JPS6373584A - Heat sink for array semiconductor laser - Google Patents

Heat sink for array semiconductor laser

Info

Publication number
JPS6373584A
JPS6373584A JP61218405A JP21840586A JPS6373584A JP S6373584 A JPS6373584 A JP S6373584A JP 61218405 A JP61218405 A JP 61218405A JP 21840586 A JP21840586 A JP 21840586A JP S6373584 A JPS6373584 A JP S6373584A
Authority
JP
Japan
Prior art keywords
semiconductor laser
layer
trench
heat sink
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61218405A
Other languages
Japanese (ja)
Other versions
JPH0553315B2 (en
Inventor
Yoshinori Ota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61218405A priority Critical patent/JPS6373584A/en
Publication of JPS6373584A publication Critical patent/JPS6373584A/en
Publication of JPH0553315B2 publication Critical patent/JPH0553315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To conduct isolation in response to a layer element, and to enable high density packaging by forming the width of a cross section in size wider at the position of substrate depth than the position of a fusing surface in the sectional form of a trench along the direction of resonance of a semiconductor laser formed onto an silicon substrate surface to which the array semiconductor laser is fused. CONSTITUTION:An Si crystal layer 2 containing B can be shaped as a crystal layer through an epitaxial growth method. The layer 2 containing B is etched to a trench shape, using KOH as an etchant by employing a mask using a photo-resist. When the mixed liquid of ethylene diamine and pyrocatechol is heated at the boiling point of 116 deg.C and the Si substrate 1 is dipped into the mixed liquid, Si 1 is etched to a cellar shape that the layer 2 containing B is formed as eaves because the layer 2 has an extremely slow etching rate, and a trench 6 having narrow width in a fusing section with a laser and broad width in a deep section is shaped. When Sn 4 is evaporated, Sn does not adhere on the side walls of each trench 6, and only collects as Sn 5 on the bottoms of the trenches 6. Accordingly, electrodes 3a, 3b, 3c are not conducted, thus independently driving respective laser element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信用装置、光情報処理用光装置などに使用
される半導体レーザアレイを取付けるヒートシンクに関
する6 〔従来の技術〕 アレイ状に配列した多数の半導体レーザを独立に駆動す
るという場合の用途は、基板上に形成した光導波路配線
のアレイに、信号坦体としての光を導入する場合の光源
として、ひとつの光デイスクヘッドに複数の光ビームを
擁するマルチビーム光ヘッドの光源としてなど広くある
。これらに用いられる半導体レーザアレイの間隔は50
μm〜100μmと狭くなっており、また個々の半導体
エレメント間の熱的な干渉を避は信頼性を上げるため、
半導体レーザの構造の上から、基板側ではなく、活性層
を含む成長層側をヒートシンクに熱融着することが望ま
しい。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat sink for mounting a semiconductor laser array used in an optical communication device, an optical information processing device, etc. [Prior Art] Arranged in an array When driving a large number of semiconductor lasers independently, a single optical disk head is used as a light source to introduce light as a signal carrier into an array of optical waveguide wiring formed on a substrate. It is widely used as a light source for multi-beam optical heads that have light beams. The spacing of the semiconductor laser array used in these is 50
The diameter is narrow from μm to 100 μm, and in order to avoid thermal interference between individual semiconductor elements and increase reliability,
It is desirable to heat-seal the growth layer side including the active layer to the heat sink from above the structure of the semiconductor laser, rather than the substrate side.

通常、単一の半導体レーザをヒートシンクとしてシリコ
ン(Si>を設定する場合、半導体レーザの結晶成長層
を有する表面に設けた金電極と、Si表面上に厚く設け
た錫膜とを融着して行っており、Si表面上の錫は、半
導体レーザとSiとの熱膨張係数の違いを吸収するため
に、数μmもの厚さに形成している。
Normally, when using silicon (Si) as a heat sink for a single semiconductor laser, a gold electrode provided on the surface of the semiconductor laser having a crystal growth layer and a thick tin film provided on the Si surface are fused together. The tin on the Si surface is formed to have a thickness of several μm in order to absorb the difference in thermal expansion coefficient between the semiconductor laser and the Si.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような条件を満たして実現された半導体レーザアレ
イの例は、半導体レーザエレメント間にエツチングやカ
ッタによる加工等によって溝を設けて、素子間の電気的
分離を行った半導体レーザアレイを、電気的絶縁性を有
し熱伝導性の高い酸化ベリリウムの基板の上に、金属マ
スク等を用いて半導体レーザアレイに対応した金属錫膜
を蒸着によって形成し、この錫膜と半導体レーザアレイ
表面に設けた金等の膜との合金化によって融着している
。このような従来の方法によるマスクを用いた錫膜の形
成法では、アレイピッチが150〜200μm程度のも
のにしか適用できず、アレイピッチ50μm程度の間隔
の細いアレイに適用することが出来なかった。
An example of a semiconductor laser array that has been realized satisfying these conditions is a semiconductor laser array in which grooves are formed between the semiconductor laser elements by etching or processing with a cutter to electrically isolate the elements. A metal tin film compatible with the semiconductor laser array is formed by vapor deposition on a beryllium oxide substrate, which has insulating properties and high thermal conductivity, using a metal mask, etc., and is placed on this tin film and the surface of the semiconductor laser array. It is fused by alloying with a film such as gold. This conventional method of forming a tin film using a mask can only be applied to arrays with an array pitch of about 150 to 200 μm, and cannot be applied to thin arrays with an array pitch of about 50 μm. .

単一の半導体レーザのヒートシンクとして多く利用され
ているシリコン結晶の通常の製作法としては、厚さ30
0μm程度のシリコンウェハを基板とし、これを1 m
m〜3 amの間隔でメツシュ状に、切り込みを幅数子
μm深さ100〜200μm程度に入れ、全面にSnを
蒸着し後、切り込みに応力を集中して個々のヒートシン
クチップに破断する方法がとられている。
The usual manufacturing method for silicon crystal, which is often used as a heat sink for a single semiconductor laser, is to
A silicon wafer of approximately 0 μm is used as a substrate, and this is
A method is to make mesh-like cuts at intervals of m to 3 am with a width of several micrometers and a depth of about 100 to 200 μm, vapor deposit Sn on the entire surface, and then concentrate stress on the cuts to break into individual heat sink chips. It is being

高抵抗のシリコンを使って半導体レーザアレイ用のヒー
トシンクを作製するには、アレイ間の電気的分離に、チ
ップ毎に切断するために入れる切り込みと同様に(但し
これよりも浅く切り込みを入れて)、この後Snを蒸着
する方法が考られる。しかし、この場合は蒸着するSn
の厚さが厚いため、切り込み溝の側壁にも膜が形成され
、電気的な分離がとれない。更に、簡便な方法としては
、分離用の切り込みを入れずにSnを一様に形成し、フ
ォトリソグラフィー法とSnの化学的エツチングの組合
わせやレーザトリミング法などによるSn膜のパタニン
グが考られるが、Snの化学的エツチング法では、マス
クとして形成するレジスト膜によるSn蒸着膜表面の変
質、レーザトリミング法ではトリミング部位両側に生ず
るSnの再付着によりパリの発生などによって半導体レ
ーザとの融着を困難にしている。
To make a heat sink for a semiconductor laser array using high-resistance silicon, the electrical isolation between the arrays can be made by making the same (but shallower) cuts to cut each chip. , a method of vapor-depositing Sn after this is considered. However, in this case, the Sn
Since the thickness of the groove is large, a film is also formed on the side walls of the cut groove, making it impossible to achieve electrical isolation. Furthermore, as a simple method, it is possible to uniformly form Sn without making a cut for separation, and then pattern the Sn film by a combination of photolithography and chemical etching of Sn, or by laser trimming. In the chemical etching method of Sn, the surface of the Sn vapor deposited film changes due to the resist film formed as a mask, and in the laser trimming method, the re-deposition of Sn on both sides of the trimmed area causes the generation of paris, making it difficult to fuse with the semiconductor laser. I have to.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、これらの問題点を除去し、レーザエレ
メントに対応した分離が容易にでき、高密度実装を可能
にしたアレイ半導体レーザ用ヒートシンクを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat sink for an array semiconductor laser which eliminates these problems, allows easy separation according to the laser elements, and enables high-density packaging.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成は、高抵抗シリコン基板をアレイ半導体レ
ーザに融着したアレイ半導体レーザ用ヒートシンクにお
いて、このアレイ半導体レーザの発光点位置のほぼ中間
に対応する位置で、そのアレイ半導体レーザの共振器方
向に沿って前記シリコン基板面にそれぞれ満を設け、こ
れら溝の断面幅が前記アレイ半導体レーザを融着する位
置よりその基板の深さ位置において広く形成されている
ことを特徴とする。
In the structure of the present invention, in a heat sink for an array semiconductor laser in which a high-resistance silicon substrate is fused to the array semiconductor laser, the heat sink is placed at a position corresponding to approximately the middle of the light emitting point position of the array semiconductor laser in the direction of the resonator of the array semiconductor laser. grooves are formed on the surface of the silicon substrate along these grooves, and the cross-sectional width of these grooves is wider at a depth position of the substrate than at a position where the array semiconductor laser is fused.

〔作用〕[Effect]

本発明の構成をとることにより、アレイ半導体レーザを
融着するシリコン基板面に形成される半導体レーザの共
振方向に沿った渦の断面形状を断面の幅が融着面位置よ
り基板深さ位置において幅広に形成できるため、各レー
ザエレメントの融着用に構成された軟金属のひとつであ
るSnを厚く蒸着しても、溝の側壁に付着することがな
く、融着後の半導体レーザエレメント間の電気的導通を
回避することができる。さらに、Snn薫蒸着後のSn
膜上にフォトレジスト等を塗付する必要がないため、S
n膜表面の変質を生ずることがなく、良好な融着を行う
ことが出来る。
By adopting the configuration of the present invention, the cross-sectional shape of the vortex along the resonance direction of the semiconductor laser formed on the surface of the silicon substrate to which the array semiconductor laser is fused can be adjusted so that the width of the cross-section is at the depth of the substrate from the position of the fusion surface. Because it can be formed wide, even if Sn, which is one of the soft metals used for fusing each laser element, is deposited thickly, it will not adhere to the side walls of the groove, and the electricity between the semiconductor laser elements after fusing will be reduced. It is possible to avoid physical conduct. Furthermore, Sn after Snn smoke deposition
Since there is no need to apply photoresist etc. on the film, S
Good fusion bonding can be achieved without causing any deterioration of the surface of the n-film.

〔実施例〕〔Example〕

次に本発明を図面により詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の構成を示す断面図である。FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention.

図中、1はヒートシンクとする高抵抗Si、2はこのS
ilの表面に設けるボロン(B)を含むSi結晶層、3
はヒートシンク1に融着する半導体レーザアレイであり
、ここでは電極の分離だけで個々のレーザエレメントを
独立に駆動できる埋込型レーザを用いている。4は融着
のためにSi結晶層2の表面に設けるSn蒸着膜、5は
たれたSn、6は個々のレーザエレメント間を電気的に
分離する溝である。
In the figure, 1 is a high-resistance Si that serves as a heat sink, and 2 is this S.
Si crystal layer containing boron (B) provided on the surface of the il, 3
is a semiconductor laser array fused to a heat sink 1, and here an embedded laser is used in which each laser element can be driven independently just by separating the electrodes. 4 is a Sn vapor deposited film provided on the surface of the Si crystal layer 2 for fusion bonding, 5 is a sagging Sn film, and 6 is a groove for electrically separating individual laser elements.

本実施例は、この満6の断面形状が、ヒートシンク1の
半導体レーザ3との接合部位では幅が狭く、基板内部で
幅広となっているため、Sn4を蒸着する場合に、Sn
は各満6の側壁に付着することなく、満6の底部にSn
5のようにたまるだけである。従って、各レーザエレメ
ントの電極3a、3b、3cの間は導通することがなく
、それぞれのレーザエレメントを独立に駆動することが
できる。
In this embodiment, this cross-sectional shape is narrow at the joint part of the heat sink 1 with the semiconductor laser 3 and wide inside the substrate.
Sn is attached to the bottom of each of the six without adhering to the side wall of each of the six.
It just accumulates like 5. Therefore, there is no conduction between the electrodes 3a, 3b, and 3c of each laser element, and each laser element can be driven independently.

このような満6は、次のようにして形成することができ
る。すなわち、Bを含むSi結晶層2はエピタキシャル
成長法による結晶層として、または高抵抗Si基板1へ
のイオン注入によるB注大層として形成できる。このB
を含む層2はフォトレジストを使ったマスクを用いて、
KOHをエツチング液として渦状にエツチングされる。
Such a full 6 can be formed as follows. That is, the Si crystal layer 2 containing B can be formed as a crystal layer by epitaxial growth or as a B-poured layer by ion implantation into the high-resistance Si substrate 1. This B
Layer 2 containing
Etching is carried out in a spiral using KOH as an etching liquid.

さらに、エチレンジアミンとピロカテコールの混液を1
16℃の沸点に熱し、この混液中にこのSi基板1を浸
すと、1時間当り50μm程度の速度でエツチングが起
る。この時、Bを含むSi層2のエツチング速度は極め
て遅いため、Bを含む層2を廂とするような、水含形状
にSilがエツチングされ、図に示すような、レーザと
の融着部では幅が狭(、深部では幅の広い満6が形成さ
れる。
Furthermore, add 1 part of a mixture of ethylenediamine and pyrocatechol.
When the Si substrate 1 is heated to a boiling point of 16° C. and immersed in this mixture, etching occurs at a rate of about 50 μm per hour. At this time, since the etching speed of the Si layer 2 containing B is extremely slow, the Sil is etched into a water-containing shape surrounding the B-containing layer 2, and the fused portion with the laser is formed as shown in the figure. In the deep part, the width is narrow (but in the deep part, the width is wide).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、レーザエレメン
トに対応した満6が容易に形成できるので、高密度の実
装に適した半導体レーザアレイ用ヒートシンクが得られ
る。
As described above, according to the present invention, a heat sink for a semiconductor laser array suitable for high-density packaging can be obtained, since it is possible to easily form a heat sink corresponding to a laser element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造を示す断面図である。 1・・・ヒートシンク用Si、2・・・Bを含むSi結
晶度、3・・・半導体レーザアレイ、4・・・S n蒸
着膜、5・・・たまったSn、6・・・エツチング溝、
3a。 3b、3c・・・レーザエレメント電極、3d・・・共
通’−,/
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Si for heat sink, 2... Si crystallinity including B, 3... Semiconductor laser array, 4... Sn vapor deposition film, 5... Accumulated Sn, 6... Etching groove ,
3a. 3b, 3c...Laser element electrode, 3d...Common'-,/

Claims (1)

【特許請求の範囲】[Claims] 高抵抗シリコン基板をアレイ半導体レーザに融着したア
レイ半導体レーザ用ヒートシンクにおいて、このアレイ
半導体レーザの発光点位置のほぼ中間に対応する位置で
、そのアレイ半導体レーザの共振器方向に沿って前記シ
リコン基板面にそれぞれ溝を設け、これら溝の断面幅が
前記アレイ半導体レーザを融着する位置よりその基板の
深さ位置において広く形成されていることを特徴とする
アレイ半導体レーザ用ヒートシンク。
In a heat sink for an array semiconductor laser in which a high-resistance silicon substrate is fused to an array semiconductor laser, the silicon substrate 1. A heat sink for an array semiconductor laser, characterized in that grooves are provided on each surface, and the cross-sectional width of these grooves is wider at a depth position of the substrate than at a position where the array semiconductor laser is fused.
JP61218405A 1986-09-16 1986-09-16 Heat sink for array semiconductor laser Granted JPS6373584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218405A JPS6373584A (en) 1986-09-16 1986-09-16 Heat sink for array semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218405A JPS6373584A (en) 1986-09-16 1986-09-16 Heat sink for array semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6373584A true JPS6373584A (en) 1988-04-04
JPH0553315B2 JPH0553315B2 (en) 1993-08-09

Family

ID=16719397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218405A Granted JPS6373584A (en) 1986-09-16 1986-09-16 Heat sink for array semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6373584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515391A (en) * 1994-03-07 1996-05-07 Sdl, Inc. Thermally balanced diode laser package
JP2007180563A (en) * 2001-02-14 2007-07-12 Fuji Xerox Co Ltd Laser light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515391A (en) * 1994-03-07 1996-05-07 Sdl, Inc. Thermally balanced diode laser package
JP2007180563A (en) * 2001-02-14 2007-07-12 Fuji Xerox Co Ltd Laser light source

Also Published As

Publication number Publication date
JPH0553315B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
CN104364688B (en) Optica insert
US8567051B2 (en) Process for the vertical interconnection of 3D electronic modules by vias
EP0502670B1 (en) Laser diode array
US5357536A (en) Method and apparatus for the positioning of laser diodes
US4536469A (en) Semiconductor structures and manufacturing methods
EP0590232A1 (en) Semiconductor laser array and mounting method
EP0963017B1 (en) Semiconductor emission element and method of manufacturing same
JP2018508979A (en) Structure of closely spaced laser diodes
CN101276801B (en) Wafer with through-wafer vias and manufacture method thereof
US6485126B1 (en) Ink jet head and method of producing the same
JPS6373584A (en) Heat sink for array semiconductor laser
JP3755178B2 (en) Semiconductor laser
JPH0828551B2 (en) Array laser
US8772822B2 (en) Light emitting device
US9806495B2 (en) Optical module, method for fabricating the same
JP3708148B2 (en) Laser array
JPS58170058A (en) Photointegrated semiconductor device
KR940003436B1 (en) Semiconductor light emitting device
EP0086915B1 (en) Semiconductor device having conductor lines connecting the elements
JP2523110Y2 (en) Multi-beam semiconductor laser device
JP2657214B2 (en) Manufacturing method of surface emitting laser device
JPH0555143A (en) Method for growing crystal on circular wafer
JPH10242583A (en) Manufacture of semiconductor laser element and semiconductor laser device
EP0588406B1 (en) Method of manufacturing a block-shaped support body for a semiconductor component
JPH09205248A (en) Semiconductor laser