JPS637595B2 - - Google Patents

Info

Publication number
JPS637595B2
JPS637595B2 JP56212278A JP21227881A JPS637595B2 JP S637595 B2 JPS637595 B2 JP S637595B2 JP 56212278 A JP56212278 A JP 56212278A JP 21227881 A JP21227881 A JP 21227881A JP S637595 B2 JPS637595 B2 JP S637595B2
Authority
JP
Japan
Prior art keywords
phosphor
amount
indium
sulfur
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56212278A
Other languages
Japanese (ja)
Other versions
JPS58115024A (en
Inventor
Takashi Hase
Hidemi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP21227881A priority Critical patent/JPS58115024A/en
Priority to KR828204919A priority patent/KR910001399B1/en
Priority to EP82110097A priority patent/EP0078538B1/en
Priority to DE8282110097T priority patent/DE3269876D1/en
Priority to DE198282110097T priority patent/DE78538T1/en
Publication of JPS58115024A publication Critical patent/JPS58115024A/en
Publication of JPS637595B2 publication Critical patent/JPS637595B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【発明の詳现な説明】 本発明は長残光性の青色発光硫化亜鉛螢光䜓に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to long afterglow blue emitting zinc sulfide phosphors.

现密な文字や図圢の衚瀺が行なわれるコンピナ
ヌタヌの末端衚瀺装眮、航空機管制システムの衚
瀺装眮等には高解像床のブラりン管の䜿甚が望た
れおいる。ブラりン管の解像床を向䞊させるため
の有力な方法ずしお、電子線による螢光膜走査速
床を普通の衚瀺装眮甚ブラりン管のそれよりも
〜倍以䞊遅くするこずが知られおいるが、その
ような高解像床ブラりン管の螢光膜を構成する螢
光䜓は10残光時間励起停止埌発光茝床が励起
時の10たで䜎䞋するのに芁する時間が普通の
衚瀺装眮甚ブラりン管の螢光膜を構成する螢光䜓
よりも数十乃至数癟倍長いこずが必芁である。
It is desired to use high-resolution cathode ray tubes for computer terminal display devices that display detailed characters and graphics, display devices for aircraft control systems, and the like. An effective way to improve the resolution of cathode ray tubes is to increase the scanning speed of the fluorescent film using an electron beam by 2 times higher than that of ordinary cathode ray tubes for display devices.
It is known that the phosphor that makes up the phosphor film of such a high-resolution cathode ray tube has a 10% afterglow time (after excitation stops, the luminance decreases to 10% of the excitation level). It is necessary that the time required for the phosphor film to be formed is several tens to hundreds of times longer than that of the phosphor that constitutes the phosphor film of a typical cathode ray tube for display devices.

埓来、䞊蚘高解像床ブラりン管に䜿甚可胜な長
残光性螢光䜓ずしお、マンガンおよび砒玠付掻珪
酞亜鉛緑色発光螢光䜓Zn2SiO4Mn、As、マ
ンガン付掻北化カリりム・マグネシりム橙色発光
螢光䜓KMgF3・Mn、鉛およびマンガン付掻
珪酞カルシりム橙色発光螢光䜓CaSiO3Pb、
Mn、マンガン付掻北化マグネシりム赀色発光
螢光䜓MgF2Mn、マンガン付掻オルト燐酞
亜鉛・マグネシりム赀色発光螢光䜓〔Zn、
Mg3PO42Mn〕等が知られおいるが、䞊蚘
高解像床ブラりン管に䜿甚可胜な長残光性の青色
発光螢光䜓は党く知られおいない。呚知のように
癜黒ブラりン管やカラヌブラりン管を埗るために
は青色発光螢光䜓は必芁なものであり、このよう
な点から䞊蚘高解像床ブラりン管に䜿甚可胜な長
残光性の青色発光螢光䜓が望たれおいる。
Conventionally, long-afterglow phosphors that can be used in the above high-resolution cathode ray tubes include manganese- and arsenic-activated zinc silicate green-emitting phosphors (Zn 2 SiO 4 :Mn, As), and manganese-activated potassium/magnesium fluoride. Orange-emitting phosphor (KMgF 3 Mn), lead- and manganese-activated calcium silicate orange-emitting phosphor (CaSiO 3 :Pb,
Mn), manganese-activated magnesium fluoride red-emitting phosphor (MgF 2 :Mn), manganese-activated zinc/magnesium orthophosphate red-emitting phosphor [(Zn,
Mg) 3 (PO 4 ) 2 :Mn] and the like are known, but there is no known long-afterglow blue-emitting phosphor that can be used in the above-mentioned high-resolution cathode ray tubes. As is well known, a blue-emitting phosphor is necessary to obtain black-and-white cathode ray tubes and color cathode ray tubes, and from this point of view, a blue-emitting phosphor with long afterglow that can be used in the above-mentioned high-resolution cathode ray tubes has been developed. desired.

䞊蚘芁望に鑑みお、癜黒テレビゞペン甚ブラり
ン管、カラヌテレビゞペン甚ブラりン管等に実甚
されおいる銀を付掻剀ずし、塩玠、臭玠、沃玠、
北玠およびアルミニりムのうちの少なくずも皮
を共付掻剀ずする短残光性の青色発光硫化亜鉛螢
光䜓ZnSAg、、䜆しは塩玠、臭玠、沃
玠、北玠およびアルミニりムのうちの少なくずも
皮であるに䞊蚘長残光性の緑色発光螢光䜓お
よび赀色発光螢光䜓を特定の割合で混合し、この
混合螢光䜓ラむトブル螢光䜓ず呌ばれおいる
を䞊蚘高解像床ブラりン管の螢光膜を構成する青
色発光螢光䜓ずしお䜿甚し、人間の県にあたかも
青色の発光に残光があるように感じさせるこずが
考えられおいる。しかしながら、䞊蚘混合螢光䜓
はZnSAg、螢光䜓の10残光時間が癟数十
乃至数癟マむクロ秒ず非垞に短かいために励起停
止埌発光色に色ずれが生じ、たた発光色の異なる
螢光䜓を混合したものであるので発光に色むらが
生じ易くたた発光色青色の色玔床も悪い。
In view of the above requests, silver, which is used in cathode ray tubes for black and white television, cathode ray tubes for color television, etc., is used as an activator, and chlorine, bromine, iodine, etc.
A short-afterglow blue-emitting zinc sulfide phosphor (ZnS: Ag, X, where X is a coactivator of at least one of fluorine and aluminum) The above-mentioned long-afterglow green-emitting phosphor and red-emitting phosphor are mixed in a specific ratio with at least one type of phosphor (at least one type), and this mixed phosphor (called a light blue phosphor)
It has been proposed to use this material as a blue-emitting phosphor constituting the fluorescent film of the high-resolution cathode ray tube to make the human eye feel as if the blue light has an afterglow. However, the 10% afterglow time of the ZnS:Ag, Since it is a mixture of phosphors that emit light of different colors, color unevenness tends to occur in the emitted light, and the color purity of the emitted color (blue) is also poor.

䞊述のように䞊蚘高解像床ブラりン管に䜿甚可
胜な長残光性の青色発光螢光䜓は埓来党く知られ
おおらず、このこずが高解像床ブラりン管の普及
を阻害する倧きな原因ずな぀おいる。
As mentioned above, no long-afterglow blue-emitting phosphor that can be used in the above-mentioned high-resolution cathode ray tubes has been known, and this is a major cause of inhibiting the spread of high-resolution cathode ray tubes.

本発明は䞊述のような状況の䞋で行なわれたも
のであり、長残光性の青色発光螢光䜓、特に䞊蚘
高解像床ブラりン管に䜿甚するのに適した長残光
性の青色発光螢光䜓を提䟛するこずを目的ずす
る。
The present invention was made under the above-mentioned circumstances, and provides a long afterglow blue emitting phosphor, particularly a long afterglow blue emitting phosphor suitable for use in the above-mentioned high resolution cathode ray tube. The purpose is to provide the body.

本発明者等は䞊蚘目的を達成するために、青色
発光螢光䜓ずしお広く䜿甚されおいる䞊蚘ZnS
Ag、螢光䜓を長残光性の螢光䜓にするこずに
関しお皮々の研究を行な぀おきた。その結果、適
圓量の銀およびは塩玠、臭玠、沃玠、北玠
およびアルミニりムのうちの少なくずも皮であ
るず共に適圓量のむンゞりムで硫化亜鉛を付掻
する堎合には、ZnSAg、螢光䜓よりも10
残光時間が著しく長い青色発光螢光䜓を埗るこず
ができるこずを芋出した。この長残光性のZnS
Ag、In、青色発光螢光䜓においおはむンゞり
ムは発光茝床にも圱響を及がし、むンゞりム付掻
量が増加するに埓぀お螢光䜓の発光茝床は䜎䞋す
る。勿論ZnSAg、In、螢光䜓を高解像床ブ
ラりン管に䜿甚するに圓぀おはその発光茝床はで
きるだけ高いのが望たしく、このような点から本
発明者等はさらにZnSAg、In、螢光䜓の発
光茝床を高めるこずに関しお研究を行な぀た。そ
の結果、補粟時に倚量の硫黄を含有させた硫化亜
鉛生粉を母䜓原料ずしお䜿甚し、埗られる螢光䜓
䞭に埮量の硫黄を含たせる堎合には、残光特性に
ほずんど圱響を及がすこずなくむンゞりムを付掻
したこずによる発光茝床の䜎䞋をかなり抑制する
こずができるこずを芋出した。
In order to achieve the above object, the present inventors developed the above-mentioned ZnS, which is widely used as a blue-emitting phosphor.
Various studies have been conducted on making Ag,X phosphors into phosphors with long afterglow properties. As a result, when zinc sulfide is activated with an appropriate amount of indium along with an appropriate amount of silver and X (where X is at least one of chlorine, bromine, iodine, fluorine, and aluminum), ZnS:Ag, 10% more than X phosphor
It has been found that it is possible to obtain a blue-emitting phosphor with a significantly long afterglow time. This long afterglow ZnS:
In Ag, In, X blue-emitting phosphors, indium also affects the luminance, and as the amount of indium activation increases, the luminance of the phosphor decreases. Of course, when using ZnS:Ag, In, We conducted research on increasing the luminance of phosphors. As a result, when raw zinc sulfide powder containing a large amount of sulfur during refining is used as a base material and a small amount of sulfur is included in the resulting phosphor, it has little effect on the afterglow properties. It has been found that the reduction in luminance caused by indium activation can be considerably suppressed.

本発明は䞊述のような知芋に基づいおなされた
ものである。すなわち、本発明の長残光性青色発
光螢光䜓は硫化亜鉛を母䜓ずし、銀を付掻剀ず
し、むンゞりムを第の共付掻剀ずし、塩玠、臭
玠、沃玠、北玠およびアルミニりムのうちの少な
くずも皮を第の共付掻剀ずし、䞊蚘付掻剀、
第の共付掻剀および第の共付掻剀の量がそれ
ぞれ䞊蚘硫化亜鉛母䜓の×10-4乃至10-1重量
、10-6乃至10-1重量および×10-6乃至×
10-2重量であり、か぀硫黄を䞊蚘硫化亜鉛母䜓
の10-5乃至×10-1重量含有するこずを特城ず
する。
The present invention has been made based on the above findings. That is, the long-afterglow blue-emitting phosphor of the present invention uses zinc sulfide as a matrix, silver as an activator, indium as a first co-activator, and chlorine, bromine, iodine, fluorine, and aluminum. as a second co-activator, at least one of the above-mentioned activators,
The amounts of the first co-activator and the second co-activator are 5 x 10 -4 to 10 -1 weight %, 10 -6 to 10 -1 weight % and 5 x 10 - of the zinc sulfide matrix, respectively. 6 to 5×
10 -2 % by weight, and sulfur is contained in an amount of 10 -5 to 8×10 -1 % by weight of the zinc sulfide matrix.

䞊蚘本発明の青色発光硫化亜鉛螢光䜓は埓来の
ZnSAg、青色発光螢光䜓よりも電子線、玫
倖線等による励起を停止した埌の10残光時間が
数十乃至数癟倍長い。本発明の螢光䜓は補造時の
焌敎枩床に䟝存しお立方晶系あるいは六方晶系を
䞻結晶盞ずするが、立方晶系を䞻結晶盞ずする螢
光䜓の方が六方晶系を䞻結晶盞ずする螢光䜓より
も高茝床の発光を瀺し、たたより高い発光茝床お
よび発光色玔床を瀺す螢光䜓を䞎えるむンゞりム
付掻量範囲においおは前者の方が埌者よりも10
残光時間が長い。このような点から、本発明の螢
光䜓のうち立方晶系を䞻結晶盞ずする螢光䜓は六
方晶系を䞻結晶盞ずする螢光䜓よりも高解像床ブ
ラりン管甚青色発光螢光䜓ずしおより奜たしいも
のである。
The above blue-emitting zinc sulfide phosphor of the present invention is similar to the conventional blue-emitting zinc sulfide phosphor.
ZnS: The 10% afterglow time after stopping excitation by electron beams, ultraviolet rays, etc. is several tens to hundreds of times longer than that of Ag and X blue-emitting phosphors. The phosphor of the present invention has a cubic system or a hexagonal system as its main crystal phase depending on the annealing temperature during production, but a phosphor with a cubic system as its main crystal phase is more likely to have a hexagonal system. The former is 10% more luminous than the latter in the indium activation amount range that provides a phosphor with higher luminance and luminance color purity than a phosphor with a main crystalline phase of
Long afterglow time. From this point of view, among the phosphors of the present invention, a phosphor having a cubic crystal system as its main crystal phase is more suitable for use as a blue-emitting phosphor for high-resolution cathode ray tubes than a phosphor having a hexagonal system as its main crystal phase. It is more preferable as

なお、本明现曞に述べられる10残光時間の倀
はいずれも刺激電子線の電流密床が1ÎŒAcm2であ
る堎合の倀である。
Note that all values of the 10% afterglow time described in this specification are values when the current density of the stimulating electron beam is 1 ÎŒA/cm 2 .

以䞋本発明を詳现に説明する。 The present invention will be explained in detail below.

本発明の螢光䜓は以䞋に述べる補造方法によ぀
お補造される。
The phosphor of the present invention is manufactured by the manufacturing method described below.

たず螢光䜓原料ずしおは (i) 補粟時に倚量の硫黄を含有させた硫化亜鉛生
粉母䜓および硫黄の原料 (ii) 硝酞銀、硫化銀、ハロゲン化銀等の銀化合物
付掻剀原料 (iii) 硝酞むンゞりム、硫化むンゞりム、ハロゲン
化むンゞりム等のむンゞりム化合物第の共
付掻剀原料、および (iv) アルカリ金属Na、、Li、RbおよびCs
およびアルカリ土類金属Ca、Mg、Sr、Zn、
CdおよびBaの塩化物、臭化物、沃化物およ
び北化物、䞊びに硝酞アルミニりム、硫酞アル
ミニりム、酞化アルミニりム、ハロゲン化アル
ミニりム等のアルミニりム化合物からなる化合
物矀より遞ばれる化合物の少なくずも皮第
の共付掻剀原料 が甚いられる。䞊蚘(i)の母䜓および硫黄の原料は
䟋えばPH乃至の匱酞性硫酞亜鉛氎溶液にその
氎溶液のPH倀を䞀定に維持しながら硫化アンモニ
りムを添加しお硫化亜鉛を沈殿させるこずによ぀
お調補するこずができる。このようにしお調補さ
れた硫化亜鉛生粉䞭に含たれる化孊量論量以倖の
硫黄の量は沈殿生成時の氎溶液のPH倀に䟝存し、
PH倀が䜎い皋すなわち酞性床が高い皋その量
は倚くなる。䞀般にPH乃至の氎溶液から沈殿
せしめられた硫化亜鉛生粉は化孊量論量以倖の硫
黄を硫化亜鉛のコンマ数重量乃至数十重量含
有しおいる。なおこの硫化亜鉛生粉䞭に含たれる
化孊量論量以倖の硫黄はその倧郚分が焌成時に倱
なわれお埗られる螢光䜓䞭にはごく䞀郚しか残留
しない。埓぀お、母䜓原料であるず同時に埗られ
る螢光䜓䞭に埮量含たれる硫黄の原料でもある䞊
蚘(i)の硫化亜鉛生粉は、螢光䜓補造時の焌成枩
床、焌成時間等を考慮しお、硫化亜鉛母䜓の10-5
乃至×10-1重量の範囲から遞ばれる目的ずす
る硫黄含有量を達成し埗る量の化孊量論量以倖の
硫黄を含むものが甚いられる。
First, the raw materials for the phosphor are (i) raw zinc sulfide powder containing a large amount of sulfur during refining (base material and raw material for sulfur), (ii) silver compounds such as silver nitrate, silver sulfide, and silver halide (activating agent). raw materials) (iii) indium compounds such as indium nitrate, indium sulfide, and indium halides (first coactivator raw materials), and (iv) alkali metals (Na, K, Li, Rb, and Cs)
and alkaline earth metals (Ca, Mg, Sr, Zn,
At least one compound selected from the group consisting of chlorides, bromides, iodides, and fluorides of Cd and Ba), and aluminum compounds such as aluminum nitrate, aluminum sulfate, aluminum oxide, and aluminum halide (second compound); activator raw material) is used. The base material and sulfur raw material in (i) above are prepared, for example, by adding ammonium sulfide to a weakly acidic zinc sulfate aqueous solution with a pH of 6 to 4 while maintaining the PH value of the aqueous solution constant to precipitate zinc sulfide. be able to. The amount of sulfur other than the stoichiometric amount contained in the raw zinc sulfide powder prepared in this way depends on the PH value of the aqueous solution at the time of precipitation,
The lower the PH value (that is, the higher the acidity), the greater the amount. Generally, raw zinc sulfide powder precipitated from an aqueous solution with a pH of 6 to 4 contains sulfur in an amount other than the stoichiometric amount, ranging from a few tenths of a percent to several tens of percent by weight of zinc sulfide. Most of the sulfur contained in the raw zinc sulfide powder other than the stoichiometric amount is lost during firing, and only a small portion remains in the resulting phosphor. Therefore, the raw zinc sulfide powder mentioned in (i) above, which is both the base material and the raw material for the trace amount of sulfur contained in the obtained phosphor, is prepared by taking into consideration the firing temperature, firing time, etc. during the production of the phosphor. 10 -5 of zinc sulfide matrix
A material containing sulfur in an amount other than the stoichiometric amount that can achieve the target sulfur content, which is selected from the range of 8 x 10 -1 % by weight, is used.

䞊蚘(i)の母䜓および硫黄の原料、(ii)の付掻剀原
料および(iii)の第の共付掻剀原料は、(ii)の付掻剀
原料䞭の銀の量および(iii)の第の共付掻剀原料䞭
のむンゞりムの量がそれぞれ(i)の母䜓および硫黄
の原料に含たれる硫化亜鉛の量の×10-4乃至
10-1重量および10-6乃至10-1重量ずなるよう
な量比で甚いられる。たた(iv)の第の共付掻剀原
料は埗られる螢光䜓䞭に含たれる塩玠、臭玠、沃
玠、北玠およびアルミニりムのうちの少なくずも
皮の量すなわち第の共付掻剀の量が硫化
亜鉛母䜓の×10-6乃至×10-2重量ずなるよ
うな量甚いられる。すなわち、第の共付掻剀原
料䞭のアルミニりムは銀およびむンゞりムず同様
にそのほずんどが埗られる螢光䜓䞭に残留しお第
の共付掻剀ずなるが、第の共付掻剀原料䞭の
ハロゲンはその倧郚分が焌成時に倱なわれお埗ら
れる螢光䜓䞭にはごく䞀郚しか残留しない。埓぀
お、ハロゲンの原料である䞊蚘アルカリ金属ある
いはアルカリ土類金属のハロゲン化物は焌成枩床
等に䟝存しお目的ずするハロゲン付掻量の数十乃
至数癟倍のハロゲンを含むような量甚いられる。
なお、付掻剀銀の原料ずしおハロゲン化銀が甚い
られる堎合、第の共付掻剀むンゞりムの原料ず
しおハロゲン化むンゞりムが甚いられる堎合ある
いはアルミニりムの原料ずしおハロゲン化アルミ
ニりムが甚いられる堎合には、必芁なハロゲンの
䞀郚はそれら原料によ぀おも䟛䞎される。
The base material and sulfur raw material in (i) above, the activator raw material in (ii) and the first co-activator raw material in (iii) are determined based on the amount of silver in the activator raw material in (ii) and the amount of silver in the activator raw material in (iii). The amount of indium in the first coactivator raw material of (i) is 5 × 10 -4 to the amount of zinc sulfide contained in the base material and sulfur raw material of (i), respectively.
It is used in an amount ratio of 10 -1 % by weight and 10 -6 to 10 -1 % by weight. The second coactivator raw material (iv) is the amount of at least one of chlorine, bromine, iodine, fluorine, and aluminum contained in the obtained phosphor (i.e., the amount of the second coactivator). The amount used is such that the amount (amount) is 5 x 10 -6 to 5 x 10 -2 % by weight of the zinc sulfide matrix. That is, like silver and indium, most of the aluminum in the second coactivator raw material remains in the obtained phosphor and becomes the second coactivator; Most of the halogen in the agent raw material is lost during firing, and only a small portion remains in the resulting phosphor. Therefore, the above-mentioned alkali metal or alkaline earth metal halide, which is a raw material for halogen, is used in an amount that contains several tens to hundreds of times as much halogen as the desired amount of halogen activation, depending on the firing temperature, etc. .
In addition, when silver halide is used as a raw material for the activator silver, when indium halide is used as a raw material for the first co-activator indium, or when aluminum halide is used as a raw material for aluminum, A portion of the necessary halogen is also provided by these raw materials.

䞊蚘アルカリ金属あるいはアルカリ土類金属の
ハロゲン化物はハロゲン䟛䞎剀であるず同時に融
剀ずしおも䜜甚する。
The alkali metal or alkaline earth metal halide acts both as a halogen donor and as a flux.

䞊蚘぀の螢光䜓原料を必芁量秀取し、ボヌル
ミル、ミキサヌミル等の粉砕混合機を甚いお充分
に混合しお螢光䜓原料混合物を埗る。なおこの螢
光䜓原料の混合は䞊蚘(i)の母䜓および硫黄の原料
に䞊蚘(ii)の付掻剀原料、(iii)の第の共付掻剀原料
および(iv)の第の共付掻剀原料を溶液ずしお添加
しお湿匏で行な぀おもよい。この堎合、混合の埌
埗られた螢光䜓原料混合物を充分に也燥させる。
Required amounts of the above four phosphor raw materials are weighed out and thoroughly mixed using a grinding mixer such as a ball mill or a mixer mill to obtain a phosphor raw material mixture. This phosphor raw material is mixed by adding the base material and sulfur raw material in (i) above, the activator raw material in (ii) above, the first co-activator raw material in (iii), and the second raw material in (iv). The co-activator raw material may be added as a solution and carried out in a wet manner. In this case, the phosphor raw material mixture obtained after mixing is sufficiently dried.

次に埗られた螢光䜓原料混合物を石英ルツボ、
石英チナヌブ等の耐熱性容噚に充填しお焌成を行
なう。焌成は硫化氎玠雰囲気、硫黄蒞気雰囲気、
二硫化炭玠雰囲気等の硫化性雰囲気䞭で行なう。
焌成枩床は600乃至1200℃が適圓である。焌成枩
床が1050℃よりも高い堎合には六方晶系を䞻結晶
盞ずする螢光䜓が埗られ、䞀方焌成枩床が1050℃
以䞋である堎合には立方晶系を䞻結晶盞ずする螢
光䜓が埗られる。すなわち、本発明の螢光䜓は
1050℃付近に盞転移点を有しおいる。埌に説明す
るように、立方晶系を䞻結晶盞ずする螢光䜓の方
が六方晶系を䞻結晶盞ずする螢光䜓よりも高解像
床ブラりン管甚青色発光螢光䜓ずしおより奜たし
いものである。埓぀お、焌成枩床は600乃至1050
℃であるのが奜たしく、より奜たしくは800乃至
1050℃である。焌成時間は甚いられる焌成枩床、
耐熱性容噚に充填される螢光䜓原料混合物の量等
によ぀お異なるが、䞊蚘焌成枩床範囲では0.5乃
至時間が適圓である。焌成埌、埗られた焌成物
を氎掗し、也燥させ、篩にかけお本発明の螢光䜓
を埗る。
Next, the obtained phosphor raw material mixture was placed in a quartz crucible.
It is filled into a heat-resistant container such as a quartz tube and fired. Firing is carried out in hydrogen sulfide atmosphere, sulfur vapor atmosphere,
The test is carried out in a sulfidic atmosphere such as a carbon disulfide atmosphere.
A suitable firing temperature is 600 to 1200°C. When the firing temperature is higher than 1050°C, a phosphor with a hexagonal system as the main crystal phase is obtained;
In the following cases, a phosphor having a cubic crystal system as the main crystal phase can be obtained. That is, the phosphor of the present invention is
It has a phase transition point around 1050℃. As will be explained later, a phosphor having a cubic crystal system as its main crystal phase is more preferable as a blue-emitting phosphor for a high-resolution cathode ray tube than a phosphor having a hexagonal system as its main crystal phase. . Therefore, the firing temperature is 600 to 1050
It is preferably 800°C to 800°C, more preferably 800 to
The temperature is 1050℃. The firing time depends on the firing temperature used,
Although it varies depending on the amount of the phosphor raw material mixture filled in the heat-resistant container, 0.5 to 7 hours is appropriate in the above firing temperature range. After firing, the obtained fired product is washed with water, dried, and sieved to obtain the phosphor of the present invention.

以䞊説明した補造方法によ぀お埗られる本発明
の螢光䜓は硫化亜鉛を母䜓ずし、銀の付掻剀ず
し、むンゞりムを第の共付掻剀ずし、塩玠、臭
玠、沃玠、北玠およびアルミニりムのうちの少な
くずも皮を第の共付掻剀ずし、䞊蚘付掻剀、
第の共付掻剀および第の共付掻剀の量がそれ
ぞれ䞊蚘硫化亜鉛母䜓の×10-4乃至10-1重量
、10-6乃至10-1重量および×10-6乃至×
10-2重量であり、か぀硫黄を䞊蚘硫化亜鉛母䜓
の10-5乃至×10-1重量含有する螢光䜓であ
る。この螢光䜓は埓来のZnSAg、螢光䜓ず
同じく電子線、玫倖線等の励起䞋で高茝床の青色
発光を瀺すが、励起停止埌の10残光時間はむン
ゞりムの付掻量に䟝存しお埓来のZnSAg、
螢光䜓よりも数十乃至数癟倍長い。このように本
発明の螢光䜓は長い残光を瀺し、その残光特性は
第の共付掻剀むンゞりムの付掻量に䟝存しお倉
化するが、むンゞりムは発光茝床および発光色の
玔床にも圱響を及がす。すなわち、本発明の螢光
䜓においおはむンゞりム付掻量が増加するに埓぀
お発光茝床は䜎䞋し、たたむンゞりム付掻量が非
垞に増加するず発光色の玔床は䜎䞋する。しかし
ながら、先に述べたように本発明の螢光䜓に埮量
含たれる硫黄はむンゞりムを付掻したこずによる
発光茝床の䜎䞋を抑制する䜜甚を有しおおり、埓
぀お本発明の螢光䜓は埮量の硫黄を含有しないこ
ず以倖は同じ組成を有するZnSAg、In、螢
光䜓よりも高茝床の発光を瀺す。
The phosphor of the present invention obtained by the manufacturing method described above uses zinc sulfide as a host, silver activator, indium as the first co-activator, chlorine, bromine, iodine, fluorine, and aluminum. at least one of them is used as a second co-activator, the above-mentioned activator,
The amounts of the first co-activator and the second co-activator are 5 x 10 -4 to 10 -1 weight %, 10 -6 to 10 -1 weight % and 5 x 10 - of the zinc sulfide matrix, respectively. 6 to 5×
10 -2 % by weight and sulfur in an amount of 10 -5 to 8 x 10 -1 % by weight based on the zinc sulfide matrix. Like conventional ZnS:Ag and Conventional ZnS depending on:Ag,X
It is several tens to hundreds of times longer than the fluorescent material. As described above, the phosphor of the present invention exhibits a long afterglow, and its afterglow characteristics vary depending on the activation amount of the first coactivator indium. It also affects. That is, in the phosphor of the present invention, as the amount of indium activation increases, the luminance of the emitted light decreases, and when the amount of indium activation increases significantly, the purity of the emitted light color decreases. However, as mentioned above, the trace amount of sulfur contained in the phosphor of the present invention has the effect of suppressing the reduction in luminance caused by activating indium. It exhibits higher luminance than the ZnS:Ag, In, X phosphor, which has the same composition except that it does not contain a trace amount of sulfur.

たた先に説明したように、本発明の螢光䜓は
1050℃付近に盞転移点を有しおおり、1050℃以䞋
の枩床で焌成するこずによ぀お埗られた螢光䜓は
立方晶系を䞻結晶盞ずし、䞀方1050℃よりも高い
枩床で焌成するこずによ぀お埗られた螢光䜓は六
方晶系を䞻結晶盞ずする。立方晶系を䞻結晶盞ず
する螢光䜓ず六方晶系を䞻結晶盞ずする螢光䜓を
比范する堎合、前者は埌者よりも発光茝床が玄
1.3乃至倍高く、たた発光茝床および発光色玔
床のより高いむンゞりム付掻量が比范的少ない螢
光䜓に぀いおは、前者は埌者よりも10残光時間
が長い。これらの点から、立方晶系を䞻結晶盞ず
する螢光䜓の方が六方晶系を䞻結晶盞ずする螢光
䜓よりも高解像床ブラりン管甚青色発光螢光䜓ず
しおより奜たしいものである。なお、立方晶系を
䞻結晶盞ずする螢光䜓の発光スペクトルは六方晶
系を䞻結晶盞ずする螢光䜓の発光スペクトルより
もわずかに長波長偎にある。
Furthermore, as explained earlier, the phosphor of the present invention
It has a phase transition point around 1050℃, and the phosphor obtained by firing at a temperature below 1050℃ has a cubic crystal system as the main crystal phase, while the phosphor obtained by firing at a temperature higher than 1050℃ has a cubic crystal phase. The phosphor obtained by this process has a hexagonal crystal system as its main crystal phase. When comparing a phosphor with a cubic crystal system as the main crystal phase and a phosphor with a hexagonal system as the main crystal phase, the former has a luminance that is approximately higher than the latter.
For phosphors with a relatively low amount of indium activation, which is 1.3 to 2 times higher and has higher emission brightness and emission color purity, the former has a 10% longer afterglow time than the latter. From these points of view, a phosphor having a cubic system as its main crystal phase is more preferable as a blue-emitting phosphor for a high-resolution cathode ray tube than a phosphor having a hexagonal system as its main crystal phase. Note that the emission spectrum of a phosphor having a cubic crystal system as its main crystal phase is slightly on the longer wavelength side than that of a phosphor having a hexagonal system as its main crystal phase.

第図は本発明の螢光䜓の発光スペクトルを埓
来のZnSAg、螢光䜓の発光スペクトルず比
范しお䟋瀺するものである。第図においお、曲
線は銀および塩玠の付掻量がそれぞれ硫化亜鉛
母䜓の10-2重量および10-4重量である埓来の
立方晶系を䞻結晶盞ずするZnSAg、Cl螢光䜓
の発光スペクトル、曲線およびはそれぞれ銀
および塩玠の付掻量は䞊蚘ず同じでありむンゞり
ム付掻量および硫黄含有量がそれぞれ硫化亜鉛母
䜓の10-2重量および10-4重量である本発明の
立方晶系および六方晶系を䞻結晶盞ずする硫黄含
有ZnSAg、In、Cl螢光䜓の発光スペクトル、
曲線は銀および塩玠の付掻量および硫黄含有量
は䞊蚘ず同じでありむンゞりム付掻量が硫化亜鉛
母䜓の×10-2重量である本発明の立方晶系を
䞻結晶盞ずする硫黄含有ZnSAg、In、Cl螢光
䜓の発光スペクトルである。
FIG. 1 illustrates the emission spectrum of the phosphor of the present invention in comparison with that of a conventional ZnS:Ag,X phosphor. In Figure 1, curve a represents conventional ZnS whose main crystal phase is a cubic system in which the activation amounts of silver and chlorine are 10 -2 % and 10 -4 % by weight of the zinc sulfide matrix, respectively: Ag, Cl In the emission spectrum of the phosphor, curves b and c, the activation amounts of silver and chlorine are the same as above, and the indium activation amount and sulfur content are 10 -2 % and 10 -4 % by weight of the zinc sulfide matrix, respectively. % of the sulfur-containing ZnS:Ag, In, Cl phosphor of the present invention with cubic and hexagonal main crystal phases,
Curve d shows that the activation amount of silver and chlorine and the sulfur content are the same as above, and the indium activation amount is 2 x 10 -2 % by weight of the zinc sulfide matrix.The main crystal phase is the cubic system of the present invention. Emission spectrum of sulfur-containing ZnS: Ag, In, Cl phosphor.

第図に䟋瀺されるように、本発明の螢光䜓
曲線およびは埓来のZnSAg、螢
光䜓曲線ず同様に青色発光を瀺す。たた曲
線ず曲線の比范から明らかなように、本発明
の螢光䜓はむンゞりム付掻量が非垞に増加するず
×10-2重量以䞊発光スペクトルの半倀幅
が広くなり発光色の色玔床が䜎䞋する。むンゞり
ム付掻量が10-2重量である本発明の螢光䜓の発
光スペクトル曲線は埓来のZnSAg、
螢光䜓の発光スペクトル曲線よりも半倀幅
が狭く、埓぀おむンゞりム付掻量が少なくずも
10-2重量以䞋である本発明の螢光䜓は埓来の
ZnSAg、螢光䜓よりも色玔床の高い青色発
光を瀺す。さらに曲線ず曲線の比范から明ら
かなように、本発明の螢光䜓においお立方晶系を
䞻結晶盞ずする螢光䜓曲線は六方晶系を䞻
結晶盞ずする螢光䜓曲線よりもわずかに長
波長偎に発光スペクトルを有しおいる。
As illustrated in FIG. 1, the phosphor of the present invention (curves b, c and d) exhibits blue emission similar to the conventional ZnS:Ag,X phosphor (curve a). Furthermore, as is clear from the comparison between curve b and curve d, when the indium activation amount of the phosphor of the present invention increases significantly (2×10 -2 weight % or more), the half-width of the emission spectrum becomes wider and the emission color becomes larger. color purity decreases. The emission spectrum (curve b) of the phosphor of the present invention with an indium activation amount of 10 -2 % by weight is different from that of the conventional ZnS:Ag,
The half width is narrower than the emission spectrum of the phosphor (curve a), so the indium activation amount is at least
The phosphor of the present invention, which is 10 -2 % by weight or less, is
ZnS:Exhibits blue light emission with higher color purity than Ag and X phosphors. Furthermore, as is clear from the comparison between curve b and curve c, in the phosphor of the present invention, the phosphor having a cubic system as the main crystal phase (curve b) is different from the phosphor having a hexagonal system as the main crystal phase. (curve c) has an emission spectrum on the slightly longer wavelength side.

なお以䞊第図によ぀お説明した本発明の螢光
䜓におけるむンゞりム付掻量の倉化に䌎なう発光
スペクトルの倉化発光色の色玔床の倉化の様
子は硫黄を含有しないZnSAg、In、螢光䜓
の堎合ずほが同じである。すなわち、本発明の螢
光䜓に埮量含たれる硫黄は螢光䜓の発光スペクト
ル発光色の色玔床にほずんど圱響を及がさな
い。
Note that the changes in the emission spectrum (changes in the color purity of the emitted light color) due to changes in the amount of indium activation in the phosphor of the present invention explained above with reference to FIG. , In, and X phosphors. That is, the trace amount of sulfur contained in the phosphor of the present invention has almost no effect on the emission spectrum (color purity of emitted light) of the phosphor.

第図は本発明の螢光䜓の残光特性を埓来の
ZnSAg、螢光䜓の残光特性ず比范しお䟋瀺
するグラフである。第図においお、曲線は銀
および塩玠の付掻量がそれぞれ硫化亜鉛母䜓の
10-2重量および10-4重量である埓来の立方晶
系を䞻結晶盞ずするZnSAg、Cl螢光䜓の電子
線励起停止埌の残光特性、曲線は銀および塩玠
の付掻量は䞊蚘ず同じでありむンゞりム付掻量お
よび硫黄含有量がそれぞれ硫化亜鉛母䜓の×
10-3重量および10-4重量である本発明の立方
晶系を䞻結晶盞ずする硫黄含有ZnSAg、In、
Cl螢光䜓の電子線励起停止埌の残光特性である。
Figure 2 shows the afterglow characteristics of the phosphor of the present invention compared to the conventional one.
It is a graph illustrating a comparison with the afterglow characteristics of ZnS:Ag and X phosphors. In Figure 2, curve a shows the activation amount of silver and chlorine, respectively, in the zinc sulfide matrix.
Curve b shows the afterglow characteristics of ZnS:Ag,Cl phosphors with the main crystalline phase of the conventional cubic system, which are 10 -2 and 10 -4 wt%, after electron beam excitation is stopped. The activation amount is the same as above, and the indium activation amount and sulfur content are respectively 2× of the zinc sulfide matrix.
The sulfur-containing ZnS with the main crystalline phase of the cubic system of the present invention, which is 10 -3 % by weight and 10 -4 % by weight: Ag, In,
This is the afterglow characteristic of a Cl phosphor after electron beam excitation is stopped.

第図から明らかなように、本発明の硫黄含有
ZnSAg、In、Cl螢光䜓は埓来のZnSAg、Cl
螢光䜓に比范しお著しく長残光である。埓来の
ZnSAg、Cl螢光䜓の10残光時間が玄150マむ
クロ秒であるのに察しお本発明の硫黄含有ZnS
Ag、In、Cl螢光䜓の10残光時間は玄40ミリ秒
であり、埓来のZnSAg、Cl螢光䜓の250倍以䞊
である。
As is clear from FIG. 2, the sulfur-containing
ZnS:Ag, In, Cl phosphor is conventional ZnS:Ag, Cl
It has a significantly longer afterglow compared to fluorescent materials. Traditional
ZnS: The 10% afterglow time of Ag, Cl phosphor is about 150 microseconds, whereas the sulfur-containing ZnS of the present invention:
The 10% afterglow time of the Ag, In, Cl phosphor is approximately 40 milliseconds, which is more than 250 times that of the conventional ZnS:Ag, Cl phosphor.

第図は本発明の螢光䜓におけるむンゞりム付
掻量ず10残光時間ずの関係を䟋瀺するグラフで
ある。第図においお、曲線は銀および塩玠の
付掻量がそれぞれ硫化亜鉛母䜓の10-2重量およ
び10-4重量であり硫黄含有量が硫化亜鉛母䜓の
10-4重量ある立方晶系を䞻結晶盞ずする硫黄含
有ZnSAg、In、Cl螢光䜓における䞊蚘関係、
曲線は銀および塩玠の付掻量および硫黄含有量
が䞊蚘ず同じである六方晶系を䞻結晶盞ずする硫
黄含有ZnSAg、In、Cl螢光䜓における䞊蚘関
係である。なお、第図の10残光時間を衚わす
瞊軞䞊に瀺される〇印は、銀および塩玠の付掻量
が䞊蚘ず同じである埓来の立方晶系を䞻結晶盞ず
するZnSAg、Cl螢光䜓の10残光時間玄150
マむクロ秒である。
FIG. 3 is a graph illustrating the relationship between the amount of indium activation and the 10% afterglow time in the phosphor of the present invention. In Figure 3, curve a shows that the activation amounts of silver and chlorine are 10 -2 % and 10 -4% by weight of the zinc sulfide matrix, respectively, and the sulfur content is 10 -2% and 10 -4 % by weight of the zinc sulfide matrix.
The above relationship in the sulfur-containing ZnS:Ag, In, Cl phosphor with cubic crystal system as the main crystal phase with 10 -4 % by weight,
Curve b shows the above relationship in a sulfur-containing ZnS:Ag, In, Cl phosphor having a hexagonal system as the main crystal phase and having the same activation amounts of silver and chlorine and the same sulfur content as above. In addition, the mark ○ shown on the vertical axis representing the 10% afterglow time in Figure 3 indicates the conventional ZnS:Ag whose main crystal phase is the cubic system with the same activation amounts of silver and chlorine as above. , 10% afterglow time of Cl phosphor (approximately 150
microseconds).

第図に䟋瀺されるように、むンゞりム付掻量
が硫化亜鉛母䜓の10-6乃至10-1重量の範囲にあ
る本発明の螢光䜓は䞻結晶盞が立方晶系あるいは
六方晶系のいずれの堎合も10残光時間が埓来の
ZnSAg、螢光䜓よりも数十乃至数癟倍長い。
特にむンゞりム付掻量が×10-4乃至10-1重量
の範囲にある本発明の螢光䜓は10残光時間が著
しく長い。しかしながら、先に説明したように本
発明の螢光䜓の発光茝床はむンゞりム付掻量が増
加するに埓぀お䜎䞋し、たた本発明の螢光䜓の発
光色玔床はむンゞりム付掻量が非垞に増加するず
䜎䞋する。この発光茝床および発光色玔床を考慮
に入れるず、本発明の螢光䜓の奜たしいむンゞり
ム付掻量は×10-6乃至10-2重量である。第
図に䟋瀺されるようにむンゞりム付掻量がこの範
囲にある本発明の螢光䜓の10残光時間は玄乃
至55ミリ秒であるが、この10残光時間は高解像
床ブラりン管甚青色発光螢光䜓ずしお充分なもの
である。
As illustrated in FIG. 3, the phosphor of the present invention in which the indium activation amount is in the range of 10 -6 to 10 -1 % by weight of the zinc sulfide matrix has a cubic or hexagonal crystal phase. In both cases, the afterglow time is 10% lower than that of the conventional
ZnS: Ag, several tens to hundreds of times longer than X fluorophore.
In particular, the indium activation amount is 5×10 -4 to 10 -1 % by weight.
The phosphor of the present invention in the range of 10% afterglow time is significantly long. However, as explained above, the luminance of the phosphor of the present invention decreases as the amount of indium activation increases, and the purity of the luminescent color of the phosphor of the present invention decreases as the amount of indium activation increases. When it increases, it decreases. Taking into consideration the emission brightness and emission color purity, the preferred indium activation amount of the phosphor of the present invention is 5 x 10 -6 to 10 -2 % by weight. Third
As illustrated in the figure, the 10% afterglow time of the phosphor of the present invention having an indium activation amount within this range is about 5 to 55 milliseconds, but this 10% afterglow time is suitable for high resolution cathode ray tubes. This is sufficient as a blue-emitting phosphor.

先に説明したように、本発明の螢光䜓のうち立
方晶系を䞻結晶盞ずする螢光䜓は六方晶系を䞻結
晶盞ずする螢光䜓よりも発光茝床が玄1.3乃至
倍高い。たた䞊蚘奜たしいむンゞりム付掻量範囲
×10-6乃至10-2重量においおは立方晶系
を䞻結晶盞ずする螢光䜓は六方晶系を䞻結晶盞ず
する螢光䜓よりも10残光時間が長い。これらの
点から、立方晶系を䞻結晶盞ずする螢光䜓の方が
六方晶系を䞻結晶盞ずする螢光䜓よりも高解像床
ブラりン管甚青色発光螢光䜓ずしおより奜たしい
ものである。特にむンゞりム付掻量が×10-6乃
至10-2重量の範囲にある立方晶系を䞻結晶盞ず
する螢光䜓は高解像床ブラりン管に最も適したも
のである。
As explained above, among the phosphors of the present invention, a phosphor having a cubic crystal system as a main crystal phase has a luminance of about 1.3 to 2 times higher than a phosphor having a hexagonal system as a main crystal phase.
twice as expensive. Furthermore, in the preferred indium activation amount range (5 x 10 -6 to 10 -2 % by weight), the phosphor having a cubic system as its main crystal phase is more effective than the phosphor having a hexagonal system as its main crystal phase. 10% long afterglow time. From these points of view, a phosphor having a cubic system as its main crystal phase is more preferable as a blue-emitting phosphor for a high-resolution cathode ray tube than a phosphor having a hexagonal system as its main crystal phase. In particular, a phosphor having an indium activation amount in the range of 5×10 -6 to 10 -2 weight % and having a cubic crystal system as its main crystal phase is most suitable for high-resolution cathode ray tubes.

なお第図は硫黄含有ZnSAg、In、Cl螢光
䜓に぀いおのむンゞりム付掻量ず10残光時間ず
の関係を瀺すグラフであるが、第の共付掻剀が
臭玠、沃玠、北玠あるいはアルミニりムの堎合も
むンゞりム付掻量ず10残光時間ずの関係は第
図ず同じような傟向にあるこずが確認された。
Figure 3 is a graph showing the relationship between indium activation amount and 10% afterglow time for a sulfur-containing ZnS:Ag, In, Cl phosphor. In the case of fluorine or aluminum, the relationship between indium activation amount and 10% afterglow time is the third
It was confirmed that the trend was similar to that shown in the figure.

以䞊第図によ぀お説明した本発明の螢光䜓に
おけるむンゞりム付掻量ず10残光時間ずの関係
は硫黄を含有しないZnSAg、In、螢光䜓に
おけるむンゞりム付掻量ず10残光時間ずの関係
ずほが同じである。すなわち、本発明の螢光䜓に
埮量含たれる硫黄は螢光䜓の残光特性にほずんど
圱響を及がさない。
The relationship between the amount of indium activation and the 10% afterglow time in the phosphor of the present invention explained above with reference to FIG. The relationship is almost the same as the 10% afterglow time. That is, the trace amount of sulfur contained in the phosphor of the present invention has almost no effect on the afterglow properties of the phosphor.

䞊述のように本発明の螢光䜓に埮量含たれる硫
黄は螢光䜓の発光色玔床および残光特性にほずん
ど圱響を及がさない。しかしながら、本発明の螢
光䜓に埮量含たれる硫黄は螢光䜓の発光茝床を高
める䜜甚を有しおいる。埓぀お本発明の螢光䜓は
埮量の硫黄を含有しないこず以倖は同じ組成を有
するZnSAg、In、螢光䜓よりも高茝床の発
光を瀺す。
As mentioned above, the trace amount of sulfur contained in the phosphor of the present invention has almost no effect on the luminous color purity and afterglow characteristics of the phosphor. However, the trace amount of sulfur contained in the phosphor of the present invention has the effect of increasing the luminance of the phosphor. Therefore, the phosphor of the present invention exhibits higher luminance than a ZnS:Ag, In, X phosphor having the same composition except that it does not contain a trace amount of sulfur.

第図は本発明の螢光䜓におけるむンゞりム付
掻量ず発光茝床ずの関係を硫黄を含有しない
ZnSAg、In、螢光䜓におけるむンゞりム付
掻量ず発光茝床ずの関係ず比范しお䟋瀺するグラ
フである。第図においお、曲線は銀および塩
玠の付掻量がそれぞれ硫化亜鉛母䜓の10-2重量
および10-4重量である立方晶系を䞻結晶盞ずす
る硫黄を含有しないZnSAg、In、Cl螢光䜓に
おける䞊蚘関係、曲線は銀および塩玠の付掻量
は䞊蚘ず同じであり硫黄含有量が硫化亜鉛母䜓の
10-4重量である本発明の立方晶系を䞻結晶盞ず
する硫黄含有ZnSAg、In、Cl螢光䜓における
䞊蚘関係である。
Figure 4 shows the relationship between the amount of indium activation and luminance in the phosphor of the present invention, which does not contain sulfur.
It is a graph illustrating a comparison of the relationship between the amount of indium activation and luminance in a ZnS:Ag, In, X phosphor. In Figure 4, curve a indicates that the activation amount of silver and chlorine is 10 -2 % by weight of the zinc sulfide matrix.
and 10 -4 % by weight of sulfur-free ZnS with a cubic system as the main crystal phase: The above relationship in the Ag, In, Cl phosphor shows that the activation amounts of silver and chlorine are the same as above. Yes, the sulfur content is higher than that of the zinc sulfide matrix.
This is the above relationship in the sulfur-containing ZnS:Ag, In, Cl phosphor of the present invention whose main crystal phase is cubic system, which is 10 -4 % by weight.

第図に䟋瀺されるように、本発明の螢光䜓あ
るいは硫黄を含有しないZnSAg、In、螢光
䜓のいずれにおいおもむンゞりム付掻量が増加す
るに埓぀お発光茝床は䜎䞋する。しかしながら、
第図から明らかなように本発明の螢光䜓は埮量
の硫黄を含有しないこず以倖は同じ組成を有する
ZnSAg、In、螢光䜓よりも高茝床の発光を
瀺す。すなわち、本発明の螢光䜓に埮量含たれる
硫黄はむンゞりムを付掻したこずによる発光茝床
の䜎䞋を抑制する䜜甚を有しおいる。このような
䜜甚は硫黄含有量が硫化亜鉛母䜓の×10-5乃至
10-3重量の範囲にある堎合に特に顕著であるよ
うである。先に説明したように本発明の螢光䜓の
発光色玔床および残光特性は硫黄を含有しないこ
ず以倖は同じ組成を有するZnSAg、In、螢
光䜓の発光色玔床および残光特性ずほが同じであ
る。埓぀お発光茝床を考慮に入れるず、本発明の
螢光䜓は硫黄を含有しないZnSAg、In、螢
光䜓よりも高解像床ブラりン管により適したもの
であるず蚀うこずができる。
As illustrated in FIG. 4, the luminance of the phosphor of the present invention or the sulfur-free ZnS:Ag, In, and X phosphor decreases as the amount of indium activation increases. . however,
As is clear from FIG. 4, the phosphor of the present invention has the same composition except that it does not contain a trace amount of sulfur.
ZnS: Shows higher luminance than Ag, In, and X phosphors. That is, the trace amount of sulfur contained in the phosphor of the present invention has the effect of suppressing the reduction in luminance caused by activation of indium. This effect occurs when the sulfur content is between 5×10 -5 and 5×10 −5 of the zinc sulfide matrix.
This appears to be particularly noticeable in the range of 10 -3 % by weight. As explained above, the luminescent color purity and afterglow characteristics of the phosphor of the present invention are the same as those of the ZnS:Ag, In, X phosphor having the same composition except that it does not contain sulfur. is almost the same. Taking into account the luminance, it can therefore be said that the phosphor of the present invention is more suitable for high resolution cathode ray tubes than the sulfur-free ZnS:Ag,In,X phosphor.

以䞊説明したように、本発明は特に高解像床ブ
ラりン管甚青色発光螢光䜓ずしお有甚な長残光性
の青色発光螢光䜓を提䟛するものであり、その工
業的利甚䟡倀は非垞に倧きなものである。なお、
本発明の螢光䜓は第の共付掻剀むンゞりムの䞀
郚がガリりムあるいはスカンゞりムあるいはその
䞡方で眮換されおもよい。たた本発明の螢光䜓は
銅、金、䟡のナヌロピりム、ビスマス、アンチ
モン等の付掻剀でさらに付掻されおいおもよい。
さらに本発明の螢光䜓は発光波長を倚少長波長偎
ぞシフトさせるために硫化亜鉛母䜓の亜鉛の䞀郚
がカドミりムによ぀おあるいは硫黄の䞀郚がセレ
ンによ぀お眮換されおいおもよい。
As explained above, the present invention provides a long-lasting blue-emitting phosphor that is particularly useful as a blue-emitting phosphor for high-resolution cathode ray tubes, and its industrial utility value is extremely large. be. In addition,
In the phosphor of the present invention, a portion of the first coactivator indium may be replaced with gallium, scandium, or both. Further, the phosphor of the present invention may be further activated with an activator such as copper, gold, divalent europium, bismuth, or antimony.
Further, in the phosphor of the present invention, part of the zinc in the zinc sulfide matrix may be replaced by cadmium, or part of the sulfur may be replaced by selenium, in order to shift the emission wavelength to a somewhat longer wavelength side.

次に実斜䟋によ぀お本発明を説明する。 Next, the present invention will be explained with reference to Examples.

実斜䟋  硫酞亜鉛氎溶液にその氎溶液のPH倀を硫酞の添
加により垞にに維持しながら硫化アンモりムを
添加しお硫化亜鉛を沈殿させた。このようにしお
調補した硫化亜鉛生粉は化孊量論量以倖の硫黄を
硫化亜鉛の重量含んでいた。この化孊量論量
よりも倚量の硫黄を含有する硫化亜鉛生粉2140
すなわち硫化亜鉛2000硫黄140、硝酞銀
AgNO30.32、硝酞むンゞりム〔InNO33・
3H2O〕0.618、塩化ナトリりムNaCl10
および塩化マグネシりムMgCl210をボヌル
ミルを甚いお充分に混合した埌、硫黄および炭玠
を適圓量加えお石英ルツボに充填した。石英ルツ
ボに蓋をした埌、ルツボを電気炉に入れ、950℃
の枩床で時間焌成を行な぀た。この焌成の間ル
ツボ内郚は二硫化炭玠雰囲気にな぀おいる。焌成
埌埗られた焌成物をルツボから取り出し、氎掗
し、也燥させ、篩にかけた。このようにしお銀、
むンゞりムおよび塩玠の付掻量および硫黄含有量
がそれぞれ硫化亜鉛母䜓の10-2重量、10-2重量
、10-4重量および10-4重量である硫黄含有
ZnSAg、In、Cl螢光䜓を埗た。
Example 1 Ammonium sulfide was added to an aqueous solution of zinc sulfate while constantly maintaining the pH value of the aqueous solution at 5 by adding sulfuric acid to precipitate zinc sulfide. The raw zinc sulfide powder thus prepared contained 7% by weight of zinc sulfide of non-stoichiometric sulfur. 2140g raw zinc sulfide powder containing more sulfur than this stoichiometric amount
(i.e. zinc sulfide 2000g + sulfur 140g), silver nitrate (AgNO 3 ) 0.32g, indium nitrate [In(NO 3 ) 3 .
3H 2 O〕0.618g, sodium chloride (NaCl) 10g
After thoroughly mixing 10 g of magnesium chloride (MgCl 2 ) using a ball mill, appropriate amounts of sulfur and carbon were added and the mixture was filled into a quartz crucible. After covering the quartz crucible, place the crucible in an electric furnace and heat it to 950℃.
Firing was carried out at a temperature of 3 hours. During this firing, the inside of the crucible is in a carbon disulfide atmosphere. The fired product obtained after firing was taken out from the crucible, washed with water, dried, and passed through a sieve. In this way, silver
Sulfur content with activation amount of indium and chlorine and sulfur content of 10 -2 wt %, 10 -2 wt%, 10 -4 wt% and 10 -4 wt% of zinc sulfide matrix, respectively
A ZnS:Ag, In, Cl phosphor was obtained.

䞊蚘螢光䜓は電子線励起䞋でその発光スペクト
ルが第図曲線で瀺される色玔床の高い青色発
光を瀺し、たたその電子線励起停止埌の10残光
時間は玄55ミリ秒であ぀た。
The above phosphor exhibits blue light emission with high color purity, whose emission spectrum is shown by curve b in Figure 1 under electron beam excitation, and the 10% afterglow time after the electron beam excitation stops is approximately 55 milliseconds. It was hot.

実斜䟋  硝酞むンゞりム6.18䜿甚するこず以倖は実斜
䟋ず同様にしお銀、むンゞりムおよび塩玠の付
掻量および硫黄含有量がそれぞれ硫化亜鉛母䜓の
10-2重量、10-1重量、10-4重量および10-4
重量である硫黄含有ZnSAg、In、Cl螢光䜓
を埗た。
Example 2 In the same manner as in Example 1 except that 6.18 g of indium nitrate was used, the activation amounts of silver, indium, and chlorine and the sulfur content were changed to the zinc sulfide matrix
10 -2 wt%, 10 -1 wt%, 10 -4 wt% and 10 -4
A sulfur-containing ZnS:Ag, In, Cl phosphor with weight % was obtained.

䞊蚘螢光䜓は電子線励起䞋で青色発光を瀺し、
たたその電子線励起停止埌の10残光時間は12ミ
リ秒であ぀た。
The phosphor emits blue light under electron beam excitation,
The 10% afterglow time after the electron beam excitation stopped was 12 milliseconds.

実斜䟋  硝酞むンゞりムを0.0124䜿甚するこず以倖は
実斜䟋ず同様にしお銀、むンゞりムおよび塩玠
の付掻量および硫黄含有量がそれぞれ硫化亜鉛母
䜓の10-2重量、×10-4重量、10-4重量お
よび10-4重量である硫黄含有ZnSAg、In、Cl
螢光䜓を埗た。
Example 3 Same as Example 1 except that 0.0124 g of indium nitrate was used. The activation amount of silver, indium and chlorine and the sulfur content were respectively 10 -2 % by weight and 2 x 10 -4 of the zinc sulfide matrix. Sulfur-containing ZnS with wt%, 10-4 wt% and 10-4 wt%: Ag, In, Cl
I got a phosphor.

䞊蚘螢光䜓は電子線励起䞋で色玔床の高い青色
発光を瀺し、たたその電子線励起停止埌の10残
光時間は14ミリ秒であ぀た。
The above-mentioned phosphor exhibited blue light emission with high color purity under electron beam excitation, and the 10% afterglow time after the electron beam excitation stopped was 14 milliseconds.

実斜䟋  硝酞むンゞりムを1.236䜿甚するこず以倖は
実斜䟋ず同様にしお銀、むンゞりムおよび塩玠
の付掻量および硫黄含有量がそれぞれ硫化亜鉛母
䜓の10-2重量、×10-2重量、10-4重量お
よび10-4重量である硫黄含有ZnSAg、In、Cl
螢光䜓を埗た。
Example 4 Same as Example 1 except that 1.236 g of indium nitrate was used. The activation amount of silver, indium and chlorine and the sulfur content were respectively 10 -2 % by weight and 2 x 10 -2 of the zinc sulfide matrix. Sulfur-containing ZnS with wt%, 10-4 wt% and 10-4 wt%: Ag, In, Cl
I got a phosphor.

䞊蚘螢光䜓は電子線励起䞋でその発光スペクト
ルが第図曲線で瀺される青色発光を瀺し、た
たその電子線励起停止埌の10残光時間は玄50ミ
リ秒であ぀た。
The above phosphor exhibited blue light emission whose emission spectrum was shown by curve d in Figure 1 under electron beam excitation, and the 10% afterglow time after the electron beam excitation was stopped was about 50 milliseconds.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明の青色発光螢光䜓の発光スペク
トルを埓来のZnSAg、青色発光螢光䜓の発
光スペクトルず比范しお䟋瀺するものである。第
図は本発明の青色発光螢光䜓の残光特性を埓来
のZnSAg、青色発光螢光䜓の残光特性ず比
范しお䟋瀺するグラフである。第図は本発明の
青色発光螢光䜓におけるむンゞりム付掻量ず10
残光時間ずの関係を䟋瀺するグラフである。第
図は本発明の青色発光螢光䜓におけるむンゞりム
付掻量ず発光茝床ずの関係を硫黄を含有しない
ZnSAg、In、青色発光螢光䜓におけるむン
ゞりム付掻量ず発光茝床ずの関係ず比范しお䟋瀺
するグラフである。
FIG. 1 illustrates the emission spectrum of the blue-emitting phosphor of the present invention in comparison with that of a conventional ZnS:Ag,X blue-emitting phosphor. FIG. 2 is a graph illustrating the afterglow characteristics of the blue-emitting phosphor of the present invention in comparison with the afterglow characteristics of a conventional ZnS:Ag,X blue-emitting phosphor. Figure 3 shows the indium activation amount and 10% in the blue-emitting phosphor of the present invention.
It is a graph illustrating the relationship with afterglow time. Fourth
The figure shows the relationship between indium activation amount and luminance in the blue-emitting phosphor of the present invention, which does not contain sulfur.
It is a graph illustrating a comparison of the relationship between the amount of indium activation and luminance in a ZnS:Ag, In, X blue light emitting phosphor.

Claims (1)

【特蚱請求の範囲】  硫化亜鉛を母䜓ずし、銀を付掻剀ずし、むン
ゞりムを第の共付掻剀ずし、塩玠、臭玠、沃
玠、北玠およびアルミニりムのうちの少なくずも
皮を第の共付掻剀ずし、䞊蚘付掻剀、第の
共付掻剀および第の共付掻剀の量がそれぞれ䞊
蚘硫化亜鉛母䜓の×10-4乃至10-1重量、10-6
乃至10-1重量および×10-6乃至×10-2重量
であり、か぀硫黄を䞊蚘硫化亜鉛母䜓の10-5乃
至×10-1重量含有するこずを特城ずする長残
光性青色発光硫化亜鉛螢光䜓。  䞊蚘第の共付掻剀の量が×10-6乃至10-2
重量であるこずを特城ずする特蚱請求の範囲第
項蚘茉の螢光䜓。  䞊蚘硫黄の含有量が×10-5乃至10-3重量
であるこずを特城ずする特蚱請求の範囲第項た
たは第項蚘茉の螢光䜓。  䞻結晶盞が立方晶系であるこずを特城ずする
特蚱請求の範囲第項乃至第項のいずれかの項
蚘茉の螢光䜓。
[Claims] 1 Zinc sulfide is used as a matrix, silver is used as an activator, indium is used as a first co-activator, and at least one of chlorine, bromine, iodine, fluorine and aluminum is used as a second co-activator. As a co-activator, the amounts of the above-mentioned activator, the first co-activator and the second co-activator are 5×10 -4 to 10 -1 % by weight and 10 -6 of the zinc sulfide matrix, respectively.
10 -1 % by weight and 5×10 -6 to 5×10 -2 % by weight, and containing 10 -5 to 8×10 -1 % by weight of the zinc sulfide matrix. Afterglow blue-emitting zinc sulfide phosphor. 2 The amount of the first co-activator is 5×10 -6 to 10 -2
% by weight of the phosphor according to claim 1. 3 The above sulfur content is 5×10 -5 to 10 -3 % by weight
A phosphor according to claim 1 or 2, characterized in that: 4. The phosphor according to any one of claims 1 to 3, wherein the main crystal phase is cubic.
JP21227881A 1981-11-01 1981-12-29 Zinc sulfide fluorescent substance Granted JPS58115024A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21227881A JPS58115024A (en) 1981-12-29 1981-12-29 Zinc sulfide fluorescent substance
KR828204919A KR910001399B1 (en) 1981-11-01 1982-11-01 Zinc sulfide fluorescent materials
EP82110097A EP0078538B1 (en) 1981-11-02 1982-11-02 Blue emitting phosphor exhibiting long afterglow and electron excited display device using the same
DE8282110097T DE3269876D1 (en) 1981-11-02 1982-11-02 Blue emitting phosphor exhibiting long afterglow and electron excited display device using the same
DE198282110097T DE78538T1 (en) 1981-11-02 1982-11-02 BLUE-EMITTING LUMINAIRE WITH LONG LUMINATION TIME AND A DISPLAY DEVICE USED BY THE SAME, EXPLORED BY ELECTRONES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21227881A JPS58115024A (en) 1981-12-29 1981-12-29 Zinc sulfide fluorescent substance

Publications (2)

Publication Number Publication Date
JPS58115024A JPS58115024A (en) 1983-07-08
JPS637595B2 true JPS637595B2 (en) 1988-02-17

Family

ID=16619949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21227881A Granted JPS58115024A (en) 1981-11-01 1981-12-29 Zinc sulfide fluorescent substance

Country Status (1)

Country Link
JP (1) JPS58115024A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312686A (en) * 1986-07-04 1988-01-20 Toshiba Corp Cathode ray tube
KR100417079B1 (en) * 2001-05-08 2004-02-05 죌식회사 엘지화학 METHOD FOR PREPARING SINGLE CRYSTALLINE ZnS POWDER FOR PHOSPHOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835155A (en) * 1971-09-03 1973-05-23
JPS5417712A (en) * 1977-07-08 1979-02-09 Nec Corp Floating head slider

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835155A (en) * 1971-09-03 1973-05-23
JPS5417712A (en) * 1977-07-08 1979-02-09 Nec Corp Floating head slider

Also Published As

Publication number Publication date
JPS58115024A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
EP0091184B1 (en) Phosphors and their use in electron-excited fluorescent displays
JPS637592B2 (en)
JPS637595B2 (en)
JPH0458518B2 (en)
JPS637594B2 (en)
KR910001399B1 (en) Zinc sulfide fluorescent materials
JPS637593B2 (en)
JPS637596B2 (en)
JPS637597B2 (en)
JPH0258308B2 (en)
JPH058235B2 (en)
JPS6248716B2 (en)
JPH072946B2 (en) Fluorescent body
JPH0412313B2 (en)
JPH0433314B2 (en)
JPH0456073B2 (en)
JPH0129834B2 (en)
JPH0430996B2 (en)
JPS6144909B2 (en)
JPS6332111B2 (en)
JPH072945B2 (en) Afterglow zinc sulfide phosphor
JPS6144910B2 (en)
JPH01189A (en) fluorescent material
KR920005957B1 (en) Green luminous fluorescent substance
JPS63227690A (en) Fluophor