JPS6373704A - Antenna adjusting method - Google Patents

Antenna adjusting method

Info

Publication number
JPS6373704A
JPS6373704A JP21747086A JP21747086A JPS6373704A JP S6373704 A JPS6373704 A JP S6373704A JP 21747086 A JP21747086 A JP 21747086A JP 21747086 A JP21747086 A JP 21747086A JP S6373704 A JPS6373704 A JP S6373704A
Authority
JP
Japan
Prior art keywords
distribution
modules
column
amplitude
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21747086A
Other languages
Japanese (ja)
Other versions
JPH0456481B2 (en
Inventor
Takashi Kataki
孝至 片木
Kuniaki Shiramatsu
白松 邦昭
Shinkei Orime
晋啓 折目
Yoichi Shima
嶋 庸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21747086A priority Critical patent/JPS6373704A/en
Publication of JPS6373704A publication Critical patent/JPS6373704A/en
Publication of JPH0456481B2 publication Critical patent/JPH0456481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To obtain a desired antenna characteristic by comparing a reference distribution and a distribution projected from the total of amplitude of the modules at each row and column and rearranging the modules so as to minimize the difference. CONSTITUTION:When a Y1 column has a lower distribution than the reference distribution and a Y2 column has a higher distribution, an active module y1 having a small amplitude in the Y1 column and an active module y2 having a large amplitude in the Y2 column are selected out and they are replaced with each other to make the distribution close to the reference distribution. The procedure is repeated for each column and each row to bring the entire distribution closer to the reference distribution. Thus, the antenna characteristic is improved by the rearrangement even with a large dispersion in the modules, then the modules are manufactured easily and inexpensively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はビームを電子的に走査する電子走査アンテナ
のモジュールの配置を決定するアンテナ調整法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an antenna adjustment method for determining the arrangement of modules of an electronic scanning antenna that electronically scans a beam.

〔従来の技術〕[Conventional technology]

従来の電子走査アンテナについて説明する。 A conventional electronic scanning antenna will be explained.

第4図は従来の電子走査アンテナを示すもので。Figure 4 shows a conventional electronic scanning antenna.

81〜anは素子アンテナ、b1〜bnは移相器と高出
力増幅器と低雑音増幅器と送受信切換器などにより構成
されたアクティブモジュール、CはlE電力分配合成回
路dはデユープレクサ、eは送信機。
81 to an are element antennas, b1 to bn are active modules composed of a phase shifter, a high output amplifier, a low noise amplifier, a transmitting/receiving switch, etc., C is an lE power distribution and synthesis circuit, d is a duplexer, and e is a transmitter.

fは受信機、gは制御回路でめる。第5図はアクティブ
モジュールb1〜bnの内部を示すもので。
f is determined by the receiver, and g is determined by the control circuit. FIG. 5 shows the inside of active modules b1 to bn.

(1)は送受信切換器、(2)は高出力増幅器、(3)
は低雑音増幅器、(4)は移相器、(5リ は’MI御
回路gと結ぶ制御信号線路で、(5b)はマイクロ波伝
送線路である。この電子走査アンテナは送信時には送信
機θからの信号を電力分配合成回路Cにより分配して、
アクティブモジュールb1〜b、の中の移相器14)と
高出力増幅器12)により移相制御および増幅して素子
アンテナa1〜I!Inに供給する。受信時には素子ア
ンテナ81〜8nに入射した信号をアクティブモジュー
ルb1〜bnの中の低雑音増幅器(3)と移相il!5
14)により増幅および位相制御して、電力分配合成回
路Cにより信号を合成して受信機(5)に入れる。
(1) is a transmit/receive switch, (2) is a high output amplifier, (3)
is a low noise amplifier, (4) is a phase shifter, (5i is a control signal line connected to MI control circuit g, and (5b) is a microwave transmission line. During transmission, this electronic scanning antenna is connected to the transmitter θ. The signal from is distributed by the power distribution/synthesis circuit C,
The phase shifters 14) and high-power amplifiers 12) in the active modules b1-b control and amplify the phase shift, and the element antennas a1-I! Supply In. During reception, the signals incident on the element antennas 81 to 8n are phase-shifted to the low noise amplifiers (3) in the active modules b1 to bn. 5
14), the signals are amplified and phase controlled, and the signals are combined by the power distribution/synthesizing circuit C and input to the receiver (5).

また、このアンテナは移相器(4)を制御回路gによシ
コントロールすることによシワアンテナのビーム方向を
制御することができる。
Further, in this antenna, the beam direction of the wrinkled antenna can be controlled by controlling the phase shifter (4) by the control circuit g.

しかしながら、このように構成されたアンテナでは素子
アンテナa1〜anの励損振幅を等振幅とすると低サイ
ドロープレベルのアンテナは%[’きない。そこで、振
幅分布をつける方法としてアクティブフエイズドアレー
アンテナでは間引きによる密度分布がよく用いられる。
However, in the antenna configured in this way, if the excitation amplitudes of the element antennas a1 to an are made equal amplitudes, the antenna at the low side lobe level cannot reach %['. Therefore, density distribution by thinning is often used in active phased array antennas as a method of creating amplitude distribution.

間引きによる密度分布を送信時について説明すると、均
一分布により電力分配合成回路から給電された信号を送
信パワーを出す素子と出さない素子を組み合わせること
により、各素子の振幅の合成が所望の振幅分布になる様
にしたものである。第6図に送受信する素子と送受信し
ない素子の配列例を示す。図中。
To explain the density distribution due to thinning at the time of transmission, by combining the signal fed from the power distribution/synthesizing circuit with elements that emit transmission power and elements that do not emit transmission power using uniform distribution, the amplitudes of each element are combined into the desired amplitude distribution. This is how it turned out. FIG. 6 shows an example of the arrangement of elements that transmit and receive and elements that do not transmit and receive. In the figure.

(6)の○印が送受信する素子、(7)のx印が送受信
しない素子である。第7図に合成された振幅分布を示す
。第7図に示すように合成された振幅分布が中央部の振
幅が太き(周辺部の振幅が小さい分布になる様に送信パ
ワーを田す素子と出さない素子を配置する。以上は送信
時の説明でろるが受信時も同様である。送信パワーを出
すかわ9に、低雑音増幅器(3)によシ増幅して電力分
配合成回路Cに伝える素子とそうでない素子の組み合わ
せにより第7図に示すような振幅分布を実現する。
The ○ marks in (6) are elements that transmit and receive, and the x marks in (7) are elements that do not transmit and receive. FIG. 7 shows the synthesized amplitude distribution. As shown in Figure 7, the elements that emit transmit power and the elements that do not emit transmit power are arranged so that the synthesized amplitude distribution has a thicker amplitude in the center (smaller amplitude in the periphery). The explanation is as follows, but the same is true when receiving.The transmitter 9 that outputs the transmitting power is amplified by the low-noise amplifier (3) and is transmitted to the power distribution/synthesizing circuit C by combining the elements shown in Fig. 7. Achieve the amplitude distribution shown in .

〔発明が解決しようとする問題点〕・ 上記のアクティブモジュールは実際には高出力増幅器や
低雑音増幅器等のバラツキにより1等振幅とならない。
[Problems to be Solved by the Invention] - The above active module does not actually have equal amplitude due to variations in the high output amplifier, low noise amplifier, etc.

したがって上記の配置にアクティブモジュールを配置し
ても所望の振幅分布とならずアンテナ特性が劣化する。
Therefore, even if the active modules are arranged in the above arrangement, the desired amplitude distribution will not be obtained and the antenna characteristics will deteriorate.

そこでアクティブモジュールのバラツキを小さく押える
必要がおり、製造上やコスト上の問題点があった。
Therefore, it is necessary to suppress variations in the active module to a small extent, which poses problems in terms of manufacturing and cost.

この発明は上記のような問題点を解消するためになされ
たもので、モジュールのバラツキが太き(ても所望の振
幅分布を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and its purpose is to obtain a desired amplitude distribution even if the variations in the modules are large.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るアンテナ調整法は各行および各列毎のモ
ジュールの振幅の合計を投影した分布と基準の分布を比
較して、モジュールの並べかえすることによシ、その差
が最小となるモジュールの配置を決めるようにしたもの
でるる。
The antenna adjustment method according to the present invention compares a distribution obtained by projecting the sum of the amplitudes of modules in each row and each column with a reference distribution, rearranges the modules, and arranges the modules that minimize the difference. It's something that allows you to decide.

〔作用〕[Effect]

この発明にかけるアンテナ調整法は基準の振幅分布から
の差が小さくなるようにアクティブモジュールを並べか
えるので所望の振幅分布に近づけることができる。した
がって所望のアンテナ特性を得ることができる。
The antenna adjustment method according to the present invention rearranges the active modules so that the difference from the reference amplitude distribution becomes small, so that it is possible to approximate the desired amplitude distribution. Therefore, desired antenna characteristics can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1図はこの発明の一実施例でろる並べかえの方法を示
す図である。第1図において、xl  はアンテナのX
軸に直交するるる1つの行、Yl  とYlはアンテナ
のY軸に直交するある2つの列、 71と72ハそれぞ
れの列にるる素子である。第1肉において、下の図はア
ンテナの各行、各列及び素子の配置を示し、第1図(−
1は振幅分布で第1図(1))のアンテナ各列をY軸に
投影したものである。また9図中の実線はアクティブモ
ジュールのバラツキにより変化した振幅分布であシ、破
線は基準の分布である。第1図のように、  yI  
列で基準分布より低(、Yl  で基準分布よシ高い場
合、  YI  列で小さな振幅をもつアクティブモジ
ュールy1  とYl 列で大きな振幅をもつアクティ
ブモジュールy2  を選び出し、それを交換して基準
分布に近づける。この手順を各列と各行についてく9返
すことにより、全体の分布を基準分布に近でけていくの
がこの調整法の概略である。
FIG. 1 is a diagram illustrating a method for rearranging rolls according to an embodiment of the present invention. In Figure 1, xl is the antenna's
One row perpendicular to the axis, Yl and Yl are elements in two columns 71 and 72, respectively, perpendicular to the Y axis of the antenna. In the first part, the lower figure shows each row, each column and the arrangement of the elements of the antenna, and the first figure (-
1 is an amplitude distribution obtained by projecting each antenna row in FIG. 1 (1) onto the Y axis. Furthermore, the solid line in FIG. 9 is the amplitude distribution that has changed due to variations in the active module, and the broken line is the reference distribution. As shown in Figure 1, yI
If Yl is lower than the reference distribution in the column (and Yl is higher than the reference distribution, select the active module y1 with a small amplitude in the YI column and the active module y2 with a large amplitude in the Yl column and replace them to get closer to the reference distribution. The outline of this adjustment method is to bring the overall distribution closer to the reference distribution by repeating this procedure 9 times for each column and row.

ここで、上記の手順を整理すると以下のようになる。Here, the above steps are summarized as follows.

(1)渚初の配列の時のパラメータを以下のように表わ
す。
(1) Parameters for Nagisa's initial arrangement are expressed as follows.

X行の数       工 Y列の数       J 素子の敬       N 各素子の平均からの偏差    An =”n a。Number of X rows Number of Y columns J Motoko's Respect N Deviation from the average of each element An = “n a.

12)X行の1番目の素子のm @Anの和をrlで表
わし、二乗和を で表わす。
12) The sum of m@An of the first element in the X row is expressed by rl, and the sum of squares is expressed by.

+a+  I rllの順に2つの行を選び、Rが一番
小さくなる工゛うに素子の並べかえをする。只の最小値
を得るようにこの手+1iを(シ返えす。
Select two rows in the order of +a+I rll and rearrange the elements so that R is the smallest. Return this move +1i to get the minimum value.

(4)次にY列のj番目の素子の振幅Anの相をS、1
 で表わし、その二乗和を で表わす。
(4) Next, the phase of the amplitude An of the j-th element in the Y column is S, 1
and its sum of squares is expressed as .

t51  Is、11の順に2つの列を選び、Rを変化
させることな(Sが最小になるような素子のペアを捜し
て並べかえる。− この手順を日が最小になるようにくり返す。
Select two columns in the order of t51 Is and 11, and without changing R (search for a pair of elements that minimizes S and rearrange them) - Repeat this procedure until the date is minimized.

このようにして、基準に近い振幅分布が得られ。In this way, an amplitude distribution close to the standard can be obtained.

所望のアンテナ特性が実現できる。Desired antenna characteristics can be achieved.

これをシミュレーションした結果を第2図と第3図に示
す。第2図はX行の各行における基準分布からのずれに
ついて、最初の配列の場合イと並べかえた場合口につい
て示している。第3図は基準分布の場合A、最初の配列
の場合B、および並べかえた場合Oのサイドロープレベ
ルについて示している。横軸は素子数でおる。第2図よ
り並べかえKよシ、偏差を非常に小さく押えることがで
き、このシミュレーションの場合横軸と重ってしまって
いる。第3図よシ最初の配列Bのままではサイドローブ
レベルは悪いが、並べかえを行うことKよりm  aに
示すように基準分布の場合Aと同等のサイドロープレベ
ルを実現できている。
The results of this simulation are shown in FIGS. 2 and 3. FIG. 2 shows the deviation from the standard distribution in each row of X rows, with respect to A in the initial arrangement and mouth in the rearranged case. FIG. 3 shows the side rope levels for the standard distribution case A, the initial arrangement case B, and the rearranged case O. The horizontal axis is the number of elements. As shown in Figure 2, by rearranging K, the deviation can be kept very small, and in this simulation it overlaps with the horizontal axis. As shown in FIG. 3, the side lobe level is poor if the initial arrangement B remains as it is, but by rearranging the arrangement K, as shown in ma, a side lobe level equivalent to that of A can be achieved in the case of the standard distribution.

なお上記の実施例では送受信する素子としない素子の2
種類をもつ亀子走査アンテナの場合について述べたが、
送受信する素子の振幅比が2種類以上ある場合の電子走
査アンテナの場合でも同様な手順で各振幅比毎に行えば
良いことはいうまでもないことでちる。
Note that in the above embodiment, there are two elements, one for transmitting and receiving and the other for non-transmission.
We have discussed the case of a Kameko scanning antenna with different types.
It goes without saying that even in the case of an electronic scanning antenna in which there are two or more types of amplitude ratios of transmitting/receiving elements, the same procedure can be performed for each amplitude ratio.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればモジュールのバラフキ
が大きくても並べかえによシアンテナ特性を改善するこ
とができるので、モジュールの製造が容易にでき、また
安価に製造できる効果がおる。
As described above, according to the present invention, even if the variations in the modules are large, the antenna characteristics can be improved by rearranging the modules, so that the module can be manufactured easily and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の手順を示す図。 第2図はこの発明の方法によシミュレーションした時の
振幅分布の偏差を示す図、第3図はこの発明のシミュレ
ーションした時のサイドローブレベルの変化を示す図、
第4図は従来の電子走査アンテナの溝数図、第5図はア
クティブモジュールの構成図、第6図は間引き状態を示
す図、第1図は振幅分布を示す図である。 図中、  xl  はアンテナのX軸に直交する行e 
 YjとY2  dアンテナのY軸に直交する列、 7
1  と72はそれぞれの列にろる素子a1〜anニ素
子アンテナ、b1〜bnはアクティブモジュール、Cは
電力分配合成回路、dはデュプレクサ、eは送信機。 では受信機1gは制(財)回路、hは冷却の接続部。 1は制御信号分配回路、jFiフレーム、  A1〜A
Nは素子アンテナ、  B1〜BNdアクティブモジュ
ール、!1〜Jlは給電線路、(1)は送受信切換器、
(2)は高出力増幅器、(3)は低雑音増C器、(4)
け移相器。 (5リ は制御信号線路、(5b)はマイクロ波伝送線
路を示す。 なお9図中同一あるいは相当部分には同一符号を付して
示しておる。
FIG. 1 is a diagram showing the procedure of an embodiment of the present invention. FIG. 2 is a diagram showing deviations in amplitude distribution when simulated using the method of the present invention, and FIG. 3 is a diagram showing changes in sidelobe levels when simulated using the present invention.
FIG. 4 is a diagram showing the number of grooves of a conventional electronic scanning antenna, FIG. 5 is a diagram showing the configuration of an active module, FIG. 6 is a diagram showing a thinning state, and FIG. 1 is a diagram showing an amplitude distribution. In the figure, xl is the row e perpendicular to the X axis of the antenna.
Yj and Y2 d columns orthogonal to the Y axis of the antenna, 7
1 and 72 are two-element antennas a1 to an in their respective columns, b1 to bn are active modules, C is a power distribution/synthesis circuit, d is a duplexer, and e is a transmitter. In the receiver, 1g is the control circuit, and h is the cooling connection. 1 is a control signal distribution circuit, jFi frame, A1 to A
N is element antenna, B1~BNd active module, ! 1 to Jl are power supply lines, (1) is a transmission/reception switch,
(2) is a high output amplifier, (3) is a low noise amplifier, (4)
ke phase shifter. (5ri indicates a control signal line, and (5b) indicates a microwave transmission line. In addition, the same or equivalent parts in Figure 9 are indicated with the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 複数の素子アンテナと、これら素子アンテナそれぞれに
対応し、かつ移相器、高出力増幅器、低雑音増幅器およ
び送受信切換器などにより構成されるモジュールと、送
受信機と、上記のモジュールと送受信機との間に介在す
る電力分配合成回路とを具備し、前記モジュールを配置
調整するアンテナ調整法において、各行および各列毎の
モジュールの振幅の合計を投影した分布と基準の分布を
比較して、モジュールの並べかえを行い、その差が最小
となるようにモジュールを配置調整することを特徴とす
るアンテナ調整法。
A plurality of element antennas, a module corresponding to each of these element antennas and composed of a phase shifter, a high-output amplifier, a low-noise amplifier, a transmission/reception switch, etc., a transceiver, and a combination of the above module and the transceiver. In an antenna adjustment method that adjusts the arrangement of the modules with a power distribution/synthesis circuit interposed between them, the distribution of the projected sum of the amplitudes of the modules in each row and each column is compared with the reference distribution, and the distribution of the modules is determined. An antenna adjustment method characterized by rearranging modules and adjusting the arrangement so that the difference between them is minimized.
JP21747086A 1986-09-16 1986-09-16 Antenna adjusting method Granted JPS6373704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21747086A JPS6373704A (en) 1986-09-16 1986-09-16 Antenna adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21747086A JPS6373704A (en) 1986-09-16 1986-09-16 Antenna adjusting method

Publications (2)

Publication Number Publication Date
JPS6373704A true JPS6373704A (en) 1988-04-04
JPH0456481B2 JPH0456481B2 (en) 1992-09-08

Family

ID=16704736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21747086A Granted JPS6373704A (en) 1986-09-16 1986-09-16 Antenna adjusting method

Country Status (1)

Country Link
JP (1) JPS6373704A (en)

Also Published As

Publication number Publication date
JPH0456481B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
US20200350698A1 (en) Wireless Transceiver Having Receive Antennas and Transmit Antennas with Orthogonal Polarizations in a Phased Array Antenna Panel
US7183995B2 (en) Antenna configurations for reduced radar complexity
US10171141B2 (en) Hybrid beam-forming antenna array using selection matrix for antenna phase calibration
US7737891B2 (en) Array antenna system
US6414631B1 (en) Time sharing type multi-beam radar apparatus having alternately arranged transmitting antennas and receiving antennas
US8644367B2 (en) Antenna beam scan unit and wireless communication system using antenna beam scan unit
US20120108297A1 (en) Antenna device for a radio base station in a cellular telephony system
US6295026B1 (en) Enhanced direct radiating array
SE509278C2 (en) Radio antenna device and method for simultaneous generation of wide lobe and narrow point lobe
CN109495141A (en) A kind of modulus mixed base band Multibeam synthesis method and in wireless communication system application
US6642883B2 (en) Multi-beam antenna with interference cancellation network
US6970142B1 (en) Antenna configurations for reduced radar complexity
EP1784893B1 (en) Transmitting and receiving radio frequency signals using an active electronically scanned array
JP2010530652A (en) Wireless area network compatible system and method using phased array antenna
US20050242993A1 (en) Non-multiple delay element values for phase shifting
US20130194134A1 (en) Electronically-steered ku-band phased array antenna comprising an integrated photonic beamformer
JP3061504B2 (en) Array antenna
JPS6373704A (en) Antenna adjusting method
US3496569A (en) Phased array multibeam formation antenna system
US6255990B1 (en) Processor for two-dimensional array antenna
US10473776B2 (en) Transmit-array antenna for a monopulse radar system
JPH06260823A (en) Phased array antenna
JP2010093563A (en) Antenna apparatus
JP2006180218A (en) Array antenna device
US11462838B2 (en) Tapering for MIMO

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees