JPS61207988A - Nuclear fuel rod - Google Patents

Nuclear fuel rod

Info

Publication number
JPS61207988A
JPS61207988A JP60047486A JP4748685A JPS61207988A JP S61207988 A JPS61207988 A JP S61207988A JP 60047486 A JP60047486 A JP 60047486A JP 4748685 A JP4748685 A JP 4748685A JP S61207988 A JPS61207988 A JP S61207988A
Authority
JP
Japan
Prior art keywords
end plug
fuel rod
nuclear fuel
cladding tube
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047486A
Other languages
Japanese (ja)
Inventor
浩 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60047486A priority Critical patent/JPS61207988A/en
Publication of JPS61207988A publication Critical patent/JPS61207988A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、沸騰水型原子炉に用いられている核燃料棒に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to nuclear fuel rods used in boiling water nuclear reactors.

〔発明の技術的背景〕[Technical background of the invention]

従来、沸騰水型原子炉に用いられている核燃料棒は第4
図に示すように構成されている。ここで第4図に従来の
核燃料棒に係る縦断面図を示す。
Conventionally, the nuclear fuel rods used in boiling water reactors are
It is configured as shown in the figure. Here, FIG. 4 shows a longitudinal cross-sectional view of a conventional nuclear fuel rod.

第4図に示すように、核燃料#1は、被覆管2内に円柱
状の二酸化ウラン焼結ペレット(以下UO。
As shown in FIG. 4, nuclear fuel #1 contains cylindrical uranium dioxide sintered pellets (hereinafter referred to as UO) inside the cladding tube 2.

ベレットとする。)3が多数装填され、この被覆管2の
上、下端部には上部端栓4及び下部端栓5が溶接されて
構成されている。この下部端栓5は下部に細径のシャン
ク部6を有している。前記核燃料棒1内の上部には上部
プレナム7が形成され、この上部プレナム内にはプレナ
ムスプリング8及びゲッタ9が配置されている。また、
前記核燃料棒1の内部空間にはヘリウムガスが充填され
ている。前記被覆管2は、耐食性に優れ、中性子吸収断
5EvRが小さいなどの利点のために、ジルコニウム合
金、例えば、ジルカロイ−2,ジルカロイ−4の薄肉管
が用いられている。同様に被覆管2両端を密封するため
の上部端栓4及び下部端栓5も溶接の容易さ及び、前記
特性の観点からジルコニラム合金が用いられている。
Beret. ) 3 is loaded, and an upper end plug 4 and a lower end plug 5 are welded to the upper and lower ends of the cladding tube 2. This lower end plug 5 has a small diameter shank portion 6 at its lower portion. An upper plenum 7 is formed in the upper part of the nuclear fuel rod 1, and a plenum spring 8 and a getter 9 are arranged within this upper plenum. Also,
The inner space of the nuclear fuel rod 1 is filled with helium gas. The cladding tube 2 is a thin-walled tube made of zirconium alloy, such as Zircaloy-2 or Zircaloy-4, because of its excellent corrosion resistance and low neutron absorption cut-off 5EvR. Similarly, for the upper end plug 4 and the lower end plug 5 for sealing both ends of the cladding tube 2, zirconylum alloy is used from the viewpoint of ease of welding and the above-mentioned properties.

〔背景技術の問題点〕[Problems with background technology]

以上の構成において、下部端栓5はUO,ベレットの下
端面に面しているため、充填ガスを介してUO,ベレッ
トから熱が伝わる被覆管に比べ、熱が伝わりやすく、高
温になりやすかった。このため、被覆管と下部端栓との
間に温度差が生じ、前記下部端栓は第5図に示すような
温度差を示す。ここで第5図は下部端栓の人−入断面方
向温度分布を示す特性図である。第5図に示すように上
部端栓中央部は被覆管と接する周辺部と比較して高温に
なっていた、この様に温度差が生じ、この温度差によっ
て、下部端栓と被覆管は熱膨張差が生じ、第6図に示す
ような製造時の形状から第7図に示すような変形が発生
する。ここで第6図に製造時の下部端栓と被覆管との結
合部の縦断面を示し、第7図に熱膨張による差が発生し
た場合の下部端栓と被覆管との結合部・の縦断面図を示
す。第7図に示すよう叫熱膨張差が生じると、下部端栓
と被覆管との結合部には熱応力が発生する。この熱膨張
差は、特に原子炉の出力変化時には変動を伴い、この熱
膨張の変動による熱応力の変動によって疲労寿命が短縮
し、被覆管が破損するおそれがあった。そのため原子炉
の出力変化の巾とそのサイクル数については自づと制限
があった。
In the above configuration, since the lower end plug 5 faces the lower end surface of the UO and pellet, heat is more easily transmitted and the temperature is more likely to rise than in a cladding tube where heat is transferred from the UO and pellet via the filling gas. . Therefore, a temperature difference occurs between the cladding tube and the lower end plug, and the lower end plug exhibits a temperature difference as shown in FIG. Here, FIG. 5 is a characteristic diagram showing the temperature distribution in the cross-sectional direction of the lower end plug. As shown in Figure 5, the center of the upper end plug was hotter than the surrounding area that was in contact with the cladding tube.This temperature difference caused the lower end plug and the cladding tube to heat up. A difference in expansion occurs, causing deformation as shown in FIG. 7 from the shape at the time of manufacture as shown in FIG. 6. Here, Fig. 6 shows a longitudinal section of the joint between the lower end plug and the cladding tube during manufacture, and Figure 7 shows the joint between the lower end plug and the cladding tube when a difference due to thermal expansion occurs. A vertical cross-sectional view is shown. As shown in FIG. 7, when a thermal expansion difference occurs, thermal stress is generated at the joint between the lower end plug and the cladding tube. This difference in thermal expansion is accompanied by fluctuations, especially when the output of the nuclear reactor changes, and there is a risk that the fatigue life will be shortened and the cladding tube will break due to fluctuations in thermal stress due to fluctuations in thermal expansion. Therefore, there was a natural limit to the width of the reactor's output change and the number of cycles.

〔発明の目的〕[Purpose of the invention]

本発明は、」:述した従来の下部端栓と被覆管の結合部
で生じる熱応力を緩和させて疲労寿命を高め、より広範
囲な原子炉の出力変動を可能にする核燃料棒を提供する
ことを目的とする。
The present invention is to provide a nuclear fuel rod that alleviates the thermal stress generated at the conventional lower end plug and cladding joint, increases fatigue life, and enables a wider range of nuclear reactor output fluctuations. With the goal.

〔発明の概要〕[Summary of the invention]

本発明は、ジルコニウム合金製の岐覆管内に複数個の二
酸化ウラン焼結ベレットを装填し、前記被覆管の上、下
端をジルコニウム合金製の上、下部端栓で密封して成る
核燃料棒において、前記下部端栓には軸方向に前記燃料
棒内部方向から穴が穿設され、この穴C二は前記下部端
栓の構造材であるジルコニウム合金よりも熱伝導率が高
い材料から成る熱伝導部材が挿着されて成ることを特徴
とする核燃料棒にある。
The present invention provides a nuclear fuel rod in which a plurality of uranium dioxide sintered pellets are loaded into a zirconium alloy manifold tube, and the upper and lower ends of the cladding tube are sealed with zirconium alloy upper and lower end plugs, A hole is bored in the lower end plug in the axial direction from the inside of the fuel rod, and this hole C2 is made of a heat conductive member made of a material having higher thermal conductivity than the zirconium alloy that is the structural material of the lower end plug. A nuclear fuel rod is characterized in that it is formed by inserting a.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の第1実施例を第1図及び第2図を参照し
て説明する。ここで第1図に本発明の第1実施例に係る
核燃料棒の縦断面図を示す。なお、第4図と同一部分に
は同一符号を付しその構成の説明は省略する。第1図に
おいて、ジルカロイ合金製被覆管2の下部に溶接されて
いる下部端栓10の中心部には軸方向に穴11が穿設さ
れている。この穴11はシャンク部12以下まで穿設さ
れ、この穴11には穴11の側面に密着しない程度の間
隙を有して、下部端栓10の構造材であるジルコニウム
合金よりも熱伝導率が高い材料(たとえば銅、アルミニ
ウム等)から成る熱伝導部材13が挿着されている。な
お、このジルコニウム合金の熱伝導率は、財団法人原子
力安全研究協会発行の”軽水炉燃料のふるまい″(Nw
N−hNsENNo、13 )の第108頁によれば第
1式のように示されている。
A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Here, FIG. 1 shows a longitudinal sectional view of a nuclear fuel rod according to a first embodiment of the present invention. Note that the same parts as in FIG. 4 are designated by the same reference numerals, and explanations of their configurations will be omitted. In FIG. 1, a hole 11 is axially bored in the center of a lower end plug 10 that is welded to the lower part of a cladding tube 2 made of Zircaloy alloy. This hole 11 is drilled up to the shank portion 12 or below, and has a gap in the hole 11 to the extent that it does not come into close contact with the side surface of the hole 11. A thermally conductive member 13 made of a high quality material (for example copper, aluminum, etc.) is inserted. The thermal conductivity of this zirconium alloy is based on the "Behavior of Light Water Reactor Fuel" (Nw
According to page 108 of N-hNsENNo., 13), it is shown as the first equation.

K= 7.51 +2.09刈O−2・T −1,45
Xl0−’T”+ 7.67 xto ” −T−3・
・・(1)但し K−コ熱伝導率(W/rf1・K)T
:温度(K) 以上の構成において、下部端栓に設けられた熱伝導部材
によって、従来の下部端栓と比較して、熱伝導率がよく
なっている。更に、少くとも、シャンク部までは、下部
端栓の穴の内面と熱伝導部材の側面とが、間隙を有し、
密着していないため熱伝導部材と下部端栓との間の熱伝
達はUO,ベレット2と被覆管間の熱伝達と同様に考え
ることができ、ジルカロイ合金の熱伝導に比べ、熱の伝
わり方が悪くなっている。したがって、熱伝導部材では
、熱流束が大きく高温になりやすいが、主に軸方向に熱
が伝わるため、下部端栓と被覆管との結合部分での第2
図のB−B断面方向断面の温度分布は第2図に示すよう
になっている。第2図に示すように中心付近即ち熱伝導
部材では、従来より高くなるものの下部端栓の穴の側面
と熱伝導部材の側面との間で急激に温度が低下し、下部
端栓での径方向の温度勾配は、第5図に示す従来例より
小さくなっている。
K = 7.51 +2.09 mowing O-2・T -1,45
Xl0-'T"+ 7.67 xto"-T-3・
...(1) However, K-cothermal conductivity (W/rf1・K)T
: Temperature (K) In the above configuration, the thermal conductivity member provided in the lower end plug has better thermal conductivity than the conventional lower end plug. Furthermore, at least up to the shank portion, there is a gap between the inner surface of the hole of the lower end plug and the side surface of the thermally conductive member,
Because they are not in close contact, the heat transfer between the heat conductive member and the lower end plug can be considered similar to the heat transfer between the UO, pellet 2, and the cladding tube, and the way of heat transfer is different from that of Zircaloy alloy. is getting worse. Therefore, in a thermally conductive member, the heat flux is large and the temperature tends to be high, but since heat is mainly transmitted in the axial direction, the second
The temperature distribution in the cross section along the line B-B in the figure is as shown in FIG. As shown in Figure 2, near the center, that is, in the heat conduction member, the temperature is higher than before, but the temperature drops rapidly between the side of the hole in the bottom end plug and the side of the heat conduction member, and the diameter at the bottom end plug decreases. The temperature gradient in this direction is smaller than that of the conventional example shown in FIG.

このように、被覆管の平均温度と下部端栓の平均温度の
差を従来より小さくすることができるため、この被覆管
の平均温度と下部端栓の平均温度の差に比例して発生す
る熱応力も小さくなる。よって熱歪みも小さくなるので
、従来より疲労損傷が少なくなる。さらには、従来より
も大きな原子炉の出力変動や出力変動回数にも耐えられ
ることになる。
In this way, the difference between the average temperature of the cladding tube and the average temperature of the lower end plug can be made smaller than before, so the heat generated is proportional to the difference between the average temperature of the cladding tube and the average temperature of the lower end plug. Stress is also reduced. Therefore, thermal strain is also reduced, resulting in less fatigue damage than in the past. Furthermore, it will be able to withstand larger fluctuations in reactor output and the number of fluctuations in output than conventional reactors.

次に本発明の第2実施例を第3図を参照して説明する。Next, a second embodiment of the present invention will be described with reference to FIG.

ここで第3図に本発明の第2実施例に係る燃料棒の縦断
面図を示す。なお、第1図と同一部分には同一符号を付
しその構成の説明は省略する。第3図において、ジルカ
ロイ合金Ii!被覆管2の下部に溶接されている下部端
栓20の中心部には軸方向に穴21が穿設されている。
Here, FIG. 3 shows a longitudinal sectional view of a fuel rod according to a second embodiment of the present invention. Note that the same parts as in FIG. 1 are designated by the same reference numerals, and explanations of their configurations will be omitted. In FIG. 3, Zircaloy alloy Ii! A hole 21 is bored in the center of the lower end plug 20 welded to the lower part of the cladding tube 2 in the axial direction.

この穴21は内径が下方へ次第に狭くなっており、この
穴21内には熱伝導部材22が挿着されている。この熱
伝導部材22は、下部端栓20の構造材であるジルコニ
ウム合金よりも熱伝導率が高い材料から成り、断面径が
下方へ次第に太く構成されている。
The inner diameter of this hole 21 gradually becomes narrower downward, and a heat conductive member 22 is inserted into this hole 21 . The thermally conductive member 22 is made of a material having higher thermal conductivity than the zirconium alloy that is the structural material of the lower end plug 20, and has a cross-sectional diameter that gradually increases downwardly.

以上の構成によって、従来の下部端栓に比べ軸方向に熱
が伝わりやすぐなる。一方、少くともシヤング部までは
熱伝導部材と下部端栓の穴の内面との間に間隙を有し、
かつ、軸方向下回きにその間隙が減少しているため、下
部端栓は径方向温度勾配のみでなく、軸方向温度勾配も
緩和される。
With the above configuration, heat is transmitted more quickly in the axial direction than in the conventional lower end plug. On the other hand, there is a gap between the heat conductive member and the inner surface of the hole of the lower end plug at least up to the shearing part,
In addition, since the gap is reduced in the axial direction, not only the radial temperature gradient but also the axial temperature gradient in the lower end plug is alleviated.

したがって、円柱状の熱伝導部材を用いた場合より更に
下部端栓の温度勾配は小さくなる。
Therefore, the temperature gradient of the lower end plug becomes smaller than when a cylindrical heat conductive member is used.

このように、温度勾配が小さくなると被覆管と下部端栓
との温度差が小さくなり、それに比例する熱応力も小さ
くなる。また、熱応力によって生じる歪みも小さくなる
ので、疲労損傷も少なくなる。したがって従来より大き
な炉心の出力変動や出力変動回数が可能となる。更に、
この実施例においては付加的効果として、プレナム体積
を従来より大きくとれるため、内部空間の核分裂生成ガ
スによる圧力上昇が、従来より緩和することができる。
In this way, when the temperature gradient becomes smaller, the temperature difference between the cladding tube and the lower end plug becomes smaller, and the thermal stress proportional thereto also becomes smaller. Furthermore, since the strain caused by thermal stress is also reduced, fatigue damage is also reduced. Therefore, it is possible to make larger changes in the core output and the number of changes in the output than in the past. Furthermore,
In this embodiment, as an additional effect, the plenum volume can be made larger than before, so that the pressure increase due to the fission product gas in the internal space can be alleviated compared to before.

〔発明の効果〕〔Effect of the invention〕

本発明に係る核燃料棒は、下部端栓に穴を穿設し、この
大向に熱伝導部材を挿着させたので被覆管と下部端栓の
平均温度の差を小さくすることができ、下部端栓に発生
する熱応力を緩和することができる。
In the nuclear fuel rod according to the present invention, a hole is formed in the lower end plug, and a heat conductive member is inserted into the hole, so that the difference in average temperature between the cladding tube and the lower end plug can be reduced. Thermal stress generated in the end plug can be alleviated.

【図面の簡単な説明】[Brief explanation of drawings]

−B方向温度分布を示した特性図、第3図は本発明の第
2実施例に係る核燃料棒の縦断面図、第4示した特性図
、第6図は製造時の下部端栓と被覆管の結合部を示す縦
断面図、第7図は原子炉出力時の下部端栓と被覆管の結
合部を示す縦断面図である。 1・・・核燃料#   2・・・被覆管3・・・UO,
ベレット 4・・・上部端栓5.10.20・・・下部
端栓 11.21・・・穴   13.22・・・熱伝
導部材 代理人 弁理士 則 近 憲 佑 (ほか1名)第1図 第3図 第6図 第7図
-A characteristic diagram showing the temperature distribution in the B direction; FIG. 3 is a vertical cross-sectional view of a nuclear fuel rod according to the second embodiment of the present invention; FIG. 4 is a characteristic diagram showing the temperature distribution; FIG. FIG. 7 is a vertical cross-sectional view showing the joint between the lower end plug and the cladding tube during reactor power output. 1... Nuclear fuel #2... Cladding tube 3... UO,
Bellet 4... Upper end plug 5.10.20... Lower end plug 11.21... Hole 13.22... Heat conduction member representative Patent attorney Noriyuki Chika (and 1 other person) 1st Figure 3 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニウム合金製の被覆管内に複数個の二酸化
ウラン焼結ペレットを装填し、前記被覆管の上、下端を
ジルコニウム合金製の上、下部端栓で密封して成る核燃
料棒において、前記下部端栓には軸方向に前記燃料棒内
部方向から穴が穿設され、この穴には前記下部端栓の構
造材であるジルコニウム合金よりも熱伝導率が高い材料
から成る熱伝導部材が挿着されて成ることを特徴とする
核燃料棒。
(1) A nuclear fuel rod in which a plurality of sintered uranium dioxide pellets are loaded into a zirconium alloy cladding tube, and the upper and lower ends of the cladding tube are sealed with zirconium alloy upper and lower end plugs. A hole is bored in the end plug in the axial direction from the inside of the fuel rod, and a thermally conductive member made of a material having higher thermal conductivity than zirconium alloy, which is a structural material of the lower end plug, is inserted into this hole. A nuclear fuel rod characterized by comprising:
(2)前記熱伝導部材は、銅またはアルミニウムの少な
くとも1部材から成ることを特徴とする特許請求の範囲
第1項記載の核燃料棒。
(2) The nuclear fuel rod according to claim 1, wherein the heat conductive member is made of at least one member of copper or aluminum.
JP60047486A 1985-03-12 1985-03-12 Nuclear fuel rod Pending JPS61207988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047486A JPS61207988A (en) 1985-03-12 1985-03-12 Nuclear fuel rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047486A JPS61207988A (en) 1985-03-12 1985-03-12 Nuclear fuel rod

Publications (1)

Publication Number Publication Date
JPS61207988A true JPS61207988A (en) 1986-09-16

Family

ID=12776450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047486A Pending JPS61207988A (en) 1985-03-12 1985-03-12 Nuclear fuel rod

Country Status (1)

Country Link
JP (1) JPS61207988A (en)

Similar Documents

Publication Publication Date Title
US3022240A (en) Nuclear reactor fuel element
US2984613A (en) Fuel element for nuclear reactors
JP5568785B2 (en) Nuclear fuel rod
US3647623A (en) Fuel element for a nuclear reactor
JP3065576B2 (en) Liquid metal bonded fuel rod for nuclear reactor
JPS61207988A (en) Nuclear fuel rod
JP2510648B2 (en) Fuel element
US4587091A (en) Nuclear fuel assembly
JPS58165085A (en) Nuclear fuel element
JPS61237084A (en) Nuclear fuel aggregate
JP3064812B2 (en) Fuel assembly
JPS58161877A (en) Nuclear fuel element
JPS61201192A (en) Nuclear fuel rod
JPS5940195A (en) Nuclear fuel element for fast breeder
JPS6282392A (en) Nuclear fuel rod
JPS6331027Y2 (en)
JPS62102184A (en) Segment fuel rod
JPH0799398B2 (en) Nuclear fuel element
JPS61107188A (en) Nuclear fuel aggregate
JPS5872096A (en) Segment type fuel rod
JPS60205279A (en) Fuel rod for boiling-water type reactor
JPS5937488A (en) Fuel rod
JPS60147691A (en) Fast breeder reactor
JPS6016598B2 (en) nuclear fuel assembly
JPS5928689A (en) Fuel rod