JPS6375364A - Pump stationary operation controlling method for branching conduit pumped storage power plant - Google Patents

Pump stationary operation controlling method for branching conduit pumped storage power plant

Info

Publication number
JPS6375364A
JPS6375364A JP61220660A JP22066086A JPS6375364A JP S6375364 A JPS6375364 A JP S6375364A JP 61220660 A JP61220660 A JP 61220660A JP 22066086 A JP22066086 A JP 22066086A JP S6375364 A JPS6375364 A JP S6375364A
Authority
JP
Japan
Prior art keywords
pump
pumping
flow rate
guide vane
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61220660A
Other languages
Japanese (ja)
Inventor
Hiroshi Tazawa
田沢 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61220660A priority Critical patent/JPS6375364A/en
Publication of JPS6375364A publication Critical patent/JPS6375364A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To operate each machine under optimum conditions, by operating a certain machine for power generation while operating another machine for pumping, in case of a branching conduit pumped storage power plant where plural units of hydraulic machines are connected to a single pipe line. CONSTITUTION:Each signal out of flowmeters 9, 10 and 11 and level detectors 12 and 13 is inputted into an arithmetic and control unit 14, and an optimum flow rate is operated. This operated result is led into guide vane controllers 15 and 16, and each opening of guide vanes 17 and 18 for a pump operation machine and a turbine operation machine is controlled. Therefore, these machines can be operated under an optimum head or a pump head commensurate to an electric power demand, undependent on upper and lower pond levels at that time.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は1条の水圧鉄管(1条管路)から分岐する分岐
管に複数のポンプ水車等を接続した分岐水路揚水発電所
における水力機械の制御方法に関するものである。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to a branch channel pumping system in which a plurality of pump turbines, etc. are connected to a branch pipe branching from one penstock (single pipe line). This relates to a method for controlling hydraulic machinery in power plants.

(従来の技術) 揚水発電所は電力系統雪給状態に応じて発電あるいは揚
水運転を行い、電力の雪給バランスを保つことを目的と
して建設されており、従って電力系統の要求する入力あ
るいは出力に応じて各水力機械を運転することが必要で
ある。
(Prior art) Pumped storage power plants are constructed for the purpose of maintaining the snow supply balance of electricity by generating electricity or pumping water according to the power system snow supply status, and therefore do not match the input or output required by the power system. It is necessary to operate each hydraulic machine accordingly.

従来の制御技術では、1条の水圧鉄管から分岐している
分岐管に設置された複数のポンプ水車等を制御する場合
、常に全台数または所要台数の機械を全て同一運転する
ことにより系統の電力調整を行ってきた(特開昭60−
80481.同30482号参照)。
With conventional control technology, when controlling multiple pump turbines installed in branch pipes branching from a single penstock, all or the required number of machines are always operated in the same way, thereby reducing power in the system. We have made adjustments (Unexamined Japanese Patent Publication No. 1986-
80481. (See No. 30482).

このh゛法では発電運転または揚水運転を行う際に水路
内に発生する損失水頭は上池から水車までの全長内を流
れる全流量によって決まる。従って水車運転時には1−
池と下池の見掛け」二の落差から水路内の全損失水頭を
差し引いた分のを効落差でしか発電運転ができず、落差
を自°効に利用できない。また揚水運転においては見掛
は上の静落差に水路内の全損失水頭を加えた分の揚程で
水をポンピングしなければならず、揚水機の軸入力がそ
れだけ余計に必要となってくる。
In this h method, the head loss generated in the waterway during power generation or pumping operation is determined by the total flow rate flowing within the entire length from the upper pond to the water turbine. Therefore, when operating a water turbine, 1-
Power generation can only be performed using the effective head that is calculated by subtracting the total head loss in the waterway from the apparent head difference between the pond and the lower pond, and the head cannot be used self-effectively. In addition, in pumping operation, water must be pumped with a lift equal to the apparent static head plus the total head loss in the waterway, which requires an additional shaft input from the pump.

(発明が解決しようとする問題点) 前述のように1条管路に複数のポンプ水車等の水力機械
が接続されている揚水発電機において全台数を同一運転
を行うと発電運転および揚水運転のいずれの場合にも上
池から下池までの全水路内において全台数か使用する流
量に相当する分の損失水頭をカバーしつつ運転を行なわ
ねばならない。
(Problems to be Solved by the Invention) As mentioned above, in a pumped storage generator in which a plurality of hydraulic machines such as pump turbines are connected to a single pipeline, if all units are operated in the same way, the power generation operation and the pumped storage operation will not be the same. In either case, operation must be carried out while covering the head loss equivalent to the total number of units or the flow rate used in the entire waterway from the upper reservoir to the lower reservoir.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は背景技術におけるに述のごとき欠点を除去すべ
くなされたもので、水路が」二池から1条管路で導かれ
、途中で分岐して複数のポンプ水車などに接続されてい
る分岐水路揚水発電所において、一部のポンプ水車笠に
よるポンプ揚水運転と他のポンプ水車等による水車発電
運転とを同時に並行して行う場合、上池と上池の水位差
である静落差を検出し、前記ポンプ揚水運転機のガイド
ベーン制御装置に伝えてガイドベーン開度の対応制御を
行う際に、前記ポンプ揚水運転機の揚水流はと前記水車
発電運転機の発電流緻との相対差を検出して前記ポンプ
揚水運転機のガイドベーン制御装置に伝え、前記相対差
に応じて前記静落差に対するガイドベーン開度の対応制
御を行うことを特徴とする。
(Means for Solving the Problems) The present invention has been made to eliminate the above-mentioned drawbacks in the background art, and the present invention has been made in order to eliminate the above-mentioned drawbacks in the background art. In a branch channel pumped storage power plant that is connected to a pump-turbine, etc., when the pump pumping operation by some pump-turbine shade and the hydro-turbine power generation operation by other pump-turbine etc. are performed at the same time, the upper pond and When detecting a static head difference, which is a water level difference between The present invention is characterized in that a relative difference between the power generation flow rate of the machine and the power generation flow density of the pump is detected and transmitted to a guide vane control device of the pump pumping operation machine, and corresponding control of the guide vane opening degree to the static head difference is performed in accordance with the relative difference. .

(作 用) 本発明は前述のように1条管路に複数台のポンプ水車等
の水力機械が接続された分岐水路揚水発電所において各
水力機械の運転モードを同一とせず、ある機械を発電運
転する一方で他の機械を揚水運転させるものであるから
、系全体として1条管路内を流れる流量を低減せしめ、
各機械に対す゛る発電運転および揚水運転の損失水頭が
低減し、さらには、各機械の発電量、揚水量を調整する
ことにより、1条管路内を流れる流量を調整して、各機
械に対して適宜な育効落lおよび揚程を発生せしめるこ
とがてき、各機械を最適条件下で運転することができる
(Function) As described above, the present invention is designed to operate a branch channel pumped storage power plant in which a plurality of hydraulic machines such as pump-turbines are connected to a single pipeline, without making the operation mode of each hydraulic machine the same, and to generate power from a certain machine. Since the machine operates while pumping other machines, the flow rate flowing through the single pipe as a whole is reduced.
Head loss during power generation and pumping operations for each machine is reduced, and by adjusting the amount of power generation and pumping of each machine, the flow rate flowing through the single pipe can be adjusted, allowing each machine to It is possible to generate an appropriate growth drop and lift, and each machine can be operated under optimal conditions.

以ド、その理由を説明する。なお、説明の便宜上、に池
に連なる1条管路のド端が2本の分岐管に分かれ、これ
らの分岐管に各1台ずっポンプ水車(#1号機、#2号
機)が設置されている例につき述べる。
The reason for this will be explained below. For convenience of explanation, the end of the single-line pipe leading to the pond is divided into two branch pipes, and one pump water turbine (#1 unit, #2 unit) is installed in each of these branch pipes. Let's talk about an example.

いま、#1号機が発電運転を行っており、その使用水は
をQ、、62号機が揚水運転を行っており、その揚水量
をQ とすると、1条管路内を流れる流量のΔQは △Q−Q、−Qp      ・・・(1)となる。
Now, Unit #1 is in power generation operation, and the water it uses is Q, and Unit 62 is in pumping operation, and the amount of water it pumps is Q.The flow rate ΔQ in the single pipe is ΔQ-Q, -Qp (1).

ここで、1条管路内の損失水頭を△H,#1号機用分岐
管内の損失水頭を△HIt、#2号機用分岐管内の損失
水頭を△H1−すると各ポンプ水車の有効落差Htおよ
び揚程H2は H−H−ΔH−ΔH・・・ (2) t     St      l      It)1
 −H+ΔH+ΔH−<3) p    st     I      Ipとなる。
Here, if the water head loss in the single pipe pipe is △H, the water loss head in the branch pipe for #1 unit is △HIt, and the water head loss in the branch pipe for #2 unit is △H1-, then the effective head Ht of each pump-turbine and The lifting height H2 is H-H-ΔH-ΔH... (2) t St l It) 1
−H+ΔH+ΔH−<3) p st I Ip.

一般的に分岐管のある揚水発電所の管路は土木費低減の
ため、水力機械の直前までを1条管路にすることが多く
、分岐管の長さは1条管に比べてはるかに短い。従って
管路内の損失水頭も1条管路内に発生するものの方が分
岐管路内に発生するものよりもはるかに大きい。
In general, in pumped storage power plants with branch pipes, in order to reduce civil engineering costs, a single pipe is often used up to just before the hydraulic machinery, and the length of the branch pipe is much longer than that of a single pipe. short. Therefore, the head loss within the pipe is much larger in a single pipe than in a branch pipe.

従来技術(全台同一モード運転)において、例えば発電
運転時に各ポンプ水車にQ、だけの流量を流した場合に
1条管路内に発生する損失水頭ΔH10は、各号機が異
なるモードの運転をする本発明の場合(発電流量Qt)
と比較すると、損失水頭は流量の2乗に比例することか
ら △H−△HX (2Qt/Qt) −4・ΔH1・・・(4) となる。また、上池から下池までの有効落差Htは Hl −H−4・△H1−△H1t ・・・(5)It となる。同様に揚水運転時に各ポンプ水車が負担する揚
程Hは H−H+4令△H,+△HI、・・・(6)   st となる。
In the conventional technology (all units operate in the same mode), for example, when a flow rate of Q is allowed to flow through each pump-turbine during power generation operation, the loss of water head ΔH10 that occurs in a single pipe line is determined by the fact that each unit operates in a different mode. In the case of the present invention (power generation flow rate Qt)
Since the head loss is proportional to the square of the flow rate, it becomes ΔH−ΔHX (2Qt/Qt) −4·ΔH1 (4). Further, the effective head Ht from the upper pond to the lower pond is Hl - H-4 △H1 - △H1t (5) It. Similarly, the head H borne by each pump-turbine during pumping operation is H−H+4 ΔH, +ΔHI, . . . (6) st.

前述のように通常、1条管路の方が分岐管よりも一般に
はるかに長いので、上述のΔH1の方がΔH、ΔH1p
に比べてはるかに大きい。 さらIt に本発明による運転によりQ、−Q、の運転を行えば1
条管路内を流れる流量はOとなり、1条管路の損失水頭
はOになる。
As mentioned above, a single line pipe is generally much longer than a branch pipe, so the above ΔH1 is smaller than ΔH, ΔH1p.
much larger than. Furthermore, if the operation of Q, -Q, is performed according to the present invention on It, 1 is obtained.
The flow rate flowing through the pipe line becomes O, and the head loss of the single pipe line becomes O.

従って、各号機の有効落差および揚程は各々H−H−△
H・(7) L     sL      It H−H+ΔH・・・(8) p   sL    It となり、発電運転機ではより高い有効落差が得られ経済
的な発電ができ、また揚水発電機ではより低い揚程での
運転が可能となり入力電力量の負担が低減される。
Therefore, the effective head and head of each machine are H-H-△
H・(7) L sL It H−H+ΔH (8) p sL It Therefore, a generator operating machine can obtain a higher effective head and can generate economical power, and a pumped storage generator can generate electricity at a lower head. operation becomes possible, and the burden of input electric power is reduced.

また、発電運転機と揚水運転機の流量を調整することに
よりその揚水発電プラントのその時の上池と下池のレベ
ルから発生し得る有効落差または揚程を自由に選択でき
るのでその時々に応じた最適な運転が可能となる訳であ
る。
In addition, by adjusting the flow rates of the power generator and pumped storage generator, the effective head or head that can be generated from the levels of the upper and lower reservoirs of the pumped storage power generation plant can be freely selected, so the optimum head can be selected depending on the situation. This makes it possible to drive.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は分岐水路系の模式図で、上池lには1条管路2
が接続され、サージタンク3を経た後、分岐管4.5に
分かれる。各分岐管にはポンプ水車6およびポンプ水車
7が接続され、各々のポンプ水中には伝達軸を介して発
71i電動機(図示せず)が取付けられている。また、
各ポンプ水車6.7には水口開度を変えられるガイドベ
ーン(図示せず)が配列されている。各ポンプ水車の下
流側は下池8に接続されている。
Figure 2 is a schematic diagram of the branch waterway system, with one pipe line 2 in the upper pond.
is connected, and after passing through the surge tank 3, it is split into a branch pipe 4.5. A pump water wheel 6 and a pump water wheel 7 are connected to each branch pipe, and a generator 71i electric motor (not shown) is attached to each pump water via a transmission shaft. Also,
Guide vanes (not shown) are arranged in each pump turbine 6.7 to change the opening degree of the water port. The downstream side of each pump-turbine is connected to a lower pond 8.

1条管路2と各分岐管路4.5には各々流量計9.10
.11が接続されている。また、1−池1と下池8には
各々水位検出装置12.13が設置されている。
A flow meter 9.10 is installed in the single pipe line 2 and each branch pipe line 4.5.
.. 11 are connected. Further, water level detection devices 12 and 13 are installed in each of the 1-pond 1 and the lower pond 8.

第1図は本発明h°法における運転制御構成例を示すも
ので、流は計9.10.11および水位検出装置12.
13からの信号は演算制御装置14に人力され、最適流
aQ、、Q、を演算される。
FIG. 1 shows an example of the operation control configuration in the h° method of the present invention, in which the total flow is 9.10.11 and the water level detection device 12.
The signal from 13 is inputted to the arithmetic and control unit 14, which calculates the optimum flow aQ, ,Q.

この演算結果はそれぞれ、ガイドベーン制御装置15.
16に導かれ、ポンプ運転機および水車運転機のガイド
ベーン17.18の開度を制御する。
The calculation results are calculated by the guide vane control device 15.
16 to control the opening degrees of guide vanes 17 and 18 of the pump driving machine and the water turbine driving machine.

上述の構成による揚水発電所において、電力需給に応じ
て電力調整を行う場合には、まず、電力需給の状態によ
り発電運転により電力バランスをとるか、揚水運転によ
って電力バランスをとるかが決まる。
In the pumped storage power plant having the above configuration, when adjusting power according to power supply and demand, first, depending on the state of power supply and demand, it is determined whether power is to be balanced through power generation operation or pumped storage operation.

次に、上池水位険出討12と下池水位検出計13により
測定した静落差Hstからその時必要な運転モードに最
適な落差、または揚程を選択する。
Next, from the static head difference Hst measured by the upper pond water level riser 12 and the lower pond water level detector 13, the optimum head or lift for the required operation mode at that time is selected.

演算制御装置14により各々のポンプ水中に最適な流量
を算出する。1条管路内を流れる流量は(1)式により
、また各水車運転機、ポンプ運転機のa効落差H5およ
び揚水H2は各々(2)、(3)式により求まるので、
これらの式よりその状況に応じたM適な落差またはi!
稈を得るための流量Qt、Q、を選べば良い。流量を演
算制御装置14で算出したら、これらの流量に相当する
ガイドベーン開度指令をガイドベーン制御装置15゜1
6より出力させ、ポンプ運転機のガイドベーン17およ
び水車運転機のガイドベーン18の開度を制御する。
The arithmetic and control unit 14 calculates the optimal flow rate for each pump. The flow rate flowing through the single-line pipe is determined by equation (1), and the a-effective head H5 and pumped water H2 of each turbine operating machine and pump operating machine are determined by equations (2) and (3), respectively.
From these formulas, M suitable head or i!
It is sufficient to select the flow rate Qt, Q, for obtaining a culm. Once the flow rates are calculated by the arithmetic and control unit 14, guide vane opening commands corresponding to these flow rates are sent to the guide vane control unit 15°1.
6 to control the opening degree of the guide vane 17 of the pump driving machine and the guide vane 18 of the water turbine driving machine.

以りの運転方法によりポンプ水車6,7はその時の電力
需給に応じた最適な運転状態のもとで運転され、電力バ
ランスをとることができる。
With the above operating method, the pump water turbines 6 and 7 are operated under the optimum operating conditions according to the power supply and demand at the time, and the power can be balanced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1条管路に複数台のポンプ水車等を接続
された分岐水路揚水発電所において、各水力機械の発電
運転およびポンプ運転を同時に行うことにより、その時
の上池レベルおよび下池レベルによらず電力需給に応じ
た最適な落差または揚程のもとで運転することができる
According to the present invention, in a branch channel pumped storage power plant in which a plurality of pump turbines, etc. are connected to a single pipeline, by simultaneously performing power generation operation and pump operation of each hydraulic machine, the upper and lower pond levels at that time are It is possible to operate under the optimum head or head depending on the power supply and demand regardless of the situation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の運転制御構成例を示すブロック図
、第2図は本発明が適用される分岐水路を有する揚水発
電所の構成例の模式図である。 1・・・上池、2・・・1条管路、3・・・サージタン
ク、4・・・分岐管、5・・・分岐管、6・・・#1号
機ポンプ水中、7・・・#2号機ポンプ水重重8・・・
下池、9〜11・・・流量計、12.13・・・水位検
出器。
FIG. 1 is a block diagram showing an example of the operation control configuration of the method of the present invention, and FIG. 2 is a schematic diagram of a configuration example of a pumped storage power plant having a branch waterway to which the present invention is applied. 1...Upper pond, 2...1 pipe line, 3...surge tank, 4...branch pipe, 5...branch pipe, 6...#1 unit pump submerged, 7...・#2 pump water weight 8...
Lower pond, 9-11...Flowmeter, 12.13...Water level detector.

Claims (1)

【特許請求の範囲】 1、水路が上池から1条管路で導かれ、途中で分岐して
複数のポンプ水車または水車およびポンプ(以下ポンプ
水車等という。)に接続されている分岐水路揚水発電所
において、一部のポンプ水車等によるポンプ揚水運転と
他のポンプ水車等による水車発電運転とを同時に並行し
て行う場合、上池と下池の水位差である静落差を検出し
、前記ポンプ揚水運転機のガイドベーン制御装置に伝え
てガイドベーン開度の対応制御を行う際に、前記ポンプ
揚水運転機の揚水流量と前記水車発電運転機の発電流量
との相対差を検出して前記ポンプ揚水運転機のガイドベ
ーン制御装置に伝え、前記相対差に応じて前記静落差に
対するガイドベーン開度の対応制御を行うことを特徴と
する分岐水路揚水発電所のポンプ定常運転制御方法。 2、検出した静落差と相対差を水車発電運転機のガイド
ベーン制御装置にも伝え、前記相対差に応じて前記静落
差に対するガイドベーン開度の対応制御を行うことによ
り、運転時の実態落差に応じて水車発電運転を行うこと
を特徴とする特許請求の範囲第1項記載の分岐水路揚水
発電所のポンプ定常運転制御方法。 3、揚水流量が発電流量に対し上まわるものであるとき
は静落差に対して予め定めた適正開度関係のもとに、ま
た前記揚水流量が前記発電流量に対し等しいかもしくは
下まわるものであるときは前記静落差に対し前記適正開
度関係と異なるように予め定めた適正開度度関係のもと
に、それぞれ前記静落差に対するガイドベーン開度の対
応制御を行うことを特徴とする特許請求の範囲第1項ま
たは第2項記載の分岐水路揚水発電所のポンプ定常運転
制御方法。
[Scope of Claims] 1. A branch waterway pumping system in which a waterway is led from the upper pond by a single pipeline, branching off midway and connected to a plurality of pump-turbines or water-turbines and pumps (hereinafter referred to as pump-turbines, etc.) At a power plant, when pumping water by some pump-turbines and generating power by other pump-turbines are carried out simultaneously, the static head, which is the water level difference between the upper and lower ponds, is detected, and the pump When transmitting the information to the guide vane control device of the pumping operation machine to perform corresponding control of the guide vane opening degree, the relative difference between the pumping flow rate of the pump pumping operation machine and the generated flow rate of the water turbine generator operation machine is detected and the pump A method for controlling the steady operation of a pump in a branch waterway pumped storage power plant, characterized in that the information is transmitted to a guide vane control device of a pumping storage operating machine, and the opening degree of the guide vane is controlled in response to the static head difference in accordance with the relative difference. 2. The detected static head and relative difference are also transmitted to the guide vane control device of the water turbine generator operating machine, and the guide vane opening degree is controlled in response to the static head according to the relative difference, thereby controlling the actual head during operation. A pump steady operation control method for a branch waterway pumped storage power plant according to claim 1, characterized in that the water turbine power generation operation is performed in accordance with the above. 3. When the pumping flow rate exceeds the power generation flow rate, the pumping flow rate is equal to or lower than the power generation flow rate based on a predetermined appropriate opening relationship with respect to the static head. In some cases, the guide vane opening degree is controlled in response to the static head difference based on a predetermined appropriate opening relationship that is different from the appropriate opening relationship with respect to the static head difference. A pump steady operation control method for a branch waterway pumped storage power plant according to claim 1 or 2.
JP61220660A 1986-09-18 1986-09-18 Pump stationary operation controlling method for branching conduit pumped storage power plant Pending JPS6375364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220660A JPS6375364A (en) 1986-09-18 1986-09-18 Pump stationary operation controlling method for branching conduit pumped storage power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220660A JPS6375364A (en) 1986-09-18 1986-09-18 Pump stationary operation controlling method for branching conduit pumped storage power plant

Publications (1)

Publication Number Publication Date
JPS6375364A true JPS6375364A (en) 1988-04-05

Family

ID=16754451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220660A Pending JPS6375364A (en) 1986-09-18 1986-09-18 Pump stationary operation controlling method for branching conduit pumped storage power plant

Country Status (1)

Country Link
JP (1) JPS6375364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201613A (en) * 1989-01-31 1990-08-09 Yokogawa Electric Corp Turbine guide vane controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201613A (en) * 1989-01-31 1990-08-09 Yokogawa Electric Corp Turbine guide vane controller

Similar Documents

Publication Publication Date Title
CN101535652B (en) Reversible hydroelectric device
KR20200024119A (en) Improved Reversible Pump-Turbine Unit
EP3387191B1 (en) Ship lock system for a canal
GB2467011A (en) Wave energy power take off control system
JPS6158666B2 (en)
KR101072367B1 (en) Stairs system small hydraulic generating equipment for golf courses and generating method
CN103206334A (en) Low-speed direct-drive hydraulic ocean current power generator and control method thereof
WO2018039655A1 (en) Reversible pump-turbine installation
JPS6375364A (en) Pump stationary operation controlling method for branching conduit pumped storage power plant
JPS6146664B2 (en)
CN103982364B (en) Trt
JP5841386B2 (en) Variable speed pumped storage power generator
JPS63111290A (en) Control method for steady operation of pump in pumped storage power plant of branch water channel
JPS62279278A (en) Operation of pumping-up electric power station having branched water passages
Suryana Guide Vane (Gv) Governor Valve Plta Cikalong Unit 3
JPS62298664A (en) Regularly operating method for pumping-up electric power station of branched conduit type
JPS62298665A (en) Regularly operating method for water lift power plant with divergent watercourse
JPS61129478A (en) Method for controlling water pumping amount of pumping-up electric power station
JP2695838B2 (en) How to control hydropower equipment
KR102135401B1 (en) Small Hydro Power Generation System Using Siphon
JPS59180072A (en) Hydroelectric generator
JPS5925088A (en) Light load air charging controller
JPS63147974A (en) Control method for branch channel pumping type power plant
WO2020235842A1 (en) Building-type pumped storage power generation system
JP2006022745A (en) Micro-hydro power generation method and apparatus using surplus pressure