19 1986-09-19 Thin film cooling apparatus

Publications (1)

Publication Number Publication Date
JPS6376464A true JPS6376464A (en) 1988-04-06

Family

ID=16734137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219355A Pending JPS6376464A (en) 1986-09-19 1986-09-19 Thin film cooling apparatus

Country Status (1)

Country Link
JP (1) JPS6376464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199206A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199206A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US6043423A (en) Thermoelectric device and thermoelectric module
JP4255691B2 (en) Electronic component cooling device using thermoelectric conversion material
JP3828924B2 (en) Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion apparatus using the element
KR101026618B1 (en) Microelectronic package and method of cooling an interconnect feature in same
JP2003533031A5 (en)
US11980100B2 (en) Metallic junction thermoelectric generator
JP2007518281A (en) Integrated thin film thermoelectric device with auxiliary heat transfer material
JP2006507690A (en) Transformer thermoelectric device
JPH02223393A (en) Thermoelectric energy converter
JP2003347606A (en) Nanoscopic thermoelectric refrigerator
JP2006294935A (en) High efficiency and low loss thermoelectric module
Wang et al. Thermoelectric micro-cooler for hot-spot thermal management
JPS6376464A (en) Thin film cooling apparatus
US9947853B2 (en) Thermoelectric device
US3441449A (en) Thermoelectric system
US10763418B2 (en) Thermoelectric device
JPH06318736A (en) Thin film peltier thermoelectric element
JPS6376463A (en) Thin film cooling apparatus
JP2011082272A (en) Thermoelectric cooling device
Wang On-chip thermoelectric cooling of semiconductor hot spot
US20170005251A1 (en) Thermoelectric device
JPS63299179A (en) Thin film refrigerator
JP3007904U (en) Thermal battery
JPH02130878A (en) Thermoelectric device
JP4242118B2 (en) Thermoelectric conversion module