JPS637343A - Production of porous metallic body - Google Patents

Production of porous metallic body

Info

Publication number
JPS637343A
JPS637343A JP15074786A JP15074786A JPS637343A JP S637343 A JPS637343 A JP S637343A JP 15074786 A JP15074786 A JP 15074786A JP 15074786 A JP15074786 A JP 15074786A JP S637343 A JPS637343 A JP S637343A
Authority
JP
Japan
Prior art keywords
metal
alloy
molding
powder
metallic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15074786A
Other languages
Japanese (ja)
Inventor
Hidenori Nakamura
英則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15074786A priority Critical patent/JPS637343A/en
Publication of JPS637343A publication Critical patent/JPS637343A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a porous metallic body having high porosity and high strength by mixing a single metal or alloy and metallic salt powder having the m. p. higher than the m. p. of said metal or alloy and a prescribed grain size at a prescribed mixing ratio, and molding the mixture, then removing the metallic salt from the molding. CONSTITUTION:The single metal such as Al, or Fe or the alloy thereof and the metallic salt powder such as CoCl2, or SnCl2 having the m. p. higher than the m. p. of these materials and prescribed grain size corresponding to the desired porosity are mixed and molded. The molding can be executed by mixing the above-mentioned single metal or alloy in the form of the powder having the prescribed grain size with the metallic salt powder, molding the mixture and sintering the molding or mixing the same in the molten state with the metallic salt powder, molding the mixture and solidifying the molding. The resultant molding is thereafter treated with a solvent which is stable to the above-mentioned single metal or alloy, does not attack the same and can dissolve the above-mentioned metallic salt, by which the metallic salt is dissolved away. The porous metallic body having the high porosity corresponding to the mixing ratio of the metallic salt is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は単体金属や合金の多孔質体を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a porous body of a single metal or an alloy.

〔従来の技術〕[Conventional technology]

従来、金属多孔質体は、単体金属或いは合金の粉末を加
圧、焼結する粉末冶金法によってつくられ、その孔径は
数ミクロン−100ミクロンであった。しかし、このよ
うにしてつくられた金属多孔体の強度を維持するには、
空孔率を60%以下にする必要があった。
Conventionally, porous metal bodies have been produced by a powder metallurgy method in which powder of a single metal or an alloy is pressed and sintered, and the pore diameter thereof has been from several microns to 100 microns. However, in order to maintain the strength of the porous metal body made in this way,
It was necessary to reduce the porosity to 60% or less.

そのため、高空孔率の多孔質体を製造する方法として、
合成樹脂の開放細胞発泡体上に電析によって金属を被着
した後、上記合成樹脂を加熱、分解して除去する方法(
特公昭47−10524)、また、熱分解性有機物粒子
表面を金属膜で被覆し、この粒子を発泡構造金属多孔黄
体孔内に充填し、加熱により有機物を分解除去する方法
(特開昭57−・123942>等が捉案されている。
Therefore, as a method for producing a porous body with high porosity,
A method in which a metal is deposited on an open cell foam made of synthetic resin by electrodeposition, and then the synthetic resin is removed by heating and decomposition (
Japanese Patent Publication No. 47-10524), and a method in which the surface of particles of thermally decomposable organic matter is coated with a metal film, the particles are filled into the luteal pores of foamed metal, and the organic matter is decomposed and removed by heating (Japanese Patent Publication No. 57-1989).・123942> etc. are being proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記高空孔率の金属多孔質体の製造において、
前者は基体樹脂径の製造限界から、空孔径は300μ肌
が限・界で、さらに、樹脂表面に電析むらが発生し、均
一な構造とするのが困難であり、後者は有機物除去に際
して熱による構造破壊が起るなどの問題があり、いずれ
も高空孔率の金属多孔質体の製造は困難で、また、製造
したとしても物性上満足ならのを得ることは不可能であ
った。
However, in manufacturing the above-mentioned high porosity metal porous body,
In the former case, the pore size is limited to 300 μm due to the manufacturing limit of the base resin diameter, and in addition, uneven electrodeposition occurs on the resin surface, making it difficult to obtain a uniform structure. In both cases, it is difficult to manufacture a metal porous body with a high porosity, and even if it were manufactured, it was impossible to obtain satisfactory physical properties.

本発明者等は、高空孔率でしかも強度の高い金属多孔質
体をつくるべり&12意研究した結果、金属塩を金属と
混合し成形した後、上記金属塩を除去1れば、その部分
に空孔が形成されることを発見した。
As a result of research on how to create a metal porous body with high porosity and high strength, the present inventors found that after mixing a metal salt with a metal and molding it, if the metal salt is removed 1, the area It was discovered that pores are formed.

本発明は上記の発見に基づいてなされたもので、高空孔
率、高強度の金属多孔質体の製造法を提供することを目
的とする。
The present invention was made based on the above discovery, and an object of the present invention is to provide a method for producing a porous metal body with high porosity and high strength.

(問題点を解決するための手段) 本発明は上記目的を達成すべくなされ、その要旨は、単
体金病或いは合金と、この単体金F!或いは合金より融
点が高い所定の粒度の金属塩粉末とを混合し成形した後
1.L記金属塩を除去する金属多孔質体の製造法にある
(Means for Solving the Problems) The present invention has been made to achieve the above object, and its gist is to provide an elemental gold alloy or an alloy, and this elemental gold F! Alternatively, after mixing with metal salt powder of a predetermined particle size and having a melting point higher than that of the alloy and molding, 1. A method for producing a porous metal body in which metal salts are removed.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

次に本発明の方法を詳細に説明づる。 Next, the method of the present invention will be explained in detail.

本発明に用いられる金属は、−般単体金属或いはそれら
の合金(以下金属という)で、例えばAJXSn、Pb
、Bi、Mn、Si、Ng、Zn、Cd、L i 、C
LJ、Fe等t3 J: Uそれらの合金がいずれも使
用出来る。
The metal used in the present invention is a general elemental metal or an alloy thereof (hereinafter referred to as metal), such as AJXSn, Pb
, Bi, Mn, Si, Ng, Zn, Cd, Li, C
LJ, Fe, etc. t3 J: U Any of these alloys can be used.

また、造孔に使用される金属塩は、熱に対して安定で、
混合される金属より融点が高く、かつ金属に対して安定
で、溶媒に溶解することが必要である。例えば塩化コバ
ルト(COCl2)、W止揚(SnC+2)、塩化カド
ミウム(CdC12)、塩化カルシウム(CaC1z)
、塩化第一鉄(FeC12)、塩化第一・銅(CLJ 
CI ) 、gA化第二銅(CuCl2)、塩化ベリリ
ウム(8CCIz)、塩化マグネシウム(MQClz)
、塩化マンガン(MnC12)、塩化リチウム(1−t
cIz)、塩化セリウム(CeClt)、等があげられ
゛、多孔質化する金属の種類によって選択される。
In addition, the metal salts used for pore formation are stable against heat,
It is necessary that the melting point is higher than that of the metal to be mixed, that it is stable to the metal, and that it is soluble in the solvent. For example, cobalt chloride (COCl2), W chloride (SnC+2), cadmium chloride (CdC12), calcium chloride (CaC1z)
, ferrous chloride (FeC12), copper chloride (CLJ)
CI ), cupric chloride (CuCl2), beryllium chloride (8CCIz), magnesium chloride (MQClz)
, manganese chloride (MnC12), lithium chloride (1-t
cIz), cerium chloride (CeClt), etc., and are selected depending on the type of metal to be made porous.

また、上記金属塩を除去するF?媒としては、金属塩を
溶解し、かつ多孔質化する金属を腐蝕したり、強く反応
しないものであれば、特に制限はないが、沸点、毒性等
の物性から、例えば水、エチルアルコール、アセトン、
酢酸エチル、等があげられ、特に取扱いの容易なことか
ら、水、エタノールが好適である。
Also, F? to remove the metal salts mentioned above? There are no particular restrictions on the medium as long as it dissolves the metal salt and does not corrode or strongly react with the metal that becomes porous, but due to its physical properties such as boiling point and toxicity, water, ethyl alcohol, acetone, etc. ,
Examples include ethyl acetate, and water and ethanol are particularly preferred because they are easy to handle.

上記造孔用の金属塩および溶媒は、目的とする金属多孔
質体の原料となる金属の種類によって、その組合せ、種
類が選択される。
The combination and type of the metal salt and solvent for pore-forming are selected depending on the type of metal used as the raw material for the intended metal porous body.

次に金属多孔質体の製法をぶ(明する。本発明の方法は
、通常の鋳造、粉末冶金の技術をそのまま用い、組成の
一成分として金属塩を混入し、成形体とした後、溶媒で
」−記金属塩を除去すればよい。
Next, we will explain the manufacturing method of the porous metal body.The method of the present invention uses ordinary casting and powder metallurgy techniques as they are, mixes metal salt as a component of the composition, forms a molded body, and then It is sufficient to remove the metal salt.

したがって、焼結、押出し、圧延、急速冷却等の加二r
法をそのまま用いることが出来る。
Therefore, processing such as sintering, extrusion, rolling, rapid cooling, etc.
You can use the method as is.

例えば、所定の粒度の金属粉末と金属塩粉末とを所定の
割合に混合し、加熱、加圧成形して金属焼結体をつくり
、この成形体を溶媒によって洗浄し、上記金属塩を溶出
除去して金属多孔質体とする方法、或いは金属を溶融し
、これに金属塩粉末を添加混合したものを薄層に成形し
て、金属塩が、固化した金属の面にあられれるようにし
て、これを溶媒で洗浄して金属塩を除去する方法などが
ある。
For example, a metal powder with a predetermined particle size and a metal salt powder are mixed in a predetermined ratio, heated and press-molded to create a metal sintered body, and this molded body is washed with a solvent to elute and remove the metal salt. or by melting the metal and adding and mixing metal salt powder to the metal and forming it into a thin layer so that the metal salt is deposited on the surface of the solidified metal. There is a method of washing this with a solvent to remove metal salts.

上記溶媒で金属塩を除去゛するには、溶媒で洗浄する方
法、成形体を溶媒に浸漬し、超音波をかけて振動する方
法、加圧した溶媒を吹付ける方法、加熱溶媒で洗浄する
方法等があるが、上記方法に限定されるものではない。
Metal salts can be removed using the above solvents by washing with a solvent, immersing the molded body in a solvent and vibrating it with ultrasonic waves, spraying a pressurized solvent, or washing with a heated solvent. etc., but the method is not limited to the above method.

上記方法によってつくられる金属多孔質体(5工金属塩
の粒度、金属との混合割合を選択することににって空孔
率は自由に調整可能で、また、成形時には金属塩が存在
するので、空孔の消失を懸合することなく、加熱下、充
分な加圧によって成形することが出来るのひ、成形体の
強度は極めて大きくなり、かつ所望の空孔率の多孔?(
体が容易に得られる。
The porous metal body produced by the above method (the porosity can be freely adjusted by selecting the particle size of the metal salt and the mixing ratio with the metal, and since the metal salt is present during molding) It is possible to mold the molded product by applying sufficient pressure under heat without worrying about the disappearance of pores, and the strength of the molded product is extremely high, and the porous material has the desired porosity.
body is easily obtained.

〔実施例〕〔Example〕

次に実施例、比較例を示して本発明の詳細な説明する。 Next, the present invention will be explained in detail by showing Examples and Comparative Examples.

実施例1 アルミニウム合金粉末(JIS#3004)と塩化マグ
ネシウム粉末を重h1比で5=1に混合し、9IMφの
金をに40m9を充填し、1 t / ciで加圧しな
がら、500℃に10分間保持して焼結した。
Example 1 Aluminum alloy powder (JIS #3004) and magnesium chloride powder were mixed in a weight/h1 ratio of 5=1, 40 m9 of 9IMφ gold was filled into the tank, and the mixture was heated to 500°C for 10 min while pressurizing at 1 t/ci. It was held for a minute to sinter.

冷却後、成形されたペレットを100dのエタノール中
に入れ、超音波によって振動させ、塩化マグネシウムを
溶出させた。これを乾燥して、各種の測定を行なった。
After cooling, the molded pellets were placed in 100 d of ethanol and vibrated by ultrasonic waves to elute magnesium chloride. This was dried and various measurements were performed.

その結果、厚みは50μ汎、嵩密度が1.27 g/C
m’、空孔率は51%で、引張強度は15 K9 / 
ms’であった。
As a result, the thickness was 50μ and the bulk density was 1.27 g/C.
m', porosity is 51%, tensile strength is 15 K9/
It was ms'.

実施例2 重量比で、アルミニウム粉末:マグネシウム粉末:亜鉛
粉末:塩化マンガン粉末を、64:8:8:20の割合
で混合し、これを内径9mφの金型1c20#l!l充
填して、1.5t10+lの加圧下、480℃に30分
間保持してペレットを作成した。
Example 2 Aluminum powder: Magnesium powder: Zinc powder: Manganese chloride powder was mixed in a weight ratio of 64:8:8:20, and this was put into a mold of 1c20#l with an inner diameter of 9mφ! 1 was filled and held at 480° C. for 30 minutes under a pressure of 1.5t10+1 to form pellets.

このベレットをエタノールを入れたソックスレー抽出器
で3時間処理洗浄を行ない、多孔質体とした。これを乾
燥して各種の測定を行なった。その結果大きさ9 mm
φ、重さ16η、厚み550μm、嵩密度0.469/
cdで空孔率は83%であり、引張り強さは25Kg/
u”であった。
This pellet was processed and washed for 3 hours using a Soxhlet extractor containing ethanol to form a porous material. This was dried and various measurements were performed. The resulting size is 9 mm.
φ, weight 16η, thickness 550μm, bulk density 0.469/
CD, the porosity is 83%, and the tensile strength is 25Kg/
It was "u".

実施例3 重量比としてアルミニウム:マグネシウム:マンガン:
シリカを94:4:1 :0.4の割合に溶融した合金
溶湯中に、合金溶湯に対して3Qwt%の塩化マグネシ
ウム粉末を添加混合し、混相状態となった溶湯を、10
.OOOrpmで回転している21Nlのローラの間に
注下し、合金箔を作成した。この合金箔を水槽に浸漬し
、超音波で振動を与え、塩化マグネシウムを溶出させた
。得られた合金箔は、厚み150μm、嵩密度0.4’
jlcdで、空孔率は85%の多孔質体であり、引張り
強度は15Kg/−であった。
Example 3 Aluminum: Magnesium: Manganese as a weight ratio:
Magnesium chloride powder of 3Qwt% relative to the molten alloy was added and mixed into the molten alloy containing silica in a ratio of 94:4:1:0.4, and the molten metal in a mixed phase state was mixed with 10% of the molten alloy.
.. It was poured between 21Nl rollers rotating at OOOrpm to create an alloy foil. This alloy foil was immersed in a water tank and vibrated with ultrasonic waves to elute magnesium chloride. The obtained alloy foil has a thickness of 150 μm and a bulk density of 0.4'
It was a porous body with a porosity of 85% and a tensile strength of 15 kg/-.

比較例1 塩化マグネシウム粉末を添加せず、金型に60η充填し
た他は、実施例1と同じ条件で加圧、加熱して焼結体を
造った。このベレットは、厚み4C1m、嵩密度2.3
5g/ciで空孔率は9.6%であった。
Comparative Example 1 A sintered body was produced by pressing and heating under the same conditions as in Example 1, except that no magnesium chloride powder was added and the mold was filled with 60η. This pellet has a thickness of 4C1m and a bulk density of 2.3
The porosity was 9.6% at 5 g/ci.

〔効果〕〔effect〕

以上述べたように、本発明の方法は、金属と金属塩粉末
とを混合し、これを成形して、L記金屈塩を溶媒によっ
て除去するので、従来yJ漬することの出来なかった強
度の高い高空孔率の金属多孔質体が容易に製造可能で、
ざらに空孔の径や空孔率を自由に調整出来るなど、多く
の長所を右する慶れた方法である。
As described above, the method of the present invention mixes metal and metal salt powder, molds the mixture, and removes the metal salt with a solvent. Porous metal bodies with high porosity can be easily produced.
This is an advantageous method that offers many advantages, such as the ability to freely adjust the pore diameter and porosity.

Claims (4)

【特許請求の範囲】[Claims] (1)単体金属或いは合金と、この単体金属或いは合金
より融点が高い所定の粒度の金属塩粉末とを混合し成形
した後、上記金属塩を除去することを特徴とする金属多
孔質体の製造法。
(1) Production of a metal porous body characterized by mixing a single metal or an alloy and a metal salt powder of a predetermined particle size and having a higher melting point than the single metal or alloy, molding the mixture, and then removing the metal salt. Law.
(2)単体金属または合金が所定の粒度の粉末である特
許請求の範囲第1項記載の金属多孔質体の製造法。
(2) The method for producing a porous metal body according to claim 1, wherein the single metal or alloy is a powder with a predetermined particle size.
(3)単体金属または合金が溶融状態の金属である特許
請求の範囲第1項記載の金属多孔質体の製造法。
(3) The method for producing a porous metal body according to claim 1, wherein the single metal or alloy is a metal in a molten state.
(4)金属塩が、単体金属或いは合金に対して安定で、
かつ上記単体金属或いは合金を侵さない溶媒に対して可
溶である特許請求の範囲第1、2、3項いずれかに記載
の金属多孔質体の製造法。
(4) The metal salt is stable with respect to single metals or alloys,
The method for producing a porous metal body according to any one of claims 1, 2, and 3, which is soluble in a solvent that does not attack the single metal or alloy.
JP15074786A 1986-06-27 1986-06-27 Production of porous metallic body Pending JPS637343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15074786A JPS637343A (en) 1986-06-27 1986-06-27 Production of porous metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15074786A JPS637343A (en) 1986-06-27 1986-06-27 Production of porous metallic body

Publications (1)

Publication Number Publication Date
JPS637343A true JPS637343A (en) 1988-01-13

Family

ID=15503535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15074786A Pending JPS637343A (en) 1986-06-27 1986-06-27 Production of porous metallic body

Country Status (1)

Country Link
JP (1) JPS637343A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040011853A (en) * 2002-07-31 2004-02-11 최성조 Process method for the making micropore on the metal surface
JP2011117066A (en) * 2009-10-31 2011-06-16 Furukawa-Sky Aluminum Corp Porous metal and method for producing the same
WO2013164536A2 (en) 2012-05-04 2013-11-07 Disasolar Photovoltaic module and method for manufacturing same
JPWO2013103043A1 (en) * 2012-01-06 2015-05-11 株式会社Uacj Method for producing porous aluminum
JP2017093483A (en) * 2015-11-18 2017-06-01 シチズン時計株式会社 Metallic ornament and manufacturing method thereof
WO2017171510A1 (en) * 2016-04-01 2017-10-05 주식회사 엘지화학 Method for producing metal foam
KR20170113413A (en) * 2016-04-01 2017-10-12 주식회사 엘지화학 Preparation method for metal foam

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040011853A (en) * 2002-07-31 2004-02-11 최성조 Process method for the making micropore on the metal surface
JP2011117066A (en) * 2009-10-31 2011-06-16 Furukawa-Sky Aluminum Corp Porous metal and method for producing the same
JPWO2013103043A1 (en) * 2012-01-06 2015-05-11 株式会社Uacj Method for producing porous aluminum
WO2013164536A2 (en) 2012-05-04 2013-11-07 Disasolar Photovoltaic module and method for manufacturing same
JP2017093483A (en) * 2015-11-18 2017-06-01 シチズン時計株式会社 Metallic ornament and manufacturing method thereof
WO2017171510A1 (en) * 2016-04-01 2017-10-05 주식회사 엘지화학 Method for producing metal foam
KR20170113413A (en) * 2016-04-01 2017-10-12 주식회사 엘지화학 Preparation method for metal foam
CN108883470A (en) * 2016-04-01 2018-11-23 株式会社Lg化学 The method for manufacturing metal foam
JP2019510883A (en) * 2016-04-01 2019-04-18 エルジー・ケム・リミテッド Method of manufacturing metal foam
US11298745B2 (en) 2016-04-01 2022-04-12 Lg Chem, Ltd. Method for manufacturing metal foam

Similar Documents

Publication Publication Date Title
US2893102A (en) Article fabrication from powders
JPH01129902A (en) Method for processing parts from granular material and feed raw material
CZ297211B6 (en) Mixture of two particulate phases used in the production of half-finished product that can be sintered at higher temperatures, process for producing such half-finished product that can be sintered at higher temperatures and process for producing meta
JPS58157981A (en) Manufacture of metallic porous body
JP3497461B2 (en) Method for producing porous metal
JPS637343A (en) Production of porous metallic body
US3138856A (en) Method of producing clad porous metal articles
JP2001515140A (en) Alloys for producing metal foams using powders containing nucleation additives
US4849163A (en) Production of flat products from particulate material
US20060118984A1 (en) Method for producing porous sintered bodies
JP2006513319A (en) Method for producing metal foam
JP2009228025A (en) Precursor, foam metal molded body, and their production method
US4188450A (en) Shell investment molds embodying a metastable mullite phase in its physical structure
JPS60184651A (en) Manufacture of porous metallic body
JPH058241B2 (en)
US3275424A (en) Clad porous metal articles
JPH0260942A (en) Porous metallic object and its production
JP3090873B2 (en) Mold and its manufacturing method
US3157926A (en) Making fine grained castings
JPS5857483B2 (en) Manufacturing method for copper-based porous sintered parts
US3510277A (en) Metallic article
JPH0151521B2 (en)
JPH09324229A (en) Production of titanium carbide particle dispersion type metal-matrix composite material
JP2000104130A (en) Manufacture of porous metal
JPS605065A (en) Powder formed body dewaxing process