JP2006022745A - Micro-hydro power generation method and apparatus using surplus pressure - Google Patents

Micro-hydro power generation method and apparatus using surplus pressure Download PDF

Info

Publication number
JP2006022745A
JP2006022745A JP2004202519A JP2004202519A JP2006022745A JP 2006022745 A JP2006022745 A JP 2006022745A JP 2004202519 A JP2004202519 A JP 2004202519A JP 2004202519 A JP2004202519 A JP 2004202519A JP 2006022745 A JP2006022745 A JP 2006022745A
Authority
JP
Japan
Prior art keywords
turbine
control
water
power generation
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004202519A
Other languages
Japanese (ja)
Inventor
Ryuji Morishima
隆二 森島
Tatsuya Okawa
達也 大川
Tomoki Nakamura
知己 中村
Kenji Urano
健司 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2004202519A priority Critical patent/JP2006022745A/en
Publication of JP2006022745A publication Critical patent/JP2006022745A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide micro-hydro power generation method and apparatus using surplus pressure, maximizing the generated power obtained by surplus pressure while controlling the water-conveyance, the water supply, the flow rate of water passing through a pipeline in a water supply pipeline network and the pressure to arbitrary values. <P>SOLUTION: In this power generation method, the water-conveyance, the water supply, the flow rate of water passing through a pipeline in a water supply pipeline network 21 and the pressure to arbitrary values are taken as controlled values, and the rotational frequency of a turbine of the hydro power generator 25 interposed in the midway of the pipeline is operated to control the controlled values, and the hydro power generation is performed using the surplus pressure caused by the control. In the method, the opening control of a turbine inlet valve 27 set on the upstream side of the hydro power generator 25 and the turbine rotational frequency control of the hydro power generator 25 are independently conducted to control the controlled value of water distribution in a downstream pipeline of the hydro power generator is controlled to a target value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、余剰圧力利用マイクロ水力発電方法および装置に関し、上水道の導水・送水・配水管路網の減圧設備等において余剰圧力を利用して発電を行うとともに、管路の流量、もしくは圧力を制御量として目標値に制御する技術に係るものである。   The present invention relates to a surplus pressure-utilizing micro-hydroelectric power generation method and apparatus, and performs power generation using surplus pressure in a pressure reducing facility of water supply / water transmission / distribution pipeline network, and controls the flow rate or pressure of the pipeline. This relates to a technique for controlling the target value as a quantity.

従来、図17に示すように、上水道システム1においてはダム等の貯水池2から導水管3によって原水を浄水場4に導いており、浄水場4では減圧弁5で減圧して原水を着水井6に導入し、浄水過程7で原水を浄化している。浄水場4の浄水は送水ポンプ8で送水管路網9の各配水場10に圧送し、配水場10では減圧弁11で減圧して浄水を配水槽12に導入し、配水槽12に貯留した浄水を配水管13にて下流の需要家に供給している。   Conventionally, as shown in FIG. 17, in the water supply system 1, raw water is guided from a reservoir 2 such as a dam to a water purification plant 4 by a water conduit 3, and the water purification plant 4 decompresses the raw water by a pressure reducing valve 5 to receive the raw water 6 The raw water is purified in the water purification process 7. The purified water from the water purification plant 4 is pumped to each water distribution station 10 of the water supply pipe network 9 by the water pump 8, and the water is pumped down to the water distribution tank 12 by depressurizing by the pressure reducing valve 11 and stored in the water distribution tank 12. Purified water is supplied to downstream customers through the water distribution pipe 13.

このように、従来の上水道システム1では、要所において減圧弁5やあるいはオリフィス等によって適切な圧力にまで減圧しているが、この減圧による余剰圧力は有効に利用されていない。このため、導水・送水・配水管路網における減圧による余剰圧力を利用した水力発電の導入が検討されている。   As described above, in the conventional water supply system 1, the pressure is reduced to an appropriate pressure by the pressure reducing valve 5 or the orifice or the like at an important point, but the excess pressure due to the pressure reduction is not effectively used. For this reason, the introduction of hydroelectric power generation using surplus pressure due to pressure reduction in the water conveyance / water transmission / distribution pipeline network is being studied.

ところで、特許文献1には、固定案内羽根水車を有する水力発電装置において、発電効率を考慮した上で、流量の調整範囲を広げることが可能な運転制御装置が開示されている。これは流量調整弁による流量の調整に応じて、固定案内羽根水車の回転数を変化させる水車変速装置を備えるものであり、流量調整弁を所定開度に調整する指令信号と共に、水車変速装置に固定案内羽根水車の回転数を所定値に調整する指令信号を開度回転数調整器から出力し、流量調整弁の開度と水車回転数の組合せ関数による制御を行うものである。
特開2002−354895公報
By the way, Patent Document 1 discloses an operation control device capable of expanding a flow rate adjustment range in consideration of power generation efficiency in a hydroelectric power generation device having a fixed guide vane turbine. This is equipped with a water turbine transmission that changes the rotation speed of the fixed guide vane turbine according to the flow rate adjustment by the flow rate adjustment valve. A command signal for adjusting the rotation speed of the fixed guide vane turbine to a predetermined value is output from the opening rotation speed adjuster, and control is performed by a combined function of the opening of the flow rate adjustment valve and the turbine rotation speed.
JP 2002-354895 A

しかし、特許文献1においては、図18に示すように、水車の回転数Nをそれぞれ一定に保った場合の流量Qと有効落差Hとの関係を示した流量−有効落差特性曲線のグラフにおいて、水車の回転数Nと流量調整弁の開度を適正に調整し得る流量Qとにおいて発電効率の高い定格運転点を実現している。   However, in Patent Document 1, as shown in FIG. 18, in the graph of the flow rate-effective head characteristic curve showing the relationship between the flow rate Q and the effective head H when the rotation speed N of the water turbine is kept constant, A rated operating point with high power generation efficiency is realized at the rotational speed N of the water turbine and the flow rate Q that can appropriately adjust the opening degree of the flow rate adjusting valve.

この場合に、図18上のA点での運転はB点での運転に比べて有効落差も大きく、効率も良いので、発電電力も当然に高くなる。しかし、これは水車のNs(比速度)が高い場合であって、図19に示すように、Nsが低い場合にはA点での運転は効率の良い運転が可能であるが、B点に比べて有効落差が小さいので、発電電力の点において必ずしも最良の運転とはならない。   In this case, since the operation at point A on FIG. 18 has a larger effective head and higher efficiency than the operation at point B, the generated power naturally increases. However, this is a case where the Ns (specific speed) of the water turbine is high, and as shown in FIG. 19, when Ns is low, the operation at point A can be performed efficiently, but at point B, Since the effective head is smaller than that, it is not always the best operation in terms of generated power.

また、導水・送水・配水管路網においては、管路を流れる水の流量もしくは圧力を連続的に制御することを優先する必要がある。しかし、特許文献1に開示するように、開度回転数調整器によって、流量調整弁を所定開度に調整する制御と水車変速装置に固定案内羽根水車の回転数を所定値に調整する制御とを連係させて制御開始時に弁開度と水車回転数の目標値を一度に定めて制御を行う技術では、水力発電設備の上流側の貯水池の水位の変動や、上流側の圧送ポンプの吐出圧の変動など、水力発電設備(流量調整弁を含む)の一次側の条件が変動した場合、流量調整弁の弁開度と流量とが一義的に定まらないので、管路を流れる水の流量、圧力を適切に制御することが難しい。   In addition, it is necessary to give priority to continuously controlling the flow rate or pressure of the water flowing through the pipeline in the water conveyance / water transmission / distribution pipeline network. However, as disclosed in Patent Document 1, by using the opening speed controller, the control for adjusting the flow rate adjustment valve to a predetermined opening and the control for adjusting the rotation speed of the fixed guide vane turbine to a predetermined value in the turbine transmission With the technology that controls the valve opening and turbine speed target values at the same time at the start of control by linking them, fluctuations in the water level of the upstream reservoir of the hydroelectric power generation facility and the discharge pressure of the upstream pumping pump If the conditions on the primary side of the hydroelectric power generation equipment (including the flow control valve) fluctuate, the valve opening and flow rate of the flow control valve are not uniquely determined. It is difficult to control the pressure properly.

本発明は上記した課題を解決するものであり、導水・送水・配水管路網において流量、圧力を任意の値に制御しつつ、余剰圧力で得られる発電電力を最大とすることができる余剰圧力利用マイクロ水力発電方法および装置を提供することを目的とする。   The present invention solves the above-described problems, and surplus pressure capable of maximizing the generated power obtained by surplus pressure while controlling the flow rate and pressure to arbitrary values in the water conveyance / water supply / distribution pipeline network. It is an object of the present invention to provide a utilization micro hydropower generation method and apparatus.

上記課題を解決するために、請求項1に記載の本発明の余剰圧力利用マイクロ水力発電方法は、導水・送水・配水管路網において管路を流れる水の流量もしくは圧力を制御量とし、制御に伴う余剰圧力を利用して水力発電を行う発電方法であって、水力発電装置の上流側に設置した入口弁の開度制御と水力発電装置の水車回転数制御とをそれぞれ独立して行って水力発電装置の下流側管路における水の制御量を目標値に制御するものである。   In order to solve the above-mentioned problem, the surplus pressure-utilizing micro hydroelectric power generation method according to the present invention described in claim 1 uses a flow rate or pressure of water flowing through a pipe line in a water conveyance / water supply / distribution pipe network as a control amount, Is a power generation method that uses the surplus pressure that accompanies the hydraulic power generation, and independently controls the opening degree of the inlet valve installed on the upstream side of the hydropower generation device and the turbine speed control of the hydropower generation device. The control amount of water in the downstream pipe line of the hydroelectric generator is controlled to a target value.

請求項2に記載の本発明の余剰圧力利用マイクロ水力発電方法は、入口弁の開度制御により水力発電装置の下流側管路における水の制御量を目標値にフィードバック制御しつつ、水力発電装置の水車回転数制御を行うものであって、水力発電装置の水車回転数制御に際し、異なる水車回転数毎に存在する有効落差と水車流量との相関を示す水車特性と、各水車特性毎に相対して存在する発電特性とにおいて、入口弁の開度制御に伴って変化する水の制御量の現在値において発電電力を最大とするのに必要な水車回転数を選択し、選択した水車回転数で水車を回転させるものである。   According to a second aspect of the present invention, there is provided a hydraulic power generation method using feedback control of a control amount of water in a downstream pipe of the hydraulic power generation device to a target value by controlling an opening degree of an inlet valve. Turbine wheel speed control of the hydroelectric power generator, the turbine characteristics indicating the correlation between the effective head and the turbine flow rate that exist at different turbine speeds, and relative to each turbine characteristic. The turbine rotation speed required to maximize the generated power at the current value of the controlled amount of water that changes with the opening control of the inlet valve, and the selected turbine rotation speed. This is to rotate the water wheel.

請求項3に記載の本発明の余剰圧力利用マイクロ水力発電方法は、水力発電装置の水車回転数制御に際し、複数の特定水車回転数の水車特性と当該水車特性に相対する発電特性に基づいて水車回転数を選択するものであり、近接する水車回転数の水車特性の相互間において、双方の水車特性にそれぞれ相対する発電特性での発電電力が同等となる水車流量を変更点として求め、この変更点を全ての特定水車回転数の水車特性において求めて各変更点間を制御区間に設定し、入口弁の開度制御に伴って変化する水の流量現在値を検出し、流量現在値が属する制御区間の水車回転数を選択し、選択した水車回転数で水車を回転させるものである。   According to a third aspect of the present invention, there is provided a surplus pressure-utilizing micro hydroelectric power generation method based on the turbine characteristics of a plurality of specific turbine speeds and the power generation characteristics relative to the turbine characteristics when controlling the turbine speed of a hydroelectric generator. The number of rotations is selected, and the turbine flow rate at which the generated power with the power generation characteristics corresponding to both turbine characteristics is equivalent between the turbine characteristics of adjacent turbine rotation speeds is obtained as a change point. Find the points in the turbine characteristics of all specific turbine rotation speeds, set each change point as a control section, detect the current flow rate of water that changes with the opening degree control of the inlet valve, and the current flow rate value belongs The turbine speed of the control section is selected, and the turbine is rotated at the selected turbine speed.

請求項4に記載の本発明の余剰圧力利用マイクロ水力発電方法は、水力発電装置の水車回転数制御に際し、複数の特定水車回転数の水車特性と当該水車特性に相対する発電特性に基づいて水車回転数を選択するものであり、近接する水車回転数の水車特性の相互間において、双方の水車特性にそれぞれ相対する発電特性での発電電力が同等となる有効落差を変更点として求め、この変更点を全ての特定水車回転数の水車特性において求めて各変更点間を制御区間に設定し、入口弁の開度制御に伴って変化する水力発電装置の一次側の圧力と二次側の圧力との差圧である有効落差現在値を検出し、この有効落差現在値の属する制御区間の回転数であって有効落差現在値において発電電力が最大となる水車回転数を選択し、選択した水車回転数で水車を回転させるものである。   According to a fourth aspect of the present invention, there is provided a surplus pressure-utilizing micro hydroelectric power generation method based on the turbine characteristics of a plurality of specific turbine speeds and the power generation characteristics relative to the turbine characteristics when controlling the turbine speed of a hydroelectric generator. The number of revolutions is selected, and the effective head difference between the turbine characteristics of the adjacent turbine speeds and the power generation characteristics corresponding to the two turbine characteristics are the same as the change point. Find the points in the turbine characteristics of all specific turbine rotation speeds, set the interval between each change point in the control section, and change the primary side pressure and secondary side pressure of the hydroelectric power generator that changes with the opening degree control of the inlet valve The effective head current value, which is the pressure difference between the current head value, is detected, and the turbine speed at which the generated power at the effective head current value is the maximum is selected for the selected turbine. In revolutions It is intended to rotate the vehicle.

請求項5に記載の本発明の余剰圧力利用マイクロ水力発電方法は、入口弁の開度制御により水力発電装置の下流側管路における水の制御量を目標値にフィードバック制御しつつ、水力発電装置の水車回転数制御を行うものであって、水力発電装置の水車回転数制御に際し、複数の特定水車回転数の水車特性と当該水車特性に相対する発電特性に基づいて、水車流量と最大発電電力となる回転数の関係、または水車有効落差と最大発電電力となる回転数の関係のいずれかを示す関数を求め、該関数を用いて、入口弁の開度制御に伴って変化する水の制御量の現在値において発電電力を最大とするのに必要な水車回転数を選択し、選択した水車回転数で水車を回転させるものである。   The surplus pressure-utilizing micro hydroelectric power generation method according to the present invention as set forth in claim 5 is a hydroelectric power generator that performs feedback control of a control amount of water in a downstream pipe line of the hydroelectric power generator to a target value by opening degree control of an inlet valve. The turbine flow rate and the maximum generated power are controlled based on the turbine characteristics of a plurality of specific turbine speeds and the power generation characteristics relative to the turbine characteristics. A function indicating either the relationship between the number of rotations or the relationship between the effective head of the turbine and the number of rotations of the maximum generated power, and using this function, control of water that changes with the opening degree control of the inlet valve The turbine speed required to maximize the generated power at the current value of the quantity is selected, and the turbine is rotated at the selected turbine speed.

請求項6に記載の本発明の余剰圧力利用マイクロ水力発電装置は、導水・送水・配水管路網の管路に介装する入口弁と、入口弁の下流の管路に介装する水力発電装置と、入口弁の開度を制御して制御量をなす流量もしくは圧力を目標値に制御する開度制御手段と、制御量の現在値を指標として水力発電装置の水車回転数を制御する水車回転数制御手段とを備え、開度制御手段は、入口弁の開度制御により水力発電装置の下流側管路における水の制御量を目標値にフィードバック制御し、水車回転数制御手段は、異なる水車回転数毎に存在する有効落差と水車流量との相関を示す水車特性と、各水車特性毎に相対して存在する発電特性とにおいて、制御量の現在値において発電電力を最大とするのに必要な水車回転数を選択するものである。   The surplus pressure-utilizing micro hydroelectric generator according to the present invention as set forth in claim 6 includes an inlet valve interposed in a conduit of a water introduction / water supply / distribution pipeline network, and a hydroelectric generator interposed in a conduit downstream of the inlet valve. Device, opening control means for controlling the flow rate or pressure of the control valve by controlling the opening of the inlet valve to the target value, and the water turbine for controlling the turbine speed of the hydroelectric generator using the current value of the control amount as an index A rotation speed control means, and the opening degree control means feedback-controls the control amount of water in the downstream pipe line of the hydroelectric generator to the target value by opening degree control of the inlet valve, and the turbine rotation speed control means is different. In order to maximize the generated power at the current value of the controlled variable in the turbine characteristics indicating the correlation between the effective head that exists at each turbine speed and the turbine flow rate, and the power generation characteristics that exist relative to each turbine characteristic. The required number of turbine revolutions is selected.

本発明によれば、水力発電装置の上流側に設置した入口弁の開度制御と水力発電装置の水車回転数制御とをそれぞれ独立して行って水力発電装置の下流側管路における水の制御量を目標値に制御することで、導水・送水・配水管路網において管路を流れる水の流量、圧力を任意の値に制御しつつ、余剰圧力で得られる発電電力を最大とすることができる。   According to the present invention, the control of water in the downstream pipeline of the hydroelectric generator by independently performing the opening degree control of the inlet valve installed on the upstream side of the hydroelectric generator and the turbine speed control of the hydroelectric generator. By controlling the amount to the target value, it is possible to maximize the generated power obtained by surplus pressure while controlling the flow rate and pressure of water flowing through the pipeline in the water conveyance / transmission / distribution pipeline network to arbitrary values. it can.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、落差を利用する場合を示すものであり、導水・送水・配水管路網21において上流の配水槽22と下流の配水槽23との間の管路24に水力発電装置25を介装している。水力発電装置25の上流側には流量計26および水車入口弁27を設け、水車入口弁27と水力発電装置25の間に一次圧力計28を設け、水力発電装置25の下流に二次圧力計29を設けている。水力発電装置25は回生インバータ30を介して電力系統31に連係している。回生インバータ30は水力発電装置25の後述する水車の水車回転数を制御するとともに、水力発電装置25で発生する電力の周波数を電力系統31に同調させるものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a case where a head is used, and a hydroelectric generator 25 is connected to a pipe line 24 between an upstream water distribution tank 22 and a downstream water distribution tank 23 in a water conveyance / water supply / distribution pipe network 21. Disguise. A flow meter 26 and a turbine inlet valve 27 are provided upstream of the hydroelectric generator 25, a primary pressure gauge 28 is provided between the turbine inlet valve 27 and the hydroelectric generator 25, and a secondary pressure gauge is provided downstream of the hydraulic generator 25. 29 is provided. The hydroelectric generator 25 is linked to the power system 31 through the regenerative inverter 30. The regenerative inverter 30 controls the rotational speed of a water turbine, which will be described later, of the hydroelectric generator 25, and synchronizes the frequency of electric power generated by the hydroelectric generator 25 with the power system 31.

また、本発明は図2に示すように、ポンプ51によってポンプ圧送する構成にも適用できる。本実施の形態では図1に示す構成において説明する。
図3に示すように、制御装置(PC)32は、流量計26、一次圧力計28、二次圧力計29に接続し、水車入口弁27の開度制御、および回生インバータ30を介した水力発電装置25の水車回転数制御とを個別に独立して行う。
Further, as shown in FIG. 2, the present invention can also be applied to a configuration in which pump pumping is performed by a pump 51. This embodiment will be described with reference to the configuration shown in FIG.
As shown in FIG. 3, the control device (PC) 32 is connected to the flow meter 26, the primary pressure gauge 28, and the secondary pressure gauge 29, and controls the opening degree of the turbine inlet valve 27 and the hydraulic power via the regenerative inverter 30. The turbine speed control of the power generation device 25 is performed individually and independently.

また、本発明は図4に示すように、水力発電装置をもたない既存の導水・送水・配水システムに水力発電装置を追加設置する場合などは、既存の導水・送水・配水システムの制御装置32とは別途に水力発電装置25の制御装置52を設ける構成とすることも可能である。こうすることで既存の制御システムを有効利用して経済的にマイクロ水力発電装置を設置することができる。本実施の形態では図3に示す構成において説明する。   In addition, as shown in FIG. 4, the present invention provides a control device for an existing water conveyance / water supply / distribution system when a hydroelectric power generation device is additionally installed in an existing water conveyance / water supply / distribution system that does not have a hydroelectric power generation device. It is also possible to adopt a configuration in which a control device 52 of the hydroelectric power generation device 25 is provided separately from 32. By doing so, it is possible to economically install a micro hydroelectric power generation device by effectively utilizing an existing control system. This embodiment will be described with reference to the configuration shown in FIG.

図5〜図6に示すように、水力発電装置25は、ケーシング41の吸込口42と吐出口43の間において、発電機44および水車ランナ45を配置し、発電機44と水車ランナ45とをシャフト46によって一体に連結しており、水車ランナ45の上流側にガイドベーン47を設けている。   As shown in FIGS. 5 to 6, the hydraulic power generation apparatus 25 includes a generator 44 and a turbine runner 45 arranged between the suction port 42 and the discharge port 43 of the casing 41, and the generator 44 and the turbine runner 45 are connected to each other. The guide vanes 47 are provided on the upstream side of the water turbine runner 45.

以下、上記した構成における作用を説明する。上流の配水槽22から管路24へ流れる配水は、上流の配水槽22の水位が一定である場合に所定の落差で流下し、流量計26、水車入口弁27を通って水力発電装置25に流入し、下流の配水槽23に流れ込む。   Hereinafter, the operation of the above-described configuration will be described. The water distribution flowing from the upstream water distribution tank 22 to the pipeline 24 flows down at a predetermined drop when the water level in the upstream water distribution tank 22 is constant, passes through the flow meter 26 and the water turbine inlet valve 27 to the hydroelectric generator 25. It flows in and flows into the downstream water distribution tank 23.

水力発電装置25では、吸込口42からケーシング41に流入した配水がガイドベーン47に案内されて水車ランナ45に作用し、水車ランナ45が回転することでシャフト46を介して発電機44が一体に同期回転する。発電機44で発電した電力は回生インバータ30を通して電力系統31へ送電する。   In the hydroelectric power generation device 25, the water distribution flowing into the casing 41 from the suction port 42 is guided to the guide vane 47 and acts on the water turbine runner 45, and the water turbine runner 45 rotates so that the generator 44 is integrated via the shaft 46. Synchronously rotate. The electric power generated by the generator 44 is transmitted to the electric power system 31 through the regenerative inverter 30.

制御装置32は、別途に遠隔操作等によって与える目標値に制御量である管路を流れる水の流量もしくは圧力を一致させるために、流量計26、一次圧力計28、二次圧力計29の計測値を指標にして、水車入口弁27の開度制御、および回生インバータ30を介した水力発電装置25の水車回転数制御とを個別に独立して行って水力発電装置25の下流側管路における水の制御量を目標値に制御する。   The control device 32 measures the flow meter 26, the primary pressure gauge 28, and the secondary pressure gauge 29 in order to make the flow rate or pressure of the water flowing through the pipe line, which is the control amount, coincide with the target value separately given by remote operation or the like. Using the value as an index, the opening control of the turbine inlet valve 27 and the turbine rotation speed control of the hydroelectric generator 25 via the regenerative inverter 30 are performed independently and in the downstream line of the hydroelectric generator 25. Control the amount of water control to the target value.

この制御に関し、流量を制御する例について以下に詳説する。本明細書におけるNs(比速度)は以下の定義によるものである。
Ns=N・Q0.5/H0.75 N:回転速度(min−1)、Q:流量(m/min)、H:有効落差(m)
図7は、水力発電装置25の水車ランナ45のNs(比速度)が低い場合(Ns<400)における水車特性曲線を示すものである。水車特性曲線L1、L2、L3はそれぞれ水車回転数が定格回転数Nの100%、90%、80%である時の有効落差Hと水車通過流量Qとの相関を示している。発電特性線M1、M2、M3は各水車特性曲線L1、L2、L3に相対しており、各水車回転数における水車通過流量Qの変化に伴う発電電力(kW)の変化を示している。
Regarding this control, an example of controlling the flow rate will be described in detail below. Ns (specific velocity) in this specification is based on the following definition.
Ns = N · Q 0.5 / H 0.75 N: rotational speed (min −1 ), Q: flow rate (m 3 / min), H: effective head (m)
FIG. 7 shows a turbine characteristic curve when Ns (specific speed) of the turbine runner 45 of the hydroelectric generator 25 is low (Ns <400). The turbine characteristic curves L1, L2, and L3 show the correlation between the effective head H and the turbine flow rate Q when the turbine speed is 100%, 90%, and 80% of the rated speed N, respectively. The power generation characteristic lines M1, M2, and M3 are relative to the respective water turbine characteristic curves L1, L2, and L3, and indicate changes in the generated power (kW) that accompany changes in the water turbine passage flow rate Q at the respective turbine speeds.

予め、近接する水車回転数の水車特性曲線の相互間において、双方の水車特性曲線にそれぞれ相対する発電特性線での発電電力が同等となる水車通過流量を変更点として求める。例えば水車特性曲線L1とL2においては、発電特性線M1とM2が交差する点の水車通過流量Q2が変更点である。   In advance, the flow rate through the turbine is determined as a change point between the turbine characteristics curves of the adjacent turbine rotation speeds so that the generated power on the power generation characteristic lines corresponding to the two turbine characteristics curves is equivalent. For example, in the turbine characteristic curves L1 and L2, the turbine flow rate Q2 at the point where the power generation characteristic lines M1 and M2 intersect is a change point.

同様にして、この変更点を全ての水車回転数の水車特性曲線において求める。本実施の形態では水車特性曲線L2とL3において、発電特性線M2とM3が交差する点の水車通過流量Q3を求める。また、本実施の形態では便宜的に水車特性曲線L3を最も低い水車回転数として水車特性曲線L3の下端に相当する水車通過流量Q4を最後の変更点とし、水車特性曲線L1の定格運転における設計点に相当する水車通過流量Q1を最初の変更点として説明する。   Similarly, this change point is obtained in the turbine characteristic curve of all turbine rotation speeds. In the present embodiment, the turbine flow rate Q3 at the point where the power generation characteristic lines M2 and M3 intersect in the turbine characteristic curves L2 and L3 is obtained. In the present embodiment, for the sake of convenience, the turbine wheel characteristic curve L3 is set to the lowest rotation speed, and the turbine flow rate Q4 corresponding to the lower end of the turbine wheel characteristic curve L3 is set as the last change point. The water wheel passage flow rate Q1 corresponding to the point will be described as the first change point.

そして、求めた各変更点Q1、Q2、Q3、Q4の間を制御区間Q1−Q2、Q2−Q3、Q3−Q4に設定する。
流量の制御に際して水車入口弁27を全閉した状態から運転を開始する場合には、例えば図10に示すように、制御装置32は水力発電装置25に水車起動を指示し(S1)、水車入口弁27に入口弁開指令を出し(S2)、水力発電装置25の初期運転制御を開始する(S3)。
Then, the intervals between the obtained change points Q1, Q2, Q3, and Q4 are set as control sections Q1-Q2, Q2-Q3, and Q3-Q4.
When the operation is started from the state in which the water turbine inlet valve 27 is fully closed when the flow rate is controlled, the control device 32 instructs the hydraulic power generation device 25 to start the water turbine (S1), for example, as shown in FIG. An inlet valve opening command is issued to the valve 27 (S2), and initial operation control of the hydroelectric generator 25 is started (S3).

水車入口弁27は入口弁開指令を受けると弁開度を除々に増加させる。各弁開度における有効落差と流量との関係(管路抵抗曲線)を図11のT1、T2、T3として示す。この間の初期運転制御おいて水力発電装置25は発電を行わずに水車回転数を増加させ、水車回転数が定格水車回転数の80%に達するまで初期運転を継続する(S4)。そして、水車回転数が定格水車回転数の80%に達し、水車入口弁27の弁開度が弁特性曲線T3に示す弁開度に達した時点で、水車特性曲線L3と弁特性曲線T3との交点に相当する有効落差と流量において初期運転制御を停止するとともに、通常運転制御を開始する(S5)。   The water turbine inlet valve 27 gradually increases the valve opening upon receipt of the inlet valve opening command. The relationship (pipe resistance curve) between the effective head and the flow rate at each valve opening is shown as T1, T2, and T3 in FIG. During the initial operation control during this time, the hydroelectric generator 25 increases the turbine speed without generating power, and continues the initial operation until the turbine speed reaches 80% of the rated turbine speed (S4). Then, when the turbine rotation speed reaches 80% of the rated turbine rotation speed and the valve opening of the turbine inlet valve 27 reaches the valve opening indicated by the valve characteristic curve T3, the water turbine characteristic curve L3 and the valve characteristic curve T3 The initial operation control is stopped and the normal operation control is started at the effective head and the flow rate corresponding to the intersection (S5).

通常運転において制御装置32は、流量計26の測定値を指標として水車入口弁27の開度制御を行って流量を流量目標値にフィードバック制御しつつ、開度制御とは別途に水車回転数制御を行い、図7において一点鎖線で示す軌跡に沿った水車特性曲線に基づいて水車回転数を制御する。   In normal operation, the control device 32 controls the opening of the water turbine inlet valve 27 using the measurement value of the flow meter 26 as an index to feedback control the flow rate to the flow rate target value, while controlling the turbine speed separately from the opening control. Then, the turbine speed is controlled based on the turbine characteristic curve along the locus indicated by the alternate long and short dash line in FIG.

制御装置32は水車入口弁27の開度制御に伴って変化する水の流量現在値を流量計26で検出し、流量現在値が属する制御区間の水車回転数を選択し、選択した水車回転数で水車を回転させる。   The control device 32 detects the current flow rate of the water, which changes with the opening degree control of the turbine inlet valve 27, by the flow meter 26, selects the turbine speed of the control section to which the current flow value belongs, and selects the selected turbine speed. Rotate the water wheel.

例えば流量現在値が制御区間Q1−Q2に属する場合には100%Nの水車回転数を選択し、流量現在値が制御区間Q2−Q3に属する場合には90%Nの水車回転数を選択し、流量現在値が制御区間Q3−Q4に属する場合には80%Nの水車回転数を選択する。この選択によって水車回転数が、流量現在値の変化に追従して流量現在値において発電電力を最大とするのに必要なものとなる。   For example, when the current flow rate value belongs to the control section Q1-Q2, 100% N turbine speed is selected, and when the current flow value belongs to the control section Q2-Q3, 90% N turbine speed is selected. When the current flow rate value belongs to the control section Q3-Q4, the turbine speed of 80% N is selected. By this selection, the turbine speed is required to maximize the generated power at the current flow value following the change in the current flow value.

制御装置32は選択した水車回転数、例えば90%Nの水車回転数で水車ランナ45が回転するように、回生インバータ30に回転速度指令を与え、回生インバータ30は水車ランナ45および発電機44を90%Nで回転させる。   The control device 32 gives a rotational speed command to the regenerative inverter 30 so that the water turbine runner 45 rotates at a selected water turbine speed, for example, a water turbine speed of 90% N. The regenerative inverter 30 causes the water turbine runner 45 and the generator 44 to rotate. Rotate at 90% N.

上述の制御によって、流量を流量目標値に制御するとともに、流量目標値において発電電力が最大となる。
例えば流量目標値がQ2からQ3の間である場合に、水車ランナ45が100%Nの水車回転数で回転すると発電電力は、水車ランナ45が90%Nの水車回転数で回転する場合よりも低くなる。したがって、流量目標値がQ2からQ3の間である場合には水車ランナ45を90%Nの水車回転数で回転させることで流量目標値において発電電力を最大にできる。
With the above-described control, the flow rate is controlled to the flow rate target value, and the generated power becomes maximum at the flow rate target value.
For example, when the flow rate target value is between Q2 and Q3, when the turbine runner 45 rotates at a turbine speed of 100% N, the generated power is larger than when the turbine runner 45 rotates at a turbine speed of 90% N. Lower. Therefore, when the flow rate target value is between Q2 and Q3, the generated power can be maximized at the flow rate target value by rotating the turbine runner 45 at a turbine speed of 90% N.

図8は、水力発電装置25の水車ランナ45のNs(比速度)が高い場合(Ns>400)における水車特性曲線を示すものである。この場合にも先の実施の形態と同様にして、変更点を全ての水車回転数の水車特性曲線において求め、求めた各変更点Q1、Q2、Q3、Q4の間を制御区間Q1−Q2、Q2−Q3、Q3−Q4に設定する。   FIG. 8 shows a turbine characteristic curve when Ns (specific speed) of the turbine runner 45 of the hydroelectric generator 25 is high (Ns> 400). Also in this case, similarly to the previous embodiment, the change points are obtained in the turbine characteristic curves of all the turbine rotation speeds, and the intervals between the obtained change points Q1, Q2, Q3, Q4 are the control sections Q1-Q2, Set to Q2-Q3, Q3-Q4.

そして、流量の制御において、制御装置32は水車入口弁27の開度制御を行い、流量計26の測定値を指標として水の流量を目標流量値にフィードバック制御しつつ、開度制御とは別途に水車回転数制御を行う。水車回転数制御では水の流量の流量目標値が属する制御区間に相対する特定水車特性の水車回転数を選択し、選択した水車回転数で水車ランナ45が回転するように、回生インバータ30で水車ランナ45および発電機44を回転させる。   In the control of the flow rate, the control device 32 controls the opening of the water turbine inlet valve 27 and feedback controls the water flow rate to the target flow rate using the measurement value of the flow meter 26 as an index, separately from the opening control. The turbine speed is controlled. In the turbine speed control, the turbine speed of a specific turbine characteristic relative to the control section to which the target flow rate of the water flow belongs is selected, and the turbine turbine 45 is rotated by the regenerative inverter 30 so that the turbine runner 45 rotates at the selected turbine speed. The runner 45 and the generator 44 are rotated.

図9は、水力発電装置25の水車ランナ45のNs(比速度)がNs=400である水車特性曲線を示すものである。この場合には水車特性曲線L1、L2、L3がほぼ重なるようになるが、同様に制御できる。   FIG. 9 shows a turbine characteristic curve where Ns (specific speed) of the turbine runner 45 of the hydroelectric generator 25 is Ns = 400. In this case, the turbine characteristic curves L1, L2, and L3 are almost overlapped, but can be controlled in the same manner.

次に、圧力を制御する例について以下に詳説する。図12は、水力発電装置25の水車ランナ45のNs(比速度)が高い場合(Ns>400)における水車特性曲線を示すものである。水車特性曲線L1、L2、L3はそれぞれ水車回転数が定格回転数Nの100%、90%、80%である時の有効落差Hと水車通過流量Qとの相関を示している。発電特性線M1、M2、M3は各水車特性曲線L1、L2、L3に相対しており、各水車回転数における水車通過流量Qの変化に伴う発電電力(kW)の変化を示している。   Next, an example of controlling the pressure will be described in detail below. FIG. 12 shows a turbine characteristic curve when Ns (specific speed) of the turbine runner 45 of the hydroelectric generator 25 is high (Ns> 400). The turbine characteristic curves L1, L2, and L3 show the correlation between the effective head H and the turbine flow rate Q when the turbine speed is 100%, 90%, and 80% of the rated speed N, respectively. The power generation characteristic lines M1, M2, and M3 are relative to the respective water turbine characteristic curves L1, L2, and L3, and indicate changes in the generated power (kW) that accompany changes in the water turbine passage flow rate Q at the respective turbine speeds.

予め、近接する水車回転数の水車特性曲線の相互間において、双方の水車特性曲線にそれぞれ相対する発電特性線での発電電力が同等となる水車通過流量を求める。例えば水車特性曲線L1とL2においては、発電特性線M1とM2が交差する点の水車通過流量Q2である。   In advance, between the turbine characteristic curves of adjacent turbine rotation speeds, the turbine passage flow rate at which the generated power on the power generation characteristic lines respectively corresponding to the two turbine characteristic curves is equal is obtained. For example, in the water turbine characteristic curves L1 and L2, it is the water turbine passage flow rate Q2 at the point where the power generation characteristic lines M1 and M2 intersect.

同様にして、全ての水車回転数の水車特性曲線において発電電力が同等となる水車通過流量を求める。本実施の形態では水車特性曲線L2とL3において、発電特性線M2とM3が交差する点の水車通過流量Q3を求める。また、本実施の形態では便宜的に水車特性曲線L3を最も低い水車回転数として水車特性曲線L3の下端に相当する水車通過流量Q4を最後の水車通過流量値とし、水車特性曲線L1の定格運転における設計点に相当する水車通過流量Q1を最初の水車通過流量値として説明する。   Similarly, the water turbine passage flow rate at which the generated power is equivalent is obtained in the water turbine characteristic curves of all the turbine rotation speeds. In the present embodiment, the turbine flow rate Q3 at the point where the power generation characteristic lines M2 and M3 intersect in the turbine characteristic curves L2 and L3 is obtained. Further, in this embodiment, for the sake of convenience, the turbine operation characteristic curve L3 is set to the lowest turbine rotation speed, the turbine flow rate Q4 corresponding to the lower end of the turbine characteristic curve L3 is set to the last turbine flow rate value, and the rated operation of the turbine characteristic curve L1 is performed. The water wheel passage flow rate Q1 corresponding to the design point in will be described as the first water wheel passage flow rate value.

そして、求めた各水車通過流量Q1、Q2、Q3、Q4に対応する水車特性曲線L1、L2、L3上の点における有効落差を変更点H1、H2、H2’、H3、H3’、H4として求め、変更点H1とH2の間、H2’とH3の間、H3’とH4の間を制御区間H1−H2、H2’−H3、H3’−H4に設定する。   Then, the effective heads at the points on the water turbine characteristic curves L1, L2, and L3 corresponding to the obtained water turbine flow rates Q1, Q2, Q3, and Q4 are obtained as the change points H1, H2, H2 ′, H3, H3 ′, and H4. The control points H1-H2, H2′-H3, and H3′-H4 are set between the change points H1 and H2, between H2 ′ and H3, and between H3 ′ and H4.

図13は、水力発電装置25の水車ランナ45のNs(比速度)が低い場合(Ns<400)における水車特性曲線を示すものである。この場合にも先のものと同様にして、変更点を全ての水車回転数の水車特性曲線において求め、制御区間を設定する。本実施の形態では図12に示すものにおいて説明する。   FIG. 13 shows a turbine characteristic curve when Ns (specific speed) of the turbine runner 45 of the hydroelectric generator 25 is low (Ns <400). Also in this case, in the same manner as the previous one, the change points are obtained in the turbine characteristic curves of all the turbine rotation speeds, and the control section is set. This embodiment will be described with reference to FIG.

制御装置32は、図12において一点鎖線で示す軌跡に沿った水車特性曲線に基づいて水車回転数を制御する。
圧力の制御に際して制御装置32は、水車入口弁27の開閉制御によって水力発電装置25の二次圧力を圧力目標値にフィードバック制御する。つまり、図14に示すように、二次圧設定値Aを入力し(S11)、二次圧力計29で測定する二次圧現在値Bを入力し(S12)、双方の値を比較して偏差(A−B)を求める(S13)。そして、偏差がプラスである場合には水車入口弁27を開操作して流量を増加させて二次圧力を圧力目標値に近づけ(S14)、偏差がマイナスである場合には水車入口弁27を閉操作して流量を減少させて二次圧力を圧力目標値に近づけ(S15)、二次圧力計29で測定する(S16)二次圧現在値が圧力目標値に達するまで上述の操作を行う。
The control device 32 controls the turbine speed based on the turbine characteristic curve along the locus indicated by the alternate long and short dash line in FIG.
When controlling the pressure, the control device 32 feedback-controls the secondary pressure of the hydroelectric power generation device 25 to the pressure target value by opening / closing control of the water turbine inlet valve 27. That is, as shown in FIG. 14, the secondary pressure set value A is input (S11), the secondary pressure current value B measured by the secondary pressure gauge 29 is input (S12), and both values are compared. Deviation (AB) is obtained (S13). If the deviation is positive, the turbine inlet valve 27 is opened to increase the flow rate to bring the secondary pressure closer to the pressure target value (S14). If the deviation is negative, the turbine inlet valve 27 is turned off. The secondary pressure is made close to the pressure target value by closing the operation to reduce the flow rate (S15), and measured by the secondary pressure gauge 29 (S16). The above operation is performed until the current value of the secondary pressure reaches the pressure target value. .

この間に制御装置32は水車回転数制御を別途に行う。例えば、制御装置32は一次圧力計28で測定する一次圧力と二次圧力計29で測定する二次圧力との差、つまり有効落差の現在値Hを求める。   During this time, the control device 32 separately performs the turbine speed control. For example, the control device 32 obtains the difference between the primary pressure measured by the primary pressure gauge 28 and the secondary pressure measured by the secondary pressure gauge 29, that is, the current value H of the effective head.

次に、図15に示すように、現在の水車回転数を確認し(S21、S22、S23)、各水車回転数の制御区間に有効落差現在値Hが属するか否かを判定し(S24、S25、S26、S27、S28、S29)、停止を含む水車回転数の選択を行う(S30、S31、S32、S33、S34、S35)。   Next, as shown in FIG. 15, the current turbine speed is confirmed (S21, S22, S23), and it is determined whether the effective head current value H belongs to the control section of each turbine speed (S24, S25, S26, S27, S28, S29), and the number of rotations of the water turbine including the stop is selected (S30, S31, S32, S33, S34, S35).

例えば、現在90%で回転中に、水車入口弁27の開閉制御によって水力発電装置25の二次圧現在値が変化し、有効落差現在値HがH2’<H<H1に上昇する場合には、制御装置32はS22で回転数が90%であることを確認し、S25およびS28で有効落差現在値Hが水車回転数90%Nの制御区間に相当しないことを確認し、結果として水車回転数100%を選択し、有効落差現在値Hにおいて発電電力を最大とするのに必要な水車回転数となる。   For example, when the current value of the secondary pressure of the hydroelectric generator 25 is changed by the opening / closing control of the turbine inlet valve 27 and the effective head current value H rises to H2 ′ <H <H1 during the current 90% rotation. The control device 32 confirms that the rotational speed is 90% in S22, and confirms that the effective head current value H does not correspond to the control section of the turbine rotational speed 90% N in S25 and S28. A few hundred percent is selected, and the turbine rotation speed necessary to maximize the generated power at the effective head current value H is obtained.

制御装置32は選択した水車回転数、例えば100%Nの水車回転数で水車ランナ45が回転するように、回生インバータ30に回転速度指令を与え、回生インバータ30は水車ランナ45および発電機44を100%Nで回転させる。   The control device 32 gives a rotational speed command to the regenerative inverter 30 so that the water turbine runner 45 rotates at a selected water turbine speed, for example, 100% N, and the regenerative inverter 30 causes the water turbine runner 45 and the generator 44 to rotate. Rotate at 100% N.

圧力を制御する場合においても管路に流量計が設けられていれば、制御装置32による水車回転数制御は、流量計26の測定値に基づいて行うことも可能である。この場合には流量によって制御区間を設定する。水の圧力の制御に際して制御装置32が水車入口弁27の開閉制御によって水力発電装置25の二次圧力を圧力目標値にフィードバック制御すると、この圧力制御によって水の流量が変化する。制御装置32は流量計26で測定する流量現在値に応じて水車回転数を制御する。   Even in the case of controlling the pressure, if a flow meter is provided in the pipe line, the turbine rotation speed control by the control device 32 can be performed based on the measured value of the flow meter 26. In this case, the control section is set according to the flow rate. When the control device 32 feedback-controls the secondary pressure of the hydroelectric power generation device 25 to the target pressure value by controlling the opening and closing of the water turbine inlet valve 27 when controlling the water pressure, the flow rate of water is changed by this pressure control. The control device 32 controls the rotation speed of the turbine according to the current flow rate value measured by the flow meter 26.

図16に示すように、現在の水車回転数を確認し(S41、S42、S43)、各水車回転数の制御区間に流量現在値Qが属するか否かを判定し(S44、S45、S46、S47、S48、S49)、停止を含む水車回転数の選択を行う(S50、S51、S52、S53、S54、S55)。   As shown in FIG. 16, the current turbine speed is confirmed (S41, S42, S43), and it is determined whether the current flow rate value Q belongs to the control section of each turbine speed (S44, S45, S46, (S47, S48, S49), the number of rotations of the turbine including the stop is selected (S50, S51, S52, S53, S54, S55).

例えば、現在90%で回転中に、水車入口弁27の開閉制御によって水力発電装置25の有効落差が変化し、流量現在値QがQ2<Q<Q1に上昇する場合には、制御装置32はS42で回転数が90%であることを確認し、S45およびS48で流量現在値Qが水車回転数90%Nの制御区間に相当しないことを確認し、結果として水車回転数100%を選択し、流量現在値Qにおいて発電電力を最大とするのに必要な水車回転数となる。制御装置32は選択した水車回転数、例えば100%Nの水車回転数で水車ランナ45が回転するように、回生インバータ30に回転速度指令を与え、回生インバータ30は水車ランナ45および発電機44を100%Nで回転させる。   For example, when the effective head of the hydroelectric generator 25 changes due to the opening / closing control of the turbine inlet valve 27 and the current flow rate value Q rises to Q2 <Q <Q1, during the current 90% rotation, the control device 32 In S42, it is confirmed that the rotational speed is 90%, and in S45 and S48, it is confirmed that the current flow rate value Q does not correspond to the control section of the turbine speed 90% N. As a result, the turbine speed 100% is selected. The turbine rotational speed required to maximize the generated power at the current flow rate value Q is obtained. The control device 32 gives a rotational speed command to the regenerative inverter 30 so that the water turbine runner 45 rotates at a selected water turbine speed, for example, 100% N, and the regenerative inverter 30 causes the water turbine runner 45 and the generator 44 to rotate. Rotate at 100% N.

前述の制御についての説明では、3本の水車特性曲線を用いた例を示したが、用いる曲線の数はこれに限定されるものではない。
また複数の水車特性曲線と発電特性曲線から水車流量と最大発電電力となる回転数との関係、または水車有効落差と最大発電電力となる回転数との関係を示す関数を求め、水車回転数の制御を行うこともできる。
In the above description of the control, an example using three water turbine characteristic curves has been shown, but the number of curves to be used is not limited to this.
In addition, a function indicating the relationship between the turbine flow rate and the rotation speed at which the maximum generated power is obtained from a plurality of turbine characteristic curves and the power generation characteristic curve, or the relationship between the effective drop of the turbine and the rotation speed at which the maximum generated power is obtained, is obtained. Control can also be performed.

具体的な関数の求め方の例としては、図7において、
80%Nの代表点として(Q+Q)/2、
90%Nの代表点として(Q+Q)/2、
100%Nの代表点として(Q+Q)/2を選定し、
代表点(Q+Q)/2から代表点(Q+Q)/2の区間におけるQとNの近似式を最小二乗法等で求め、それ以外のQから代表点(Q+Q)/2の区間は80%Nとし、代表点(Q+Q)/2からQ1の区間は100%Nとする近似式を、求める関数とする方法がある。
As an example of how to obtain a specific function, in FIG.
As a representative point of 80% N, (Q 3 + Q 4 ) / 2,
As a representative point of 90% N, (Q 3 + Q 2 ) / 2,
Select (Q 2 + Q 1 ) / 2 as a representative point of 100% N,
An approximate expression of Q and N in the section from the representative point (Q 3 + Q 4 ) / 2 to the representative point (Q 2 + Q 1 ) / 2 is obtained by the least square method or the like, and the representative point (Q 3 + Q from other Q 4 is obtained. 4 ) There is a method in which an approximate expression in which the interval of 2) / 2 is 80% N and the interval from the representative point (Q 2 + Q 1 ) / 2 to Q1 is 100% N is a function to be obtained.

また、図7において、80%Nの代表点をQ、90%Nの代表点をQ、100%Nの代表点をQとし、QからQにおけるQとNの関係の近似式を最小二乗法で求め、それ以外のQからQの区間は100%Nとしても良い。 In FIG. 7, the representative point of 80% N is Q 4 , the representative point of 90% N is Q 3 , the representative point of 100% N is Q 2, and the relationship between Q and N in Q 4 to Q 2 is approximated. The equation may be obtained by the method of least squares, and the other interval from Q 2 to Q 1 may be 100% N.

このように、関数としては上記のような近似式を用いれば良く、その近似式を求めるための代表点の選び方、および近似式を求めるのに使用する水車特性曲線の数は、制御の精度や目的を考慮して任意に選定すればよい。また、有効落差Hと水車回転数Nの関係を示す関数も同様に求めることができる。   As described above, the approximate expression as described above may be used as a function. The method of selecting the representative points for obtaining the approximate expression and the number of turbine characteristic curves used for obtaining the approximate expression are determined according to the accuracy of control, It may be arbitrarily selected in consideration of the purpose. Also, a function indicating the relationship between the effective head H and the turbine speed N can be obtained in the same manner.

本発明の実施の形態において落差を利用する配水システムを示す模式図The schematic diagram which shows the water distribution system using a head in embodiment of this invention 本発明の実施の形態においてポンプ圧送を利用する配水システムを示す模式図The schematic diagram which shows the water distribution system using pump pumping in embodiment of this invention 本発明の実施の形態において一つの制御装置による構成を示すブロック図The block diagram which shows the structure by one control apparatus in embodiment of this invention 本発明の実施の形態において二つの制御装置による構成を示すブロック図The block diagram which shows the structure by two control apparatuses in embodiment of this invention 本発明の実施の形態における落差を利用する導水・送水・配水管路網を示す断面図Sectional drawing which shows the water conveyance, water supply, and water pipe network which utilizes the head in embodiment of this invention 本発明の実施の形態における水力発電装置を示す断面図Sectional drawing which shows the hydroelectric generator in embodiment of this invention 本発明の実施の形態におけるNs<400の場合の水車特性曲線および発電特性線を示すグラフ図The graph which shows the water turbine characteristic curve and power generation characteristic line in the case of Ns <400 in embodiment of this invention 本発明の実施の形態におけるNs>400の場合の水車特性曲線および発電特性線を示すグラフ図The graph which shows the turbine characteristic curve and power generation characteristic line in the case of Ns> 400 in embodiment of this invention 本発明の実施の形態におけるNs=400の場合の水車特性曲線および発電特性線を示すグラフ図The graph which shows the turbine characteristic curve and power generation characteristic line in the case of Ns = 400 in embodiment of this invention 本発明の実施の形態におけるスタート手順を示すフローチャート図The flowchart figure which shows the start procedure in embodiment of this invention 本発明の実施の形態における初期運転制御を説明するための水車特性曲線を示すグラフ図The graph which shows the water turbine characteristic curve for demonstrating the initial driving | operation control in embodiment of this invention 本発明の実施の形態におけるNs>400の場合の水車特性曲線および発電特性線を示すグラフ図The graph which shows the turbine characteristic curve and power generation characteristic line in the case of Ns> 400 in embodiment of this invention 本発明の実施の形態におけるNs<400の場合の水車特性曲線および発電特性線を示すグラフ図The graph which shows the water turbine characteristic curve and power generation characteristic line in the case of Ns <400 in embodiment of this invention 本発明の実施の形態における水車入口弁操作による圧力制御を説明するためのフローチャート図The flowchart figure for demonstrating the pressure control by the turbine inlet valve operation in embodiment of this invention 本発明の実施の形態における有効落差を指標とする水車回転数制御を説明するためのフローチャート図The flowchart figure for demonstrating the turbine speed control which uses the effective head in the embodiment of this invention as a parameter | index. 本発明の実施の形態における流量を指標とする水車回転数制御を説明するためのフローチャート図The flowchart figure for demonstrating the turbine speed control which makes flow volume the parameter | index in embodiment of this invention. 従来の導水・送水・配水管路網を示す模式図Schematic diagram showing a conventional water conveyance / water supply / distribution pipeline network 従来の発電装置におけるNsが高い水車特性曲線を示すグラフ図The graph which shows the turbine characteristic curve with high Ns in the conventional power generation device 従来の発電装置におけるNsが低い水車特性曲線を示すグラフ図The graph which shows the turbine characteristic curve with low Ns in the conventional power generation device

符号の説明Explanation of symbols

21 導水・送水・配水管路網
22、23 配水槽
24 管路
25 水力発電装置
26 流量計
27 水車入口弁
28 一次圧力計
29 二次圧力計
30 回生インバータ
31 電力系統
32 制御装置(PC)
41 ケーシング
42 吸込口
43 吐出口
44 発電機
45 水車ランナ
46 シャフト
47 ガイドベーン
21 Water Transfer / Water Supply / Distribution Pipe Network 22, 23 Water Distribution Tank 24 Pipe 25 Hydroelectric Generator 26 Flow Meter 27 Water Wheel Inlet Valve 28 Primary Pressure Gauge 29 Secondary Pressure Gauge 30 Regenerative Inverter 31 Electric Power System 32 Control Device (PC)
41 Casing 42 Suction port 43 Discharge port 44 Generator 45 Turbine runner 46 Shaft 47 Guide vane

Claims (6)

導水・送水・配水管路網において管路を流れる水の流量もしくは圧力を制御量とし、制御に伴う余剰圧力を利用して水力発電を行う発電方法であって、水力発電装置の上流側に設置した入口弁の開度制御と水力発電装置の水車回転数制御とをそれぞれ独立して行って水力発電装置の下流側管路における水の制御量を目標値に制御することを特徴とする余剰圧力利用マイクロ水力発電方法。 This is a power generation method that uses the surplus pressure associated with the control as the control amount and the flow rate or pressure of the water flowing through the pipeline in the water conveyance / water supply / distribution pipeline network, and is installed upstream of the hydroelectric generator. The surplus pressure is characterized in that the control amount of water in the downstream pipe line of the hydroelectric generator is controlled to a target value by independently performing the opening control of the inlet valve and the turbine speed control of the hydroelectric generator. Use micro hydro power generation method. 入口弁の開度制御により水力発電装置の下流側管路における水の制御量を目標値にフィードバック制御しつつ、水力発電装置の水車回転数制御を行うものであって、水力発電装置の水車回転数制御に際し、異なる水車回転数毎に存在する有効落差と水車流量との相関を示す水車特性と、各水車特性毎に相対して存在する発電特性とにおいて、入口弁の開度制御に伴って変化する水の制御量の現在値において発電電力を最大とするのに必要な水車回転数を選択し、選択した水車回転数で水車を回転させることを特徴とする請求項1に記載の余剰圧力利用マイクロ水力発電方法。 While controlling the amount of water control in the downstream pipeline of the hydroelectric generator to the target value by controlling the opening of the inlet valve, the turbine speed of the hydroelectric generator is controlled. In the number control, the turbine characteristics indicating the correlation between the effective head and the turbine flow rate that exist at different turbine rotation speeds and the power generation characteristics that exist relative to each turbine characteristic are accompanied by the opening control of the inlet valve. 2. The surplus pressure according to claim 1, wherein a turbine wheel speed required to maximize the generated power is selected at a current value of a variable control amount of water, and the turbine wheel is rotated at the selected turbine wheel speed. Use micro hydro power generation method. 水力発電装置の水車回転数制御に際し、複数の特定水車回転数の水車特性と当該水車特性に相対する発電特性に基づいて水車回転数を選択するものであり、近接する水車回転数の水車特性の相互間において、双方の水車特性にそれぞれ相対する発電特性での発電電力が同等となる水車流量を変更点として求め、この変更点を全ての特定水車回転数の水車特性において求めて各変更点間を制御区間に設定し、入口弁の開度制御に伴って変化する水の流量現在値を検出し、流量現在値が属する制御区間の水車回転数を選択し、選択した水車回転数で水車を回転させることを特徴とする請求項2に記載の余剰圧力利用マイクロ水力発電方法。 When controlling the turbine speed of the hydroelectric generator, the turbine speed is selected based on the turbine characteristics of a plurality of specific turbine speeds and the power generation characteristics relative to the turbine characteristics. The turbine flow rate at which the generated power with the power generation characteristics relative to the two turbine characteristics is equivalent to each other is determined as a change point, and this change point is determined in the turbine characteristics at all specific turbine rotation speeds. To the control zone, detect the current flow rate of water that changes with the opening control of the inlet valve, select the turbine speed of the control zone to which the current flow rate value belongs, and set the turbine at the selected turbine speed. The surplus pressure-utilizing micro hydroelectric power generation method according to claim 2, wherein the method is rotated. 水力発電装置の水車回転数制御に際し、複数の特定水車回転数の水車特性と当該水車特性に相対する発電特性に基づいて水車回転数を選択するものであり、近接する水車回転数の水車特性の相互間において、双方の水車特性にそれぞれ相対する発電特性での発電電力が同等となる有効落差を変更点として求め、この変更点を全ての特定水車回転数の水車特性において求めて各変更点間を制御区間に設定し、入口弁の開度制御に伴って変化する水力発電装置の一次側の圧力と二次側の圧力との差圧である有効落差現在値を検出し、この有効落差現在値の属する制御区間の回転数であって有効落差現在値において発電電力が最大となる水車回転数を選択し、選択した水車回転数で水車を回転させることを特徴とする請求項2に記載の余剰圧力利用マイクロ水力発電方法。 When controlling the turbine speed of the hydroelectric generator, the turbine speed is selected based on the turbine characteristics of a plurality of specific turbine speeds and the power generation characteristics relative to the turbine characteristics. The difference between the two turbines is determined as the effective drop where the generated power with the power generation characteristics opposite to each other is the same, and this change is determined in the turbine characteristics at all specific turbine rotation speeds. Is set as the control section, and the effective head current value that is the differential pressure between the primary pressure and the secondary pressure of the hydroelectric generator that changes with the opening control of the inlet valve is detected. The rotation speed of the control section to which the value belongs and the turbine rotation speed at which the generated power becomes the maximum at the effective head current value is selected, and the turbine is rotated at the selected turbine rotation speed. Use of surplus pressure Micro hydroelectric power generation method. 入口弁の開度制御により水力発電装置の下流側管路における水の制御量を目標値にフィードバック制御しつつ、水力発電装置の水車回転数制御を行うものであって、水力発電装置の水車回転数制御に際し、複数の特定水車回転数の水車特性と当該水車特性に相対する発電特性に基づいて、水車流量と最大発電電力となる回転数の関係、または水車有効落差と最大発電電力となる回転数の関係のいずれかを示す関数を求め、該関数を用いて、入口弁の開度制御に伴って変化する水の制御量の現在値において発電電力を最大とするのに必要な水車回転数を選択し、選択した水車回転数で水車を回転させることを特徴とする請求項2に記載の余剰圧力利用マイクロ水力発電方法。 While controlling the amount of water control in the downstream pipeline of the hydroelectric generator to the target value by controlling the opening of the inlet valve, the turbine speed of the hydroelectric generator is controlled. In the number control, based on the turbine characteristics of a plurality of specific turbine rotation speeds and the power generation characteristics relative to the turbine characteristics, the relationship between the turbine flow rate and the rotation speed that is the maximum generated power, or the rotation that is the effective drop of the turbine and the maximum generation power The number of rotations of the turbine required to maximize the generated power at the current value of the controlled amount of water that changes with the opening degree control of the inlet valve is obtained using a function that indicates one of the relations of the numbers. The surplus pressure-utilizing micro hydroelectric power generation method according to claim 2, wherein the turbine is rotated at the selected turbine rotation speed. 導水・送水・配水管路網の管路に介装する入口弁と、入口弁の下流の管路に介装する水力発電装置と、入口弁の開度を制御して制御量をなす管路を流れる水の流量もしくは圧力を目標値に制御する開度制御手段と、制御量の現在値を指標として水力発電装置の水車回転数を制御する水車回転数制御手段とを備え、開度制御手段は、入口弁の開度制御により水力発電装置の下流側管路における水の制御量を目標値にフィードバック制御し、水車回転数制御手段は、異なる水車回転数毎に存在する有効落差と水車流量との相関を示す水車特性と、各水車特性毎に相対して存在する発電特性とにおいて、制御量の現在値において発電電力を最大とするのに必要な水車回転数を選択することを特徴とする余剰圧力利用マイクロ水力発電装置。 Inlet valve intervening in the conduit of water conveyance / water supply / distribution pipeline network, hydroelectric generator intervening in the conduit downstream of the inlet valve, and conduit for controlling the opening degree of the inlet valve Opening degree control means for controlling the flow rate or pressure of the water flowing through the target value to the target value, and the turbine speed control means for controlling the turbine speed of the hydroelectric generator using the current value of the control amount as an index, the opening degree control means The feedback control of the water control amount in the downstream pipe of the hydroelectric generator is controlled to the target value by controlling the opening of the inlet valve, and the turbine rotation speed control means has an effective head and a turbine flow rate that exist at different turbine rotation speeds. The turbine rotation speed required to maximize the generated power at the current value of the control amount is selected between the turbine characteristics indicating the correlation with the power generation characteristics and the power generation characteristics that exist relative to each turbine characteristic. To use surplus pressure micro hydroelectric generator.
JP2004202519A 2004-07-09 2004-07-09 Micro-hydro power generation method and apparatus using surplus pressure Withdrawn JP2006022745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202519A JP2006022745A (en) 2004-07-09 2004-07-09 Micro-hydro power generation method and apparatus using surplus pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202519A JP2006022745A (en) 2004-07-09 2004-07-09 Micro-hydro power generation method and apparatus using surplus pressure

Publications (1)

Publication Number Publication Date
JP2006022745A true JP2006022745A (en) 2006-01-26

Family

ID=35796199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202519A Withdrawn JP2006022745A (en) 2004-07-09 2004-07-09 Micro-hydro power generation method and apparatus using surplus pressure

Country Status (1)

Country Link
JP (1) JP2006022745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133275A (en) * 2007-11-30 2009-06-18 Kurimoto Ltd Hydroelectric power system
US8231327B2 (en) 2010-05-16 2012-07-31 Davis Sr Albert Hamilton River high pressure energy conversion machine
KR101261033B1 (en) 2011-07-06 2013-05-06 김형진 A power generation machine structure using skyscraper waterdrop
JP2017080667A (en) * 2015-10-27 2017-05-18 住友重機械エンバイロメント株式会社 Agitation system and water treatment equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133275A (en) * 2007-11-30 2009-06-18 Kurimoto Ltd Hydroelectric power system
US8231327B2 (en) 2010-05-16 2012-07-31 Davis Sr Albert Hamilton River high pressure energy conversion machine
KR101261033B1 (en) 2011-07-06 2013-05-06 김형진 A power generation machine structure using skyscraper waterdrop
JP2017080667A (en) * 2015-10-27 2017-05-18 住友重機械エンバイロメント株式会社 Agitation system and water treatment equipment

Similar Documents

Publication Publication Date Title
CN110392781B (en) Method for operating a hydraulic machine and corresponding device for converting hydraulic energy into electrical energy
Derakhshan et al. Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds
AU2010207633B2 (en) Wave power capture system and method
JP5564043B2 (en) Method for controlling the gas flow rate between multiple gas streams
US20120326443A1 (en) Variable speed power generation from industrial fluid energy sources
JPWO2009078076A1 (en) Wind power generation system and operation control method thereof
CN103452824A (en) Fan and water pump energy saving system adopting minimum power algorithm based on flow-power curve
US10648301B2 (en) Method and system for pressure regulation of well fluid from a hydrocarbon well
JPWO2008090628A1 (en) Steam turbine power generation facility and operation method thereof
EP3387191A1 (en) Ship lock system for a canal
Mercier et al. Provision of primary frequency control with variable-speed pumped-storage hydropower
JP5041889B2 (en) Energy recovery system
JPH11287178A (en) Generating set
JP2006022745A (en) Micro-hydro power generation method and apparatus using surplus pressure
JP2002242813A (en) Power generation system
JP2002354895A (en) Hydro-poewr generator and method of operating and controlling it
CN101435572A (en) Water feed flow control and pressure compensating system of boiler
JP6763745B2 (en) Hydropower systems, hydropower methods and hydropower programs
JPH09250442A (en) Water turbine device
KR101667036B1 (en) torque controlling device and methods for generator of small hydro power
RU2223533C1 (en) Gas main pressure control device
JP2002155846A (en) Power recovery hydraulic power generation device
CN204238990U (en) A kind of energy gradient utilization system of back pressure turbine heat supply
CN105804030A (en) Method for setting rupture disk detonating pressure
JP5171414B2 (en) Steam power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080729