JPS63754B2 - - Google Patents

Info

Publication number
JPS63754B2
JPS63754B2 JP56089287A JP8928781A JPS63754B2 JP S63754 B2 JPS63754 B2 JP S63754B2 JP 56089287 A JP56089287 A JP 56089287A JP 8928781 A JP8928781 A JP 8928781A JP S63754 B2 JPS63754 B2 JP S63754B2
Authority
JP
Japan
Prior art keywords
control rod
heat insulating
control
core
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089287A
Other languages
Japanese (ja)
Other versions
JPS57203988A (en
Inventor
Takao Araki
Toyoichi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56089287A priority Critical patent/JPS57203988A/en
Publication of JPS57203988A publication Critical patent/JPS57203988A/en
Publication of JPS63754B2 publication Critical patent/JPS63754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は炉心の制御棒チヤンネルの構造を改良
したガス冷却形原子炉の制御機構に関する。 一般にガス冷却形原子炉は第1図および第2図
に示す如く略六角形状の黒鉛燃料体1…を多数個
積み上げて炉心を構成している。そして、これ
らの黒鉛燃料体1…には制御棒挿通孔3…が形成
されており、これら制御棒挿通孔3…は一直線上
に配列され、制御棒チヤンネルが構成されてい
る。そして、これらの制御棒チヤンネルの上端
に対向して制御棒案内管5が設けられており、こ
の制御棒案内管5内には制御棒が摺動自在に収
容されている。そして、この制御棒は制御棒駆
動機構7によつて昇降動され、上方から上記制御
棒チヤンネル内に挿入されるように構成されて
いる。また、上記制御棒は複数の制御棒要素6
a…を屈曲可能に連結して構成され、全体が自由
に屈曲し得るように構成されている。そして、こ
れら制御棒要素6a…は内側被覆管と外側被覆管
からなる2重管構造をなしており、これら内側被
覆管と外側被覆管との間に中性子吸収材料を充填
して構成されている。 ところで、このような原子炉は通常運転中には
第1図に示す如く制御棒は炉心の上部約1/3
程度まで挿入されている。また炉心の上部の温
度は約400℃で比較的低く、また炉心の下部で
は約1000℃以上の高温となつている。そして、こ
の状態では制御棒の温度は炉心の上部の温度
と略等しい温度となつている。そして、原子炉の
スクラム時等には第3図に示す如くこの制御棒
は炉心の下部まで挿入される。この場合、制御
は制御棒チヤンネル内面からの輻射熱によ
り加熱されるが、炉心の下部では温度が1000℃
以上と高温であり、一般に輻射エネルギは絶対温
度の4乗に比例するのでこの炉心の下部におい
ては制御棒チヤンネルの内面から制御棒に流
れる熱流束はきわめて大きくなる。このため制御
の受ける熱負荷はきわめて大きく、このため
制御棒要素6a…の外側被覆管と内側被覆管との
間に大きな温度差が生じ、過大な熱応力が生じ
る。このため、制御棒の熱疲労が大きく、その
寿命が短かい不具合があつた。 本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは制御棒を挿入した際
に制御棒の受ける熱衝撃を緩和し、制御棒の寿命
を長くすることができるガス冷却形原子炉制御機
構を得ることにある。 以下本発明を第4図ないし第6図に示す一実施
例にしたがつて説明する。すなわち、102は炉
心であつて、この炉心102は第5図に示す如く
六角形状の黒鉛燃料体101…を多数個積み上げ
て構成したものである。そして、これらの黒鉛燃
料体101…には制御棒挿通孔103…が形成さ
れている。そして、これら制御棒挿通孔103…
は一直線上に配列され、炉心102の上面から下
部に達する制御棒チヤンネル104が形成されて
いる。そして、この制御棒チヤンネル104の上
端に対向して制御棒案内管105が設けられてい
る。なお、この制御棒チヤンネル104および制
御棒案内管105は実際には多数本設けられてい
るものであるが、第4図および第6図ではそのう
ちの1本のみを示す。そして、上記制御棒案内管
105内には制御棒106が摺動自在に収容され
ている。そして、この制御棒106はワイヤロー
プ107によつて吊持されている。そしてこのワ
イヤロープ107は制御棒駆動機構108によつ
て巻込、巻出しがなされ、制御棒106が昇降さ
れ、制御棒チヤンネル104内に挿入されるよう
に構成されている。なお、上記制御棒106は複
数の制御棒要素106a…を屈曲自在に連結した
ものであつて、全体が自由に屈曲し、地震等によ
つて制御棒チヤンネル104に多少の曲り等が生
じても円滑に制御棒チヤンネル104内に挿入し
得るように構成されている。また、上記制御棒要
素106a…は内側被覆管と外側被覆管の二重管
構造をなし、これら内側被覆管と外側被覆管との
間に中性子吸収材料を充填して構成されている。
そして、この制御棒106は通常運転時には第4
図に示す如く炉心102の上部約1/3の位置まで
挿入されている。そして、この通常運転時におけ
る制御棒106の挿入位置より下方の部分の制御
棒チヤンネル104の内面には断熱層109が形
成されている。この断熱層109は第5図に示す
如く黒鉛燃料体101…の制御棒挿入孔103…
内に断熱筒109a…を嵌入し、このような断熱
筒109a…を嵌入した黒鉛燃料体101…を通
常運転時において制御棒106が挿入される位置
より下方の部分に配置して構成したものである。
なお、上記断熱筒109a…を嵌入する黒鉛燃料
体101の制御棒挿通孔103…の内径は他の黒
鉛燃料体101の内径より大とし、かつこの断熱
筒109a…の内径は他の黒鉛燃料体101の制
御棒挿通孔103の内径と等しく形成し、制御棒
チヤンネル104の内面に段差が生じないように
構成されている。そして、これら断熱筒109a
…はたとえばアルミナ等の耐熱性でかつ黒鉛燃料
体101…に使用される黒鉛材料より熱伝導率の
小さな材料で形成されている。また、この断熱筒
109a…の外周面と制御棒挿通孔103…との
間には適宜のギヤツプが形成されており、このギ
ヤツプによつて断熱筒109a…と黒鉛燃料体1
01…との熱膨張差を吸収し、またこのギヤツプ
によつて熱抵抗がより大きくなるように構成され
ている。 以上の如く構成された本発明の一実施例は通常
運転時には第4図に示す如く制御棒106は炉心
102の上部約1/3の位置まで挿入されている。
そして、この通常運転の場合には炉心102の上
部は約400℃で比較的低温であるが炉心102
下部は1000℃以上の高温であり、またこの制御棒
106は炉心102の上部と略等しい温度となつ
ている。そして、原子炉をスクラムさせる場合等
には上記制御棒106は第6図に示す如く制御棒
チヤンネル104内に炉心102の下部まで挿入
される。そしてこの場合、制御棒106は比較的
低温であるのに対し炉心102の下部は高温の状
態であるからこの制御棒106は周囲からの熱に
よつて加熱される。そして、この場合の熱の伝達
径路は黒鉛燃料体101…から制御棒チヤンネル
104の内面までは断熱層109を介して熱伝導
によつて伝熱され、次に制御棒チヤンネル104
内面から輻射によつて制御棒106に伝わる。こ
の場合、炉心102の下部は高温であるので輻射
によつて制御棒106に与え得る熱量はきわめて
大きなものとなる。しかし、この一実施例のもの
は制御棒106に伝わる熱は断熱層109を熱伝
導によつて伝達しなければならず、この断熱層
09は熱伝導率が小さいので大きな熱抵抗を生じ
る。このため制御棒106に伝わる熱流束は小と
なり、この制御棒106の受ける熱衝撃は小さ
く、よつてこの制御棒106の寿命が長くなる。
また、上記断熱層109は通常運転時において制
御棒106が挿入されている位置より下方の部分
に設けたのでこの制御棒106の熱衝撃が一層小
となる。すなわち、このような断熱層を制御棒チ
ヤンネル104の全面に形成すると通常運転時に
おいて制御棒106に伝わる熱量も小となるた
め、通常運転時における制御棒106の温度が低
下する。このためこの制御棒106を炉心102
の下部に挿入した場合にこの制御棒106と周囲
の温度差が大となり、その分だけ熱衝撃が大きく
なり、熱衝撃軽減の効果が減少する。しかし、こ
の一実施例のものは通常運転時において制御棒
06が挿入されている部分には断熱層109が形
成されていないので、通常運転時における制御棒
106の温度が低下することはなく、よつて熱衝
撃軽減の効果が減殺されることはない。 なお、本発明は上記の一実施例には限定されな
い。 たとえば断熱層の材質、構成、形成する範囲等
は必ずしも上記の一実施例には限定されない。 また、黒鉛燃料体や制御棒の構成も必ずしも上
記のものに限定されない。 上述の如く本発明は制御棒チヤンネルの内面に
黒鉛燃料体に使用される黒鉛材料より熱伝導率の
小さな材料からなる断熱壁を形成したものであ
る。したがつて制御棒を高温の炉心下部まで挿入
したような場合に上記断熱層によつて制御棒に流
れる熱の径路に大きな熱抵抗が生じ、制御棒に伝
わる熱量が小さくなる。よつてこの制御棒が受け
る熱衝撃は軽減され制御棒の寿命が長くなる等そ
の効果は大である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control mechanism for a gas-cooled nuclear reactor in which the structure of the control rod channel of the reactor core is improved. Generally, in a gas-cooled nuclear reactor, a core 2 is constructed by stacking a large number of substantially hexagonal graphite fuel bodies 1, as shown in FIGS. 1 and 2. Control rod insertion holes 3 are formed in these graphite fuel bodies 1, and these control rod insertion holes 3 are arranged in a straight line to form a control rod channel 4 . A control rod guide tube 5 is provided opposite the upper ends of these control rod channels 4 , and a control rod 6 is slidably housed within this control rod guide tube 5. The control rod 6 is moved up and down by a control rod drive mechanism 7, and is configured to be inserted into the control rod channel 4 from above. Further, the control rod 6 includes a plurality of control rod elements 6.
a... are connected in a bendable manner, and the whole is configured to be freely bendable. These control rod elements 6a... have a double tube structure consisting of an inner cladding tube and an outer cladding tube, and a neutron absorbing material is filled between the inner cladding tube and the outer cladding tube. . By the way, during normal operation of such a nuclear reactor, the control rods 6 are in the upper third of the reactor core 2 , as shown in FIG.
It has been inserted to some extent. Further, the temperature in the upper part of the reactor core 2 is relatively low at about 400°C, and the temperature in the lower part of the reactor core 2 is high at about 1000°C or more. In this state, the temperature of the control rods 6 is approximately equal to the temperature of the upper part of the reactor core 2 . When the reactor is scrammed, this control rod 6 is used as shown in Figure 3.
is inserted to the bottom of the core 2 . In this case, the control rods 6 are heated by radiant heat from the inner surface of the control rod channel 4 , but the temperature in the lower part of the reactor core 2 is 1000°C.
This is a high temperature, and the radiant energy is generally proportional to the fourth power of the absolute temperature, so the heat flux flowing from the inner surface of the control rod channel 4 to the control rod 6 in the lower part of the reactor core 2 becomes extremely large. For this reason, the thermal load that the control rods 6 receive is extremely large, resulting in a large temperature difference between the outer cladding tube and the inner cladding tube of the control rod elements 6a, resulting in excessive thermal stress. For this reason, there was a problem that the control rod 6 suffered from large thermal fatigue and had a short lifespan. The present invention was made based on the above circumstances, and its purpose is to provide a gas-cooled type that can alleviate the thermal shock that the control rod receives when the control rod is inserted, and extend the life of the control rod. The objective is to obtain a nuclear reactor control mechanism. The present invention will be explained below with reference to an embodiment shown in FIGS. 4 to 6. That is, 102 is a reactor core, and this reactor core 102 is constructed by stacking a large number of hexagonal graphite fuel bodies 101 as shown in FIG. Control rod insertion holes 103 are formed in these graphite fuel bodies 101. These control rod insertion holes 103...
are arranged in a straight line, forming a control rod channel 104 extending from the top surface to the bottom of the core 102 . A control rod guide tube 105 is provided opposite the upper end of this control rod channel 104 . Although a large number of control rod channels 104 and control rod guide tubes 105 are actually provided, only one of them is shown in FIGS. 4 and 6. A control rod 106 is slidably accommodated in the control rod guide tube 105. This control rod 106 is suspended by a wire rope 107. The wire rope 107 is wound in and unwound out by a control rod drive mechanism 108, and the control rod 106 is raised and lowered to be inserted into the control rod channel 104 . The control rod 106 is formed by connecting a plurality of control rod elements 106a in a flexible manner, and the entire control rod 106 can be bent freely, even if the control rod channel 104 is slightly bent due to an earthquake or the like. It is configured so that it can be smoothly inserted into the control rod channel 104 . Further, the control rod elements 106a have a double tube structure consisting of an inner cladding tube and an outer cladding tube, and a neutron absorbing material is filled between the inner cladding tube and the outer cladding tube.
This control rod 106 is the fourth control rod during normal operation.
As shown in the figure, it has been inserted to about 1/3 of the upper part of the core 102 . A heat insulating layer 109 is formed on the inner surface of the control rod channel 104 below the insertion position of the control rod 106 during normal operation. As shown in FIG. 5, this heat insulating layer 109 serves as the control rod insertion hole 103 of the graphite fuel assembly 101.
A heat insulating tube 109a... is inserted into the fuel cell, and a graphite fuel body 101... in which such a heat insulating tube 109a... is fitted is placed below the position where the control rod 106 is inserted during normal operation. be.
The inner diameter of the control rod insertion hole 103 of the graphite fuel assembly 101 into which the heat insulating cylinder 109a is inserted is larger than the inner diameter of the other graphite fuel assembly 101, and the inner diameter of the heat insulating cylinder 109a is larger than that of the other graphite fuel assembly. The control rod channel 104 is formed to have the same inner diameter as the control rod insertion hole 103 of the control rod channel 101, and is configured so that no step is formed on the inner surface of the control rod channel 104 . And these heat insulating cylinders 109a
... are made of a material such as alumina, which is heat resistant and has a lower thermal conductivity than the graphite material used for the graphite fuel bodies 101. Further, an appropriate gap is formed between the outer peripheral surface of the heat insulating cylinder 109a and the control rod insertion hole 103, and this gap allows the heat insulating cylinder 109a to connect to the graphite fuel body 1.
It is configured to absorb the difference in thermal expansion with 01... and to increase the thermal resistance due to this gap. In one embodiment of the present invention constructed as described above, during normal operation, the control rods 106 are inserted to a position of about 1/3 of the upper part of the reactor core 102, as shown in FIG.
In this normal operation, the upper part of the reactor core 102 is relatively low at about 400°C, but the lower part of the reactor core 102 is at a high temperature of 1000°C or more, and the control rods 106 are approximately equal to the upper part of the reactor core 102 . It's the temperature. When the reactor is to be scrammed, the control rods 106 are inserted into the control rod channel 104 up to the bottom of the reactor core 102 , as shown in FIG. In this case, the control rod 106 is at a relatively low temperature while the lower part of the core 102 is at a high temperature, so the control rod 106 is heated by heat from the surroundings. In this case, the heat transfer path is from the graphite fuel bodies 101 to the inner surface of the control rod channel 104 by heat conduction via the heat insulating layer 109 , and then to the control rod channel 104 .
It is transmitted to the control rod 106 by radiation from the inner surface. In this case, since the lower part of the core 102 is at a high temperature, the amount of heat that can be given to the control rods 106 by radiation becomes extremely large. However, in this embodiment, the heat transferred to the control rod 106 must be transferred through the heat insulating layer 109 by thermal conduction .
Since 09 has a low thermal conductivity, it produces a large thermal resistance. Therefore, the heat flux transmitted to the control rod 106 is small, the thermal shock that the control rod 106 receives is small, and the life of the control rod 106 is therefore extended.
Furthermore, since the heat insulating layer 109 is provided below the position where the control rod 106 is inserted during normal operation, the thermal shock to the control rod 106 is further reduced. That is, if such a heat insulating layer is formed over the entire surface of the control rod channel 104 , the amount of heat transmitted to the control rod 106 during normal operation will also be reduced, so the temperature of the control rod 106 during normal operation will decrease. For this reason, this control rod 106 is connected to the reactor core 102.
When the control rod 106 is inserted into the lower part of the control rod 106, the temperature difference between the control rod 106 and the surroundings increases, the thermal shock increases accordingly, and the effect of reducing thermal shock decreases. However, in this embodiment, during normal operation, the control rod 1
Since the heat insulating layer 109 is not formed in the portion where the control rod 106 is inserted, the temperature of the control rod 106 during normal operation does not drop, and the effect of reducing thermal shock is not diminished. Note that the present invention is not limited to the above embodiment. For example, the material, structure, range of formation, etc. of the heat insulating layer are not necessarily limited to the above embodiment. Furthermore, the configurations of the graphite fuel body and control rods are not necessarily limited to those described above. As described above, in the present invention, a heat insulating wall made of a material having a lower thermal conductivity than the graphite material used in the graphite fuel assembly is formed on the inner surface of the control rod channel. Therefore, when a control rod is inserted into the lower part of a high-temperature reactor core, the heat insulating layer creates a large thermal resistance in the path of heat flowing to the control rod, reducing the amount of heat transferred to the control rod. Therefore, the thermal shock to which the control rod is subjected is reduced and the life of the control rod is extended, which has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は従来例を示し、第1図は
通常運転時の炉心の縦断面図、第2図は黒鉛燃料
体の一部を切欠して示す斜視図、第3図は制御棒
挿入時の炉心の縦断面図である。第4図ないし第
6図は本発明の一実施例を示し、第4図は通常運
転時の炉心の縦断面図、第5図は黒鉛燃料体の一
部を切欠して示す斜視図、第6図は制御棒挿入状
態の炉心の縦断面図である。 101…黒鉛燃料体、102…炉心、103…
制御棒挿通孔、104…制御棒チヤンネル、10
6…制御棒、109…断熱層、109a…断熱
筒。
Figures 1 to 3 show conventional examples, with Figure 1 being a vertical cross-sectional view of the reactor core during normal operation, Figure 2 being a perspective view with a part of the graphite fuel body cut away, and Figure 3 being a control FIG. 3 is a vertical cross-sectional view of the core when rods are inserted. 4 to 6 show an embodiment of the present invention, in which FIG. 4 is a longitudinal sectional view of the core during normal operation, FIG. 5 is a perspective view showing a part of the graphite fuel body cut away, and FIG. Figure 6 is a vertical cross-sectional view of the core with control rods inserted. 101...graphite fuel body, 102 ...core, 103...
Control rod insertion hole, 104 ...Control rod channel, 10
6... Control rod, 109 ... Heat insulation layer, 109a... Heat insulation cylinder.

Claims (1)

【特許請求の範囲】 1 多数の黒鉛燃料体を積み上げて構成した炉心
と、この炉心に形成された制御棒チヤンネルと、
この制御棒チヤンネルの内面に形成された黒鉛よ
り熱伝導率の小さな材料からなる断熱層とを具備
したことを特徴とするガス冷却形原子炉制御機
構。 2 前記断熱層は通常運転時に前記制御棒が挿入
されている部分より下方の部分の前記制御棒チヤ
ンネルの内面に形成されていることを特徴とする
前記特許請求の範囲第1項記載のガス冷却形原子
炉制御機構。
[Claims] 1. A reactor core configured by stacking a large number of graphite fuel bodies, a control rod channel formed in this core,
A gas-cooled nuclear reactor control mechanism characterized by comprising a heat insulating layer formed on the inner surface of the control rod channel and made of a material having a lower thermal conductivity than graphite. 2. The gas cooling device according to claim 1, wherein the heat insulating layer is formed on the inner surface of the control rod channel at a portion below the portion where the control rod is inserted during normal operation. Type nuclear reactor control mechanism.
JP56089287A 1981-06-10 1981-06-10 Control mechanism for gas cooled reactor Granted JPS57203988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56089287A JPS57203988A (en) 1981-06-10 1981-06-10 Control mechanism for gas cooled reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56089287A JPS57203988A (en) 1981-06-10 1981-06-10 Control mechanism for gas cooled reactor

Publications (2)

Publication Number Publication Date
JPS57203988A JPS57203988A (en) 1982-12-14
JPS63754B2 true JPS63754B2 (en) 1988-01-08

Family

ID=13966477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56089287A Granted JPS57203988A (en) 1981-06-10 1981-06-10 Control mechanism for gas cooled reactor

Country Status (1)

Country Link
JP (1) JPS57203988A (en)

Also Published As

Publication number Publication date
JPS57203988A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
US4777016A (en) Fuel assembly
GB2031216A (en) Nuclear breeder reactor fuel element
JPS5858037B2 (en) reactor control rod
US3089837A (en) Fuel elements for nuclear reactors
CN109935371A (en) A kind of two-sided cooling annular fuel rod with wrapping wire
JP3065576B2 (en) Liquid metal bonded fuel rod for nuclear reactor
JPS63754B2 (en)
CN207731671U (en) A kind of two-sided cooling annular fuel rod with wrapping wire
US3945886A (en) Control rod for nuclear reactor
US4587085A (en) Nuclear reactor safety device
JPS63206696A (en) Incore detector aggregate for nuclear reactor
JPH0248878B2 (en)
US3170848A (en) Fuel elements for vertically oriented nuclear reactors
US4587091A (en) Nuclear fuel assembly
JPS61112997A (en) Control rod for high-temperature gas cooling type reactor
JPH01150887A (en) Nuclear fuel assembly
JPH0119118Y2 (en)
JPS6055289A (en) Spacer grating inserting body
JP2695407B2 (en) Fuel assembly
JPS61237084A (en) Nuclear fuel aggregate
JPS61207988A (en) Nuclear fuel rod
JPS60263892A (en) Control rod for high-temperature gas reactor
JPS58161877A (en) Nuclear fuel element
JPS60228989A (en) Fuel aggregate for low deceleration type nuclear reactor
JPS58214880A (en) Method of controlling power distribution of nuclear fuel assembly