JPS6375652A - Optically sensitized electrophotoretic gel - Google Patents

Optically sensitized electrophotoretic gel

Info

Publication number
JPS6375652A
JPS6375652A JP61219563A JP21956386A JPS6375652A JP S6375652 A JPS6375652 A JP S6375652A JP 61219563 A JP61219563 A JP 61219563A JP 21956386 A JP21956386 A JP 21956386A JP S6375652 A JPS6375652 A JP S6375652A
Authority
JP
Japan
Prior art keywords
nucleic acid
rays
gel
beta
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61219563A
Other languages
Japanese (ja)
Inventor
Tamotsu Shimada
保 嶋田
Keiichi Nagai
啓一 永井
Jiro Tokita
鴇田 二郎
Kenichi Watabe
健一 渡部
Tomoaki Sumiya
住谷 知明
Takamori Nakano
中野 隆盛
Kazunobu Okano
和宣 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61219563A priority Critical patent/JPS6375652A/en
Publication of JPS6375652A publication Critical patent/JPS6375652A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the beta-rays from a nucleic acid fragment at a wide solid angle, in an electrophoretic gel for separating the nucleic acid fragment labelled with a radioactive isotope through migration, by mixing a granular or liquid scintillator with a part of the electrophoretic separation gel and detecting the fluorescence from the resulting mixture. CONSTITUTION:An electrophoretic separation gel having nucleic acid fragments 4 labelled with a radioactive isotope inserted therein here and there is held between a pair of glass plates 3 opposed to each other and the beta-rays from the nucleic acid fragments 4 are detected by an electron-multiplier tube 12. At this time, since the intensity of beta-rays is weak, a granular scintillator 20 composed of usual plastic is premixed with the nucleic acid fragments 4 and the beta-rays 7 generated by applying voltage to the gel 2 are allowed to impinge against the scintillator 20 to generate fluorescence 8. Thereafter, a part of beta-rays 7 and the fluorescence 8 are reflected from a reflecting mirror 21 having a film 23 adhered thereto provided behind the gel 2 and allowed to pass through the slits formed to the film 23 and a cylindrical reflecting material 22 to be incident to the electron-multiplier tube 12. By this method, the detection sensitivity of the fragments 4 is made high and beta-rays can be detected at a wide solid angle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核酸の塩基配列決定装置に係シ、特に高感度
で核酸断片を検出するのに好適な電気泳動ゲルに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nucleic acid base sequencing device, and particularly to an electrophoresis gel suitable for detecting nucleic acid fragments with high sensitivity.

〔従来の技術〕[Conventional technology]

従来、核酸の塩基配列決定は1例えばマキサム・ギルバ
ート法(メソード イン エンジモロジ−(Metho
ds in Engymology ) 65. pp
、 560−581)によシ行なわれてきた。この方法
では。
Conventionally, base sequencing of nucleic acids has been determined using methods such as the Maxam-Gilbert method (Method in Engineering).
ds in Engymology) 65. pp
, 560-581). in this way.

まず放射性同位体で標識された核酸を化学的に断片化し
た後、電気泳動法にて、長さの異なる核酸断片をガラス
板で挾まれたゲル支持体中で分子童顔に整列させる。そ
して、ゲル支持体をガラス板よシはがし、このオートラ
ジオグラムを撮ることで放射性核酸断片を含む泳動帯の
検出を行ない、核酸の塩基配列を決定する。ここで、従
来技術による核酸断片の塩基配列決定法について1図面
に基づいて説明する。第3図は従来の核酸断片の電気泳
動装置の構造を示す斜視図である。同図に示すごとく、
2枚のガラス板3に挾まれた核酸断片の泳動分離用ゲル
2.その泳動分離用ゲル2の両端を浸す電極液槽1、お
よび直流電源6で構成される。そして、放射性同位体(
例えば32P)で標識された核酸断片試料と、泳動分離
用ゲル2の負極側スロット5に供給し、ゲル長あた。!
1)40V/口程度の電圧Evで泳動させると、同一分
子量を持つ核酸断片は、それぞれ泳動帯4を形成しつつ
負極より正極に向い1分子量の対数にほぼ反比例した移
動度で泳動する。この核酸断片の泳動帯4の泳動パター
ンから、核酸塩基の分子全項の配列を決定する。
First, a nucleic acid labeled with a radioactive isotope is chemically fragmented, and then the nucleic acid fragments of different lengths are aligned in a molecular baby face in a gel support sandwiched between glass plates using electrophoresis. The gel support is then peeled off from the glass plate and an autoradiogram is taken to detect the migration band containing radioactive nucleic acid fragments and determine the base sequence of the nucleic acid. Here, a conventional method for determining the base sequence of a nucleic acid fragment will be explained based on one drawing. FIG. 3 is a perspective view showing the structure of a conventional electrophoresis device for nucleic acid fragments. As shown in the figure,
Gel for electrophoretic separation of nucleic acid fragments sandwiched between two glass plates 3 2. It is composed of an electrode liquid tank 1 in which both ends of the electrophoretic separation gel 2 are immersed, and a DC power source 6. and radioactive isotopes (
For example, a nucleic acid fragment sample labeled with 32P) was supplied to the negative electrode side slot 5 of the electrophoretic separation gel 2, and the length of the gel was adjusted. !
1) When electrophoresed at a voltage Ev of about 40 V/port, nucleic acid fragments having the same molecular weight migrate from the negative electrode toward the positive electrode, forming migration bands 4, with a mobility approximately inversely proportional to the logarithm of one molecular weight. From the migration pattern of this nucleic acid fragment in the migration zone 4, the entire sequence of the nucleic acid base molecule is determined.

この時、パターンを読みとるために、既にのべたように
オートラジオグラムと撮る方法が一般的に行なわれてい
る。オートラジオグラフィーでは放射性同位体で標識さ
れた核酸が微量であるために、X線フィルムの転写に長
時間(50時間以上)を要する問題点がある。
At this time, in order to read the pattern, the method generally used is to take an autoradiogram as described above. Autoradiography has a problem in that it takes a long time (50 hours or more) to transfer the X-ray film because the amount of nucleic acid labeled with a radioactive isotope is small.

さらに、上記オートラジオグラフィーの間頂点を補なう
ために、核酸断片からのβ線を直接検出し、高速化と計
る方法が考えられている。すなわち、電気泳動装置の断
面図を第4図に示すが、泳動されてくる核酸断片4が検
出器30を通過した時のβ線を検出することによシ、オ
ートラジオグラフィーを不要とし、高速化を図ろうとす
るものである。
Furthermore, in order to compensate for the vertices during the above-mentioned autoradiography, a method of directly detecting β rays from nucleic acid fragments is being considered to speed up the process. That is, a cross-sectional view of the electrophoresis device is shown in FIG. 4, and by detecting β rays when the nucleic acid fragments 4 being electrophoresed pass through the detector 30, autoradiography is not necessary and high speed is possible. This is an attempt to make the world a better place.

次に検出器30の断面図を第5図に示す。泳動分離ゲル
2と泳動する核酸断片4はスリット10を次々に通過す
る。核酸断片4からのβ線7はスリット10分通してシ
ンチレータ11に入射する。
Next, a cross-sectional view of the detector 30 is shown in FIG. The electrophoretic separation gel 2 and the nucleic acid fragments 4 to be electrophoresed pass through the slits 10 one after another. The β rays 7 from the nucleic acid fragment 4 pass through the slit for 10 minutes and enter the scintillator 11.

β線7はシンチレータ11でエネルギを失ない蛍光8に
変換される。この蛍光8を2次電子増倍光電管12によ
り電流に変換して信号処理回路13へ結合する。これに
よシ信号処理回路13の出力は第5図に示すように、検
出器の通過時間に対してβ線のカウント数が波形として
得られる。この波形を計算機14によp処理することで
、核酸断片4を計測できる。
The β rays 7 are converted into fluorescence 8 without losing energy by the scintillator 11. This fluorescence 8 is converted into a current by a secondary electron multiplier phototube 12 and coupled to a signal processing circuit 13 . As a result, as shown in FIG. 5, the output of the signal processing circuit 13 is obtained as a waveform representing the number of counts of β-rays with respect to the passage time of the detector. Nucleic acid fragments 4 can be measured by processing this waveform by computer 14.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記β線を直接検出する方式の従来技術は検出感度の点
で、必ずしも十分な配慮がなされておらず、塩基配列の
決定精度に問題があった。
The conventional technology for directly detecting β-rays does not necessarily give sufficient consideration to detection sensitivity, and there are problems with the accuracy of base sequence determination.

本発明の′目的は核酸断片を高感度に直接検出すること
によって、高精度の配列決定装置と提供することにある
An object of the present invention is to provide a highly accurate sequencing device by directly detecting nucleic acid fragments with high sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、電気泳動用の泳動分離ゲルの一部に粒状あ
るいは液状のシンチレータと混合し、このシンチレータ
からの蛍光を検出することによシ達成される。
The above object is achieved by mixing particulate or liquid scintillator with a part of a separation gel for electrophoresis and detecting fluorescence from this scintillator.

シンチレータは泳動分離ゲルの全体に含まれていてもさ
しつかえないが、後述の作用から明らかなように所定の
部分のみにある方が好ましい。
Although the scintillator may be included throughout the electrophoretic separation gel, it is preferable that the scintillator be included only in a predetermined portion, as will be clear from the effects described below.

〔作用〕[Effect]

泳動分離ゲルに混入するシンチレータは直径100μm
以下の粒状あるいはゲルに混合させた液状のものである
ことが好ましい。泳動されてくる核酸断片が通過すると
き核酸断片に標識したラジオアイソトープからのβ線に
よう粒状あるいは液状のシンチレータが蛍光発光する。
The scintillator mixed into the electrophoresis separation gel has a diameter of 100 μm.
It is preferable to use the following granular form or liquid form mixed with gel. When the electrophoresed nucleic acid fragments pass, the particulate or liquid scintillator emits fluorescence due to β rays from the radioisotope labeled on the nucleic acid fragments.

この蛍光を光電管で電流に変換し信号処理回路に結合す
る。
This fluorescence is converted into electric current by a phototube and coupled to a signal processing circuit.

これにより核酸断片は粒状あるいは液状のシンチレータ
の間を泳動するので、放射されるβ線は全立体角にわた
ってシンチレータを光らすことができ、はとんどのβ線
を蛍光に変換することが可能になる。
As a result, nucleic acid fragments migrate between granular or liquid scintillators, and the emitted β rays can illuminate the scintillator over the entire solid angle, making it possible to convert most of the β rays into fluorescence. .

〔実施例〕〔Example〕

以下1本発明の一実施例と第1図によシ説明する。従来
例と同じ構成のものには同一の符号をつけた。本発明に
よる粒状のシンチレータ20は泳動分離ゲル2の検出部
分に混入する。また反射鏡21は2次電子増倍光電管(
PMT)12に対向する位置に設ける。
An embodiment of the present invention will be described below with reference to FIG. Components having the same configuration as the conventional example are given the same reference numerals. The particulate scintillator 20 according to the present invention is mixed into the detection portion of the electrophoretic separation gel 2. In addition, the reflecting mirror 21 is a secondary electron multiplier phototube (
PMT) 12.

これにより泳動する核酸断片4は粒状シンチレータ20
の混入部分を通過した時に、核酸断片に標識しであるラ
ジオアイソトープからのβ線7は粒状シンチレータ20
によシ蛍光8に変換される。
As a result, the nucleic acid fragments 4 that migrate are transferred to the particulate scintillator 20.
When passing through the contaminated area of the particle scintillator 20, the β rays 7 from the radioisotope that labels the nucleic acid fragment pass through the particulate scintillator 20.
It is converted into fluorescent light 8.

さらに蛍光8は反射鏡21によってPMT12に効率良
く集められる。
Further, the fluorescent light 8 is efficiently collected on the PMT 12 by the reflecting mirror 21.

通常、ゲルの厚みは500μm程度であるが、この場合
、粒状シンチレータの直径は100μm以下とした。シ
ンチレータの材料は公知のプラスチックシンチン−夕で
良い。このシンチレータに対するβ線のエネルギ損失は
200 K e v / mzであるので、1個の粒状
シンチレータにおけるβ線のエネルギ損失は20Key
/100μmになる。
Usually, the thickness of the gel is about 500 μm, but in this case, the diameter of the granular scintillator was 100 μm or less. The material of the scintillator may be a known plastic scintillator. Since the energy loss of β-rays to this scintillator is 200 K e v / mz, the energy loss of β-rays in one granular scintillator is 20Key
/100μm.

ラジオアイソトープ32p  の平均エネルギはIMe
vであるから、1個の粒状シンチレータでは平均蛍光強
度に対して2%の強度が得られる。またβ線が厚み50
0μmの核酸断片の中央から放射された場合、β・線は
3個の粒状シンチレータ?通過することになるので、平
均6チの蛍光強度が得られる。
The average energy of radioisotope 32p is IMe
v, one granular scintillator provides an intensity of 2% of the average fluorescence intensity. Also, the thickness of the β-ray is 50
When emitted from the center of a 0 μm nucleic acid fragment, the β-rays are 3 particulate scintillators? Since the light passes through the light, an average fluorescence intensity of 6 channels can be obtained.

ところで第1図に示したように従来のシンチレータ11
を本発明に組み合せること罠よ′り、核酸断片4からの
β線を、はとんどの立体角にわたって検出できる。また
この場合、シンチレータ11の側面に反射材22を塗布
することで蛍光8をPMT12へ有効に集光できる。
By the way, as shown in FIG. 1, the conventional scintillator 11
By combining this with the present invention, β-rays from the nucleic acid fragment 4 can be detected over almost any solid angle. Further, in this case, by coating the side surface of the scintillator 11 with a reflective material 22, the fluorescent light 8 can be effectively focused onto the PMT 12.

また第1図に示した反射鏡21はゲル2に直接接触する
とラジオアイソトープで汚染されるので。
Further, if the reflecting mirror 21 shown in FIG. 1 comes into direct contact with the gel 2, it will be contaminated with radioisotopes.

たとえば洗滌が簡単なフィルム23でカバーする方が望
ましい。また第1図の検出系は微弱な蛍光を検出するの
で、泳動分離ゲル、検出器を暗箱に収納する必要がある
For example, it is preferable to cover with a film 23 that is easy to wash. Furthermore, since the detection system shown in FIG. 1 detects weak fluorescence, it is necessary to store the electrophoretic separation gel and the detector in a dark box.

さらに本発明の一実施例を第2図に示す。従来のシンチ
レータ11とスリット10を省略した構成とした。これ
によシ従来よシ簡単な構成で核酸断片が検出できるので
、よシ実用的な装置になる。
Furthermore, one embodiment of the present invention is shown in FIG. The configuration is such that the conventional scintillator 11 and slit 10 are omitted. This makes it possible to detect nucleic acid fragments with a simpler configuration than in the past, making it a much more practical device.

第1図、第2図の実施例では粒状のプラスチックシンチ
レータを使用したが、本発明では泳動分離ゲルに有機の
液体シンチレータを混合させても同様の効果が得られる
。これら光増感電気泳動ゲルは、従来と同様に使いすて
で使用するので、シンチレータの材料選択の基準として
安価であることが一つの要素になる。
Although particulate plastic scintillators were used in the embodiments shown in FIGS. 1 and 2, similar effects can be obtained by mixing an organic liquid scintillator with the electrophoretic separation gel in the present invention. Since these photosensitized electrophoresis gels are used as single-use materials as in the past, low cost is one of the criteria for selecting materials for scintillators.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように本発明によれば。 According to the present invention, as described above in detail.

核酸断片からのβ線を広い立体角で計測できるので、解
析の信頼性が大巾に向上する。特に核酸断片が少量しか
得られない場合は検出するβ線量も少なくなるが1本発
明によれば少量の断片に対しても信頼性の高い計測が可
能でちる。
Since β-rays from nucleic acid fragments can be measured over a wide solid angle, the reliability of analysis is greatly improved. In particular, when only a small amount of nucleic acid fragments are obtained, the amount of β-rays to be detected will be small; however, according to the present invention, highly reliable measurement is possible even for a small amount of fragments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明による光増感泳動ゲルと検出器
との関係を説明する説明図、第3図、第4図、第5図は
従来の核酸の塩基配列決定方法の説明図である。 1・・・電解液槽、2・・・泳動分離ゲル、3・・・ガ
ラス板。 4・・・核酸断片、5・・・スロット、6・・・直流電
源、7・・・β線、8・・・蛍光、10・・・スリット
、11・・・シンチレータ、12・・・光電管、21・
・・反射鏡、22・・・y]1  口 ′:f12 図 遁 3 回 力 4 口 第 5 図
Figures 1 and 2 are explanatory diagrams explaining the relationship between the photosensitized electrophoresis gel and the detector according to the present invention, and Figures 3, 4, and 5 are explanatory diagrams of the conventional method for determining the base sequence of nucleic acids. It is a diagram. 1... Electrolytic solution tank, 2... Electrophoretic separation gel, 3... Glass plate. 4... Nucleic acid fragment, 5... Slot, 6... DC power supply, 7... Beta ray, 8... Fluorescence, 10... Slit, 11... Scintillator, 12... Phototube , 21・
...Reflector, 22...y] 1 Mouth': f12 Fig. 3 Turning force 4 Mouth Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 1、放射性同位体で標識された核酸断片を泳動分離する
電気泳動ゲルにおいて、上記電気泳動ゲルは上記放射性
同位体からの放射線を光に変換し得るシンチレータを含
有することを特徴とする光増感電気泳動ゲル。
1. An electrophoresis gel for electrophoretically separating nucleic acid fragments labeled with a radioisotope, wherein the electrophoresis gel contains a scintillator capable of converting radiation from the radioisotope into light. Electrophoresis gel.
JP61219563A 1986-09-19 1986-09-19 Optically sensitized electrophotoretic gel Pending JPS6375652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219563A JPS6375652A (en) 1986-09-19 1986-09-19 Optically sensitized electrophotoretic gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219563A JPS6375652A (en) 1986-09-19 1986-09-19 Optically sensitized electrophotoretic gel

Publications (1)

Publication Number Publication Date
JPS6375652A true JPS6375652A (en) 1988-04-06

Family

ID=16737469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219563A Pending JPS6375652A (en) 1986-09-19 1986-09-19 Optically sensitized electrophotoretic gel

Country Status (1)

Country Link
JP (1) JPS6375652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448292B2 (en) 2003-10-03 2008-11-11 Nobuo Tomizawa Transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448292B2 (en) 2003-10-03 2008-11-11 Nobuo Tomizawa Transmission

Similar Documents

Publication Publication Date Title
US6103533A (en) Molecular imaging
JPH0572536B2 (en)
US4830830A (en) Apparatus for determining base sequence of nucleic acid
JPS6375652A (en) Optically sensitized electrophotoretic gel
CA1257184A (en) Method for determining base sequence of dna or dna fragment utilizing autoradiography
JPS6111665A (en) Nucleic acid base detector
JPS62140069A (en) Apparatus for detecting nucleic acid fragment
JP2648082B2 (en) Nucleic acid base detection method
JPS6147564A (en) Apparatus for determining base sequence of nucleic acid
JPH10176992A (en) Dna-base-array decision apparatus
Morse et al. Trace element determination by electrochromatographic radiometric precipitation
Bendali et al. Scintillating optical fiber detectors for DNA sequencing
Gee et al. Separation of americium and curium from rare earth carriers by ion focusing electrophoresis
JPS628539Y2 (en)
JPS62182656A (en) Apparatus for determining dna base sequence
JPS60249059A (en) Instrument for determining base sequence of nucleic acid
Feldman et al. Protein-bound iodine determination by activation analysis
JPS57132078A (en) 2-dimensional radiation detector
Rolle Determination of radon daughters on filters by a simple liquid scintillation technique
Edwards Radiolabelled immunoassay
Albert et al. Anthracene cell for counting weak-beta-emitting nuclides (sulfur-35) in liquid samples
JPS6147549A (en) Gel electrophoretic apparatus
Klunder et al. Nuclear fission product analysis using capillary separation techniques
JPH0210149A (en) Structure for detector of dna sequencer
JPS61140850A (en) Electrophoresis panel for sequence determining nucleic acid base