JPS637304A - Abrasive grain incrusted wire and its production - Google Patents
Abrasive grain incrusted wire and its productionInfo
- Publication number
- JPS637304A JPS637304A JP15010886A JP15010886A JPS637304A JP S637304 A JPS637304 A JP S637304A JP 15010886 A JP15010886 A JP 15010886A JP 15010886 A JP15010886 A JP 15010886A JP S637304 A JPS637304 A JP S637304A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- wire
- abrasive
- powder
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000006061 abrasive grain Substances 0.000 title abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 84
- 239000002245 particle Substances 0.000 claims abstract description 58
- 239000010410 layer Substances 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 238000005554 pickling Methods 0.000 claims abstract description 6
- 238000000137 annealing Methods 0.000 claims abstract description 5
- 239000002344 surface layer Substances 0.000 claims abstract description 5
- 238000007789 sealing Methods 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 195
- 239000002184 metal Substances 0.000 claims description 195
- 238000000034 method Methods 0.000 claims description 29
- 238000005491 wire drawing Methods 0.000 claims description 21
- 239000010409 thin film Substances 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 8
- -1 cemented carbide Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 238000001192 hot extrusion Methods 0.000 claims description 3
- 238000005098 hot rolling Methods 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 abstract description 26
- 238000000227 grinding Methods 0.000 abstract description 18
- 238000003466 welding Methods 0.000 abstract description 5
- 238000010622 cold drawing Methods 0.000 abstract description 3
- 238000012856 packing Methods 0.000 abstract 1
- 239000010432 diamond Substances 0.000 description 33
- 229910003460 diamond Inorganic materials 0.000 description 33
- 239000000463 material Substances 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 238000007747 plating Methods 0.000 description 12
- 238000001125 extrusion Methods 0.000 description 10
- 238000011049 filling Methods 0.000 description 10
- 239000011812 mixed powder Substances 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000012670 alkaline solution Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229910000975 Carbon steel Inorganic materials 0.000 description 6
- 239000010962 carbon steel Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 2
- 241000723346 Cinnamomum camphora Species 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 2
- 229960000846 camphor Drugs 0.000 description 2
- 229930008380 camphor Natural products 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 229910052652 orthoclase Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 description 1
- 102100031520 MAPK/MAK/MRK overlapping kinase Human genes 0.000 description 1
- 241000510551 Prangos pabularia Species 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- KWLSQQRRSAWBOQ-UHFFFAOYSA-N dipotassioarsanylpotassium Chemical compound [K][As]([K])[K] KWLSQQRRSAWBOQ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010399 yugan Substances 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は硬質材料等の切断、研削或いは面取り加工用の
金属ワイヤ、更に詳しくは表面層に均一かつ、強固に砥
粒粉末を配列保持せしめた切断並びに研削加工用ワイヤ
ならびにその製造方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention is a metal wire for cutting, grinding, or chamfering hard materials, etc., and more specifically, it is a metal wire for cutting, grinding, or chamfering hard materials, etc., and more specifically, abrasive powder is uniformly and firmly arranged and maintained on the surface layer. The present invention relates to a cutting and grinding wire and a method for manufacturing the same.
(従来の技術) 近年、セラミック等硬質材料、或いはシリコン。(Conventional technology) In recent years, hard materials such as ceramics, or silicon.
カリウム砒素等の半導体材料の切断、さらには金属加工
材料の微細通札内の面取加工などに金属ワイヤを用いる
ことが検討、実施されている。The use of metal wires for cutting semiconductor materials such as potassium arsenide, and for chamfering inside fine tags of metal processing materials has been studied and implemented.
そして、それに用いるワイヤとしては、従来より非常に
強度の高い高抗張力線材、所謂、ソーワイヤが使用され
ているが、この場合、その切断等の加工はワイヤと被加
工材との間に遊離砥粒を介在せしめ、研削作用は摩擦力
によってのみ行われることから、加工効率が悪いという
問題がある。The wire used for this purpose is a so-called saw wire, which is a high tensile strength wire rod with extremely high strength. Since the grinding action is performed only by frictional force, there is a problem of poor processing efficiency.
又、切断の場合、被切断材とワイヤとの間に高電圧をか
け、その間での放電によって切断する、所謂、放電ワイ
ヤカットと称される方法があるが、この方法では被切断
材が導電性を有する材料のみに限定されるという問題が
ある。In addition, in the case of cutting, there is a method called discharge wire cutting, in which a high voltage is applied between the material to be cut and the wire, and the cutting is performed by electric discharge between them. There is a problem in that it is limited only to materials that have properties.
そのために最近では線材表面にダイヤモンドの粉末をメ
ツキ法によりコーティングしたダイヤモンドワイヤが新
たに開発され、該ワイヤを用いて表面のダイヤモンド粉
末の研削力により効率よく加工する方法が検討され始め
てきたが、この方法においても、主としてCuメツキや
Niメツキによりワイヤ表面に単に付着されているのみ
のダイヤモンド粉末は付着力が弱く、かつワイヤの表面
全周に亘っての均一な配列形成が困難であることから、
通常のダイヤモンド砥石製造技術を応用して、ダイヤモ
ンドワイヤの製造に際し、Ni、Cu等通常のボンド金
属粉末にダイヤモンド粉末を混入し該混合材をワイヤ表
面全周に亘り焼結固定する方法も想起されるところであ
る。To this end, a new diamond wire has recently been developed in which the surface of the wire is coated with diamond powder using the plating method, and studies have begun to consider methods for efficiently processing the wire using the grinding force of the diamond powder on the surface. In this method, diamond powder that is simply attached to the wire surface mainly by Cu plating or Ni plating has a weak adhesion force, and it is difficult to form a uniform arrangement over the entire circumference of the wire surface.
When manufacturing diamond wires by applying ordinary diamond grinding wheel manufacturing technology, it is also possible to mix diamond powder into ordinary bond metal powders such as Ni and Cu, and sinter and fix the mixed material over the entire circumference of the wire surface. It is a place where
(発明が解決しようとする問題点)
しかしながら、上記ポンド金属粉末を用い、これに混入
したダイヤモンド粉末をワイヤの表面全周に亘って焼結
固定せしめることが、確かに理想的な方法ではあるとし
ても、現時点においては、先ず、このような長尺、絹物
のワイヤを通常の焼結方法で製造することは到底、不可
能である。(Problem to be Solved by the Invention) However, it is certainly an ideal method to use the above-mentioned pound metal powder and sinter and fix the diamond powder mixed therein over the entire surface of the wire. However, at present, it is absolutely impossible to manufacture such a long silk wire using a normal sintering method.
−方、現在銅やアルミ被覆鋼線等のような二重構造の線
は一般的に用いられているが、本発明が目的とするよう
な(CBN十金属)−綱線を単なる二重構造鋼線である
として従来の二重構造線製造技術をそのまま適用し製線
するとしても、例えば伸線工程においてCBN粉末は伸
線用ダイスを甚だしく攻撃して摩耗せしめることから、
実用的にみて従来技術による伸線加工は不可能である。- On the other hand, currently double-structured wires such as copper or aluminum-coated steel wires are generally used, but the (CBN ten-metal) wires as the object of the present invention are simply double-structured wires. Even if the conventional double structure wire manufacturing technology is applied to make the steel wire, for example, in the wire drawing process, CBN powder will severely attack the wire drawing die and cause it to wear out.
From a practical point of view, wire drawing using conventional techniques is impossible.
更にまた、従来のメツキ法によりなるダイヤモンドワイ
ヤを用いての切断並びに研削加工時において、被加工材
が鉄系材料の場合にはワイヤ表面のダイヤモンド粉末と
鉄との間での反応が生じ易く、加工し難いという根本的
な問題があり、ダイヤモンド粉末を用いて加工を継続し
た場合ダイヤモンド粉末は急速に摩滅してその用をなさ
なくなり、経済性の点より使用に耐えない。Furthermore, when cutting and grinding using a diamond wire using the conventional plating method, if the workpiece is a ferrous material, a reaction tends to occur between the diamond powder on the wire surface and the iron. The fundamental problem is that it is difficult to process, and if processing continues using diamond powder, the diamond powder will rapidly wear out and become useless, making it unusable from an economic point of view.
本発明は、以上の点に鑑み、更に砥粒範囲を拡大し、か
つ、その効果的な付着手段を見出すことにより、前記ワ
イヤの表面層内に均一かつより強固に有効砥粒粉末を配
設保持せしめ、切断、研削加工機能を向上せしめること
を目的とするものである。In view of the above points, the present invention further expands the range of abrasive grains and finds an effective means for adhering the abrasive grains, thereby distributing effective abrasive powder uniformly and more firmly within the surface layer of the wire. The purpose is to improve holding, cutting, and grinding functions.
(問題点を解決するための手段)
次に上記の目的に適合する本発明の特徴を実施例に対応
する第1〜3図を用いて説明すると、本発明は先ず、所
要金属材料よりなる金属製パイプ(1)の中心部に該パ
イプ(1)と同種または異種の金属材料よりなる金属棒
(2)を両者の間に間隙(S)を存して挿入し、所要寸
法の組み立てられた金属体(A)を得て、その間隙(S
)内に金属粉末(4)と硬度6以上の砥粒子(3)を主
体として含有する混合物(D)を充填し、上記金属体(
A)の端部を密閉する。(Means for Solving the Problems) Next, the features of the present invention that meet the above objectives will be explained using FIGS. 1 to 3 corresponding to the embodiments. A metal rod (2) made of the same or different metal material as the pipe (1) is inserted into the center of the manufactured pipe (1) with a gap (S) between them, and the required dimensions are assembled. Obtain the metal body (A) and fill the gap (S
) is filled with a mixture (D) mainly containing metal powder (4) and abrasive particles (3) having a hardness of 6 or more, and the metal body (
Seal the ends of A).
次いで、上記端部を密閉した金属体(A)に対し、焼鈍
、パテンティング等の熱処理、あるいは場合により押出
し、圧延などの熱間加工を施した後、冷間伸線工程に付
し、所要線径の線材とする。Next, the metal body (A) with its ends sealed is subjected to heat treatment such as annealing and patenting, or hot working such as extrusion and rolling as the case may be, and then subjected to a cold wire drawing process to form the desired shape. The wire rod has the same diameter as the wire rod.
そして、上記線材の最外層に位置し残存している金属製
パイプ(1)を研摩、酸洗い等によって除去し、金属粉
末が焼結された金属層(4)′内に前記砥粒子(3)が
均一かつ強固に保持された混合IJ(D)’を中心金属
棒(2)表面に顕出せしめた砥粒インクラストワイヤを
得る。Then, the remaining metal pipe (1) located in the outermost layer of the wire rod is removed by polishing, pickling, etc., and the abrasive particles (3) are placed in the metal layer (4)' where the metal powder is sintered. An abrasive incrust wire is obtained in which a mixed IJ(D)' in which IJ(D)' is uniformly and firmly held is exposed on the surface of the central metal rod (2).
第3図(a)はかくして得られたワイヤ表面金属組織の
1例に係る顕微鏡写真である。FIG. 3(a) is a microscopic photograph of an example of the wire surface metal structure obtained in this manner.
しかして本発明は上記のようにして得られた砥粒インク
ラストワイヤ自体と上記ワイヤを製造する方法を夫々第
1の発明、第2の発明とするものであり、とりわけ、金
属粉末に混合する砥粒子をダイヤモンド粉末、 CBN
(Cubic Boron N1tride)粉末に
限らず、モース硬度6度以上のセラミック。Therefore, the present invention provides the abrasive incrust wire itself obtained as described above and the method for producing the wire as the first invention and the second invention, respectively. The abrasive particles are diamond powder, CBN.
(Cubic Boron N1tride) Not limited to powder, but ceramic with a Mohs hardness of 6 degrees or higher.
超硬合金、ガラスなども使用し得ること、特にBCNや
アルミナ(A It 203) 、窒化珪素(Si3N
4)等のセラミックも使用可能であることは大きな特色
である。Cemented carbide, glass, etc. can also be used, especially BCN, alumina (A It 203), silicon nitride (Si3N), etc.
A major feature is that ceramics such as 4) can also be used.
ここで、モース硬度とは10種の基準となる鉱物と比較
することによって鉱物の硬度を求める経験的な尺度であ
り、基準となる鉱物は軟らかいものく尺度1)から硬い
もの(尺度10)の順に滑石、セソコウ、方解石、ホタ
ル石、リン灰石、正長石9石英、黄玉、鋼玉、ダイヤモ
ンドである。Here, the Mohs hardness is an empirical scale that determines the hardness of a mineral by comparing it with 10 standard minerals, and the standard minerals range from soft (scale 1) to hard (scale 10). In order, they are talc, slagstone, calcite, fluorite, apatite, orthoclase, quartz, yellow jade, corundum, and diamond.
このうち、本発明において用いる砥粒子は通常、硬度6
度の正長石基準より硬いものであり、それ以下では砥粒
インクラストワイヤの性能上、適切でない。Among these, the abrasive particles used in the present invention usually have a hardness of 6
It is harder than the orthoclase standard, and anything less than that is not suitable for the performance of the abrasive incrust wire.
なお、上記砥粒子は通常、金属粉末と混合し、粉末状態
で前記金属製パイプ内の間隙に充填するが、押出しなど
の熱間加工をしないものについては予め造粒して充填す
ることが効果的である。The above abrasive particles are usually mixed with metal powder and filled in the gaps in the metal pipe in powder form, but if the abrasive particles are not subjected to hot processing such as extrusion, it is effective to granulate them in advance and fill them. It is true.
又、補強ならびに間隙ができるよう中心に挿入される金
属体(2)外周に密着させた状態でパイプ状金属(B)
を被嵌するか、または金属薄膜(C)を巻き付けること
も有効である。In addition, the metal body (2) is inserted into the center to provide reinforcement and a gap, and the pipe-shaped metal body (B) is placed in close contact with the outer periphery.
It is also effective to cover the surface with a thin metal film (C) or to wrap it with a metal thin film (C).
この場合、パイプ状金属又は巻きつける金属薄膜には金
属製パイプ、金属棒と同種金属成分の外、異種金属成分
も使用することができる。In this case, in addition to the same type of metal component as the metal pipe or metal rod, a different type of metal component can also be used for the pipe-shaped metal or the metal thin film to be wound.
(作用)
上記の如くして得られた砥粒インクラストワイヤ及びそ
の製造方法によれば別構成となる金属製パイプと中心の
金属体の材質1寸法を各種使用条件に適合する各種成分
の同種又は異種成分を用いて適切な寸法に形成すること
が容易となる。(Function) According to the abrasive incrust wire obtained as described above and its manufacturing method, the metal pipe and the central metal body are made of the same material and have the same dimensions to meet various usage conditions. Alternatively, it becomes easy to form it into an appropriate size using different components.
又、各種使用条件に適合せしめた混合比で予め均質に混
合した各種成分の金属粉末とモース硬度6度以上の砥粒
粉末を主体とする混合物を金属製パイプと金属棒との間
隙に充填密閉することにより熱間、冷間加工を通じて充
填時の混合比、均質性をそのまま保持した状態で製線可
能となり、寿命を増大する。また、混合物の全外周には
金属製パイプ金属が被覆した状態で存在し、伸線加工時
における伸線用ダイスは上記外周の金属製パイプのみに
接触して延伸することになり、砥粒子粉末と接触するこ
とがなく、砥粒子粉末を強固に付着せしめる。In addition, a mixture consisting mainly of metal powder of various components and abrasive grain powder with a Mohs hardness of 6 degrees or higher, which has been homogeneously mixed in advance in a mixing ratio adapted to various usage conditions, is filled and sealed in the gap between the metal pipe and the metal rod. By doing so, it becomes possible to manufacture wires while maintaining the mixing ratio and homogeneity during filling through hot and cold working, thereby increasing the service life. In addition, the entire outer periphery of the mixture is covered with metal pipe metal, and during wire drawing, the wire drawing die contacts and draws only the metal pipe on the outer periphery, and the abrasive particle powder The abrasive powder adheres firmly to the abrasive powder without contacting the surface.
そして、得られた所要線径の線材は、その外周が金属製
パイプ成分のみであるから、該成分を除去するとその内
層にあった砥粒子を含む混合層が線材の最表面に顕出し
、砥粒インクラストワイヤが容易かつ安価に製造される
。The outer periphery of the obtained wire with the required wire diameter consists only of the metal pipe component, so when this component is removed, a mixed layer containing abrasive particles that was in the inner layer emerges on the outermost surface of the wire, and the abrasive Grain-in-crust wire is easily and inexpensively produced.
(実施例) 以下、さらに本発明の具体的実施例を説明する。(Example) Hereinafter, further specific examples of the present invention will be described.
第1図は本発明における金属製パイプに金属体を挿入し
た金属体の該間隙内に金属粉末と砥粒子を主体とする混
合物を充填した状態の構造を示す模式図で(alはその
上面図、(b)は同側断面図である。FIG. 1 is a schematic diagram showing a structure in which a metal body is inserted into a metal pipe according to the present invention, and a mixture mainly composed of metal powder and abrasive particles is filled in the gap of the metal body (al is a top view of the metal body). , (b) is a sectional view of the same side.
図において(A)は上記金属体を示し、(1)は最外周
の金属製パイプ、(2)は中心部の金属棒で、金属棒f
2)は間隙(S)を存して金属製パイプ(1)の中心部
に挿入され、間隙(S)空間にはモース硬変6度以上の
砥粒子(3)と金属粉末(4)との混合物が充填されて
いる。In the figure, (A) shows the metal body, (1) is the outermost metal pipe, (2) is the metal rod in the center, and metal rod f
2) is inserted into the center of the metal pipe (1) with a gap (S), and in the gap (S) are abrasive particles (3) with a Mohs hardness of 6 degrees or more and metal powder (4). is filled with a mixture of
ここで、上記金属体(A)の外周に位置する金属製パイ
プ及び中心部の金属体(2)の素材としては一般に炭素
鋼が用いられるが、使用する条件によってはステンレス
鋼や銅合金等を用いてもよ(、また金属製パイプ(1)
と金属棒(2)の金属材料の材質は各々異なってもよい
。Here, carbon steel is generally used as the material for the metal pipe located on the outer periphery of the metal body (A) and the metal body (2) in the center, but depending on the conditions of use, stainless steel, copper alloy, etc. You can also use metal pipes (1)
The metal material of the metal rod (2) and the metal rod (2) may be different from each other.
なお、金属製パイプ(1)の厚さや金属棒(2)の径。In addition, the thickness of the metal pipe (1) and the diameter of the metal rod (2).
或いは両者間に設ける間隙(S)の幅等は、使用する最
終線材の線径や充填する砥粒子粉末(3)の平均粒度、
更には金属粉末(4)内への砥粒子粉末(3)の混合比
率に応じて適合決定される。Alternatively, the width of the gap (S) provided between the two depends on the wire diameter of the final wire used, the average particle size of the abrasive powder (3) to be filled,
Further, the suitability is determined depending on the mixing ratio of the abrasive powder (3) into the metal powder (4).
又、モース硬度6度以上の砥粒子粉末(3)としては具
体的にはダイヤモンド粉末、CBN粉末の外BCNやア
ルミナ(A I!20:l) 、窒化珪素(SiJ+)
などのセラミックならびに超硬合金、ガラスなどが挙げ
られ、適宜、単一またはブレンドして用いられる。In addition, examples of abrasive powder (3) with a Mohs hardness of 6 degrees or higher include diamond powder, CBN powder, BCN, alumina (AI!20:l), and silicon nitride (SiJ+).
Examples include ceramics, cemented carbide, glass, etc., and can be used singly or in a blend as appropriate.
更に前記砥粒子粉末(3)を混合する金属粉末(4)は
−般にNi粉末やNz基合金粉末が用いられているが、
これ以外にもCu粉末やCu基合金粉末。Furthermore, as the metal powder (4) with which the abrasive particle powder (3) is mixed, Ni powder or Nz-based alloy powder is generally used.
In addition to this, there are also Cu powder and Cu-based alloy powder.
又、CO粉末やCO基合金粉末など、−般の砥粒子工具
製造に用いられるボンド金属粉末であってもよい。そし
て、混合粉末(D)を充填し終えた金属体(A)の間隙
(S)部の両端には適宜蓋材等を用いて蓋止溶接して密
閉した後、焼鈍又はパテンティング等の熱処理もしくは
押出し、又は圧延等の熱間加工を施し、次いで冷間伸線
加工によって所要の線径の線材とする。Alternatively, bonded metal powder used in the production of general abrasive tools, such as CO powder or CO-based alloy powder, may be used. Then, after filling the mixed powder (D) with the metal body (A), the gap (S) is sealed by welding a cap material to both ends of the gap (S), and then is subjected to heat treatment such as annealing or patenting. Alternatively, it is subjected to hot working such as extrusion or rolling, and then subjected to cold wire drawing to obtain a wire rod of a desired wire diameter.
この際、熱間加工中に、内部に充填している金属粉末(
4)が、金属製パイプ(1)や中心の金属棒(2)に拡
散するのが好ましくない場合には金属製パイプ(1)内
面や、中心の金属体(2)外周に予め銅メツキ等を施し
て拡散阻止用の層を作っておき、このメツキ層により拡
散現象を防止することも可能である。At this time, during hot working, the metal powder (
If it is undesirable for 4) to diffuse into the metal pipe (1) or the central metal rod (2), the inner surface of the metal pipe (1) or the outer periphery of the central metal body (2) should be coated with copper plating, etc. in advance. It is also possible to prepare a layer for preventing diffusion by applying a plating layer to prevent the diffusion phenomenon.
又、例えばダイヤモンド砥粒子とNi粉末との混合物を
前記間隙に充填する場合にはダイヤモンドとNiの比重
は夫々、3.5g/cffl及び8.9g/crlであ
ることから、その比重差のために両粉末が往々、偏析分
離する傾向を示す。そしてこのように偏析して充填され
た混合物より出発して作られたものは、殊に熱間押出し
などを行わないときには砥粒子の露出が場所により甚だ
しく粗密の差を示し製品として不具合を起こす。For example, when filling the gap with a mixture of diamond abrasive particles and Ni powder, the specific gravity of diamond and Ni is 3.5 g/cffl and 8.9 g/crl, respectively, so due to the difference in specific gravity, Both powders often show a tendency to segregate. In products made from such a segregated and packed mixture, especially when hot extrusion is not carried out, the exposed abrasive particles exhibit significant differences in density depending on the location, causing problems as a product.
そこで、これを防止するためにダイヤモンド砥粒子とN
i粉末との混合物に対し造粒処理を施し、球状の粒塊よ
りなる粉末となし、上記金属製パイプと中心の金属棒と
の間の間隙に充填する。Therefore, in order to prevent this, diamond abrasive particles and N
The mixture with powder i is subjected to a granulation process to form a powder consisting of spherical granules, and the powder is filled into the gap between the metal pipe and the central metal rod.
このようにすれば、ダイヤモンド砥粒子はNiより分離
、偏析の心配はない。In this way, diamond abrasive particles are less likely to be separated or segregated than Ni.
造粒処理を行うには通常、バインダーを添加材として加
えるが、有機化合物などのバインダーを用いると、これ
がため後工程での処理の際、粉末の粒子間の接合を阻害
することがある。A binder is usually added as an additive to perform the granulation process, but if a binder such as an organic compound is used, this may inhibit the bonding between powder particles during subsequent processing.
従って、上記間隙に造粒粉を充填した後、加熱してバイ
ンダーを分解蒸発させて上記の障害原因を排除せしめる
のが効果的である。Therefore, it is effective to fill the gap with granulated powder and then heat it to decompose and evaporate the binder to eliminate the cause of the trouble.
以下、引き続き、本発明方法により砥粒インクラストワ
イヤを製造する具体的実施例を掲げる。Hereinafter, specific examples of manufacturing an abrasive incrust wire by the method of the present invention will be listed.
実施例1
第1図に示す金属体(A)において、その素材として外
周の金属製パイプ(1)にJIS−3S41鋼材、中心
部の金属棒(2)にJ I S−5K71il材を夫々
用いた。このときの金属体(A)の寸法としては、最外
径70m■φ、最外周の金属製パイプの厚さ5龍1間隙
(S)の幅は8龍であった。Example 1 In the metal body (A) shown in Fig. 1, JIS-3S41 steel was used for the outer metal pipe (1), and JIS-5K71il was used for the central metal rod (2). there was. The dimensions of the metal body (A) at this time were an outermost diameter of 70 m.phi., a thickness of the outermost metal pipe of 5 x 1, and a width of the gap (S) of 8 x.
そして、砥粒子としてダイヤモンド粒子を用い純Ni粉
末と0.5重量%の炭素を混合したものに平均粒度15
0μmのダイヤモンド微粒を体積比で13%混合した混
合物(D)を充填した後、金属体(A)の間隙部両端を
溶接密閉した。Diamond particles were used as abrasive particles, and a mixture of pure Ni powder and 0.5% by weight of carbon was mixed with an average particle size of 15%.
After filling the mixture (D) containing 13% by volume of diamond fine particles of 0 μm, both ends of the gap of the metal body (A) were sealed by welding.
その後、1000℃で2時間加熱し、押出比15で押出
しを行った。更に熱処理及び冷間伸線加工を繰り返しl
、Q+uφの線材とした。このときの引張強度は182
kg/u+2であった。第3図(b)はその断面の金属
組織の1例を示す顕微鏡写真である。Thereafter, it was heated at 1000° C. for 2 hours and extruded at an extrusion ratio of 15. Further heat treatment and cold wire drawing are repeated.
, Q+uφ wire rod. The tensile strength at this time is 182
kg/u+2. FIG. 3(b) is a micrograph showing an example of the metal structure of the cross section.
次に上記得られた線材を濃度35%の塩酸溶液中に15
分間浸漬して線材の最外層に残存する金属製パイプの炭
素鋼(SS41)を溶解除去し、アルカリ溶液で中和し
、洗浄した。Next, the wire rod obtained above was placed in a hydrochloric acid solution with a concentration of 35% for 15 minutes.
The carbon steel (SS41) of the metal pipe remaining on the outermost layer of the wire was dissolved and removed by dipping for a minute, neutralized with an alkaline solution, and washed.
第3図(alはこのようにして得たダイヤモンド砥粒イ
ンクラストワイヤの表面金属組織状態の1例を示す顕微
鏡写真で、前記本発明方法によってダイヤモンド微粒が
ワイヤ外周に均一かつ強固に付着、埋め込まれているこ
とが分かる。Figure 3 (al) is a micrograph showing an example of the surface metallographic structure of the diamond abrasive incrust wire obtained in this way. It can be seen that
そして、上記のようにして得られた砥粒インクラストワ
イヤを鉄系素材の切断ならびに研削加工に利用したとこ
ろ、従来のメツキ法によるダイヤモンドワイヤでは表面
のダイヤモンド粉末が被加工鉄材表面の鉄との反応によ
る微菌な摩滅を生じ、加工が困難であったのに対し、極
めて良好な切削並びに切削加工が可能であった。When the abrasive incrust wire obtained as described above was used for cutting and grinding iron-based materials, it was found that with the diamond wire produced by the conventional plating method, the diamond powder on the surface did not interact with the iron on the surface of the workpiece. Although microbial abrasion caused by the reaction made machining difficult, extremely good cutting and machining were possible.
実施例2
砥粒子として40メツシユ、平均粒度150μmのダイ
ヤモンド微粒を用い、Ni粉末(カーボニニル微粉)に
体積比で4%混合したものに、更にバインダーとしてカ
ンファーを0.5重量%添加し、湿式噴霧法により予め
造粒処理を行い、粒塊よりなる粉末を作製した。Example 2 40 mesh diamond particles with an average particle size of 150 μm were used as abrasive particles, and 4% by volume Ni powder (carboninyl fine powder) was mixed with 0.5% by weight of camphor as a binder, and wet spraying was performed. A powder consisting of agglomerates was prepared by performing granulation treatment in advance according to the method.
そして、次に上記造粒された造粒粉を前記実施例1と同
様の金属体(A)の間隙内に充填し、間隙部端部を溶接
密閉した後、300℃のエアバス中で1時間保持し、カ
ンファーを昇華せしめた。Next, the granulated powder was filled into the gap of the metal body (A) similar to that in Example 1, and the ends of the gap were welded and sealed, and then placed in an air bath at 300°C for 1 hour. The camphor was sublimated.
その後、押出しを行うことなく、熱処理及び冷間伸線加
工を繰り返し、1.2鰭φの線材とした。Thereafter, heat treatment and cold wire drawing were repeated without extrusion to obtain a wire rod with a diameter of 1.2 fins.
このときの引張強度は180kg/calであった。The tensile strength at this time was 180 kg/cal.
これを鉄系素材の切断ならびに研削加工に用いたところ
、実施例1に比し、何ら遜色のない良好な切断、研削加
工が可能であった。When this was used for cutting and grinding of iron-based materials, it was possible to perform good cutting and grinding that was comparable to that of Example 1.
実施例3
実施例1に示すのと同様構成の金属体(A)の間隙(S
)内に純Ni粉末に平均粒度150μmのCBN粉末(
3)を体積比で13%混合した混合粉末(D)を充填し
た後、金属体(A)の間隙(S)部両端を溶接密閉した
。Example 3 Gap (S) of metal body (A) having the same configuration as shown in Example 1
) with pure Ni powder and CBN powder with an average particle size of 150 μm (
After filling the mixed powder (D) containing 13% by volume of 3), both ends of the gap (S) of the metal body (A) were welded and sealed.
その後、1050℃で2時間加熱し、押出比15で押出
しを行った。更に熱処理及び冷間伸線加工を繰り返しl
、Qmmφの線材とした。この時の引張強度は183k
g/龍”であった。これを濃度35%の塩酸溶液中に1
5分間浸漬して線材の最外層として残存している金属体
(A)最外周部(1)の炭素m(S541)を溶解除去
し、アルカリ溶液中で中和し洗浄した。Thereafter, it was heated at 1050° C. for 2 hours and extruded at an extrusion ratio of 15. Further heat treatment and cold wire drawing are repeated.
, Qmmφ wire rod. The tensile strength at this time is 183k
g/dragon”. This was added to 1 g/dragon in a 35% hydrochloric acid solution.
The wire was immersed for 5 minutes to dissolve and remove the carbon m (S541) of the outermost peripheral part (1) of the metal body (A) remaining as the outermost layer of the wire, and the wire was neutralized and washed in an alkaline solution.
このようにして製造した本発明にかかるワイヤは鉄系素
材の切断ならびに切削加工時において、前記実施各側と
同様、従来のメツキ法によるワイヤに比し、極めて良好
な切断並びに研削加工が可能であった。The wire according to the present invention manufactured in this way can perform extremely better cutting and grinding processing of iron-based materials, as well as the above-mentioned implementations, compared to wires made using the conventional plating method. there were.
実施例4
第1図に示す金属体(A)の素材としては最外周部の金
属製パイプ(1)にJIS−3S41鋼材、中心部の金
属棒(2)にはJ I S5−3K7材を用いた。この
ときの金属体(A)の寸法としては、最大径70Ila
φ、最外周部(1)の厚さ10鶴1間隙(S)の幅4菖
重であった。そして、該間隙(S)内に純Ni粉末に平
均粒度15μmのCBN粉末の砥粒子を体積比で10%
混合した混合粉末(D)を充填した後、金属体(A)の
間隙(S)部の両端を溶接密閉した。Example 4 The metal body (A) shown in Fig. 1 was made of JIS-3S41 steel for the outermost metal pipe (1), and JIS-3S5-3K7 for the metal rod (2) in the center. Using. The dimensions of the metal body (A) at this time are a maximum diameter of 70Ila.
φ, the thickness of the outermost periphery (1) was 10 mm, the width was 4 mm with 1 gap (S). Then, in the gap (S), abrasive particles of CBN powder with an average particle size of 15 μm are added to pure Ni powder at a volume ratio of 10%.
After filling the mixed powder (D), both ends of the gap (S) of the metal body (A) were welded and sealed.
その後、1050℃で2時間加熱し押出比15で押出し
を行った。更に熱処理及び冷間伸線加工を繰り返し0.
2mmφの線材とした。このときの引張強度は209k
g/m”であった。これを濃度35%の塩酸溶液中に2
0分間浸漬して線材の最外層として残存している金属体
(A)最外周部(1)の炭素鋼(SS41)を溶解除去
し、アルカリ溶液で中和し洗浄した。Thereafter, it was heated at 1050° C. for 2 hours and extruded at an extrusion ratio of 15. Furthermore, heat treatment and cold wire drawing are repeated until 0.
A wire rod with a diameter of 2 mm was used. The tensile strength at this time is 209k
g/m". This was dissolved in a 35% hydrochloric acid solution
After being immersed for 0 minutes, the carbon steel (SS41) at the outermost periphery (1) of the metal body (A) remaining as the outermost layer of the wire was dissolved and removed, and the wire was neutralized and washed with an alkaline solution.
このようにして製造したワイヤは従来のメツキ法により
表面にダイヤモンド粉末を付着した同線径のダイヤモン
ドワイヤに比し、後記第1表の結果より明らかなように
CBN粉末砥粒子(3)のワイヤ表面での固着力が強く
、切断スピードを増加させることができると共に著しく
寿命の長いことが明らかとなった。As is clear from the results shown in Table 1 below, the wire manufactured in this way has a wire coated with CBN powder abrasive particles (3), compared to a diamond wire of the same wire diameter with diamond powder attached to the surface by the conventional plating method. It has been found that it has a strong adhesion force on the surface, can increase cutting speed, and has a significantly long life.
第1表に上記対比実験結果の一例を示す。Table 1 shows an example of the results of the above comparison experiment.
(以下、余白)
第1表
実施例5
次に第4図に示す円筒状の金属体(A)の素材として最
外周の金属製パイプ(1)に−殻構造用圧延鋼材(J
I S−5S−41)を、中心部の金属棒(2)には炭
素工具鋼鋼材(JIS−3K7)を用いた。(Hereinafter, blank spaces) Table 1 Example 5 Next, as a material for the cylindrical metal body (A) shown in Fig. 4, the outermost metal pipe (1) was used as a rolled steel material for shell structure (J
IS-5S-41), and carbon tool steel (JIS-3K7) was used for the central metal rod (2).
とのときの円筒状金属体(A)の寸法としては、最外径
70mmφ、金属製パイプ(1)の厚さ5龍1間隙(S
)の幅6Rとした。The dimensions of the cylindrical metal body (A) in this case are: outermost diameter 70 mmφ, thickness of the metal pipe (1) 5 dragons 1 gap (S
) with a width of 6R.
そして上記の間隙(S)内に内径48顛、厚さ2N嘗の
純Ni製チューブ(B)を挿入し、このXiチューブと
外周の金属製パイプ(1)との間隙(S)′に純Ni金
属粉末(4)と平均粒度140μmのCBN砥粒子(3
)を体積比で13%混合した混合粉末(D)・を充填し
た後、金属体(A)の両端の間隙(S)部を溶接密閉し
た。Then, a pure Ni tube (B) with an inner diameter of 48 mm and a thickness of 2 N is inserted into the gap (S), and a pure Ni tube (B) with an inner diameter of 48 mm and a thickness of 2 N is inserted into the gap (S)' between this Xi tube and the outer metal pipe (1). Ni metal powder (4) and CBN abrasive particles (3) with an average particle size of 140 μm
) was filled with a mixed powder (D) in a volume ratio of 13%, and then the gap (S) at both ends of the metal body (A) was sealed by welding.
その後、1050℃で2時間加熱し、押出比15で押出
しを行った。更に熱処理及び冷間伸線加工を繰り返し、
1.0鶴φの線材とした。この時の引張強度は138k
g/mm”であった。Thereafter, it was heated at 1050° C. for 2 hours and extruded at an extrusion ratio of 15. Furthermore, heat treatment and cold wire drawing processing are repeated,
The wire rod had a diameter of 1.0 mm. The tensile strength at this time is 138k
g/mm".
その構造について顕微鏡写真で観察したところ、CBS
砥粒子はパイプ状Ni金属によって中心部から離れてお
り、CBN砥粒子が中心部に喰い込み、切欠きをつける
ことはないことが分かった。When we observed its structure using microscopic photographs, we found that CBS
It was found that the abrasive particles were separated from the center by the pipe-shaped Ni metal, and the CBN abrasive particles bit into the center and did not form a notch.
次にこれを濃度35%の塩酸溶液中に15分間浸漬して
線材の最外層として残存する金属体(A)の外周金属製
パイプの炭素鋼(SS41)を溶解除去してアルカリ溶
液で中和し洗浄した。Next, this is immersed in a hydrochloric acid solution with a concentration of 35% for 15 minutes to dissolve and remove the carbon steel (SS41) of the outer metal pipe of the metal body (A) that remains as the outermost layer of the wire, and neutralized with an alkaline solution. and washed.
この方法により製造したCBN砥粒インクラストワイヤ
は、外周部にはCBN砥粒子(3)が均一に付着してい
ると共に、内部ではCBN砥粒子が中心部に喰い込むこ
とがなく、切欠きのない長寿命のワイヤであった。The CBN abrasive grain incrust wire manufactured by this method has the CBN abrasive particles (3) uniformly attached to the outer periphery, and the CBN abrasive particles do not bite into the center inside the notch. There was no long life wire.
更に、このワイヤは鉄系素材の切断ならびに研削加工に
おいて、従来ダイヤモンドワイヤでは凝着が生じ、加工
が困難であったのに対し、極めて良好な切断並びに研削
加工を行うことができた。Furthermore, this wire was able to perform extremely good cutting and grinding of iron-based materials, whereas conventional diamond wires caused adhesion and were difficult to process.
実施例6
第5図に示す円筒状金属体(A)の素材として最外周部
の金属製パイプ(1)に−殻構造用炭素鋼管(J l5
−3TK30)を、又中心部の金属棒(2)にピアノ線
材(J I S−3WR372B)を用いた。Example 6 As the raw material for the cylindrical metal body (A) shown in FIG.
-3TK30), and piano wire (JIS-3WR372B) was used for the metal rod (2) in the center.
この時の円筒状金属体(A)の寸法としては、最大径2
0重粛、金属製パイプ(1)の厚さ21膳、金属棒(2
)の直径1311とした。The dimensions of the cylindrical metal body (A) at this time are the maximum diameter of 2
0 weight, metal pipe (1) thickness 21, metal rod (2
) with a diameter of 1311.
そして、この金属棒(2)に厚さ0.1龍の純Nt薄膜
帯を0.5mmの厚さに密に巻きつけ、これと金属製パ
イプ(1)との間隙(S)′に純Ni金属粉末と平均粒
度15μmのCBN砥粒子(3)を体積比で13%混合
した混合粉末(D)を充填したのち、金属体(A)の両
端の間隙(S)部を蓋止し、溶接密閉した。Then, a pure Nt thin film band with a thickness of 0.5 mm is tightly wrapped around this metal rod (2), and a pure Nt thin film band with a thickness of 0.5 mm is wrapped around the metal rod (2), and a pure After filling the mixed powder (D), which is a mixture of Ni metal powder and CBN abrasive particles (3) with an average particle size of 15 μm at a volume ratio of 13%, the gaps (S) at both ends of the metal body (A) are covered. Welded and sealed.
その後、850℃に加熱し、次いで大気放冷という熱処
理と冷間伸線を7回繰返し、直径0. 2龍の線材とし
た。この時の引張強度は171に+r/龍2であった。Thereafter, the heat treatment of heating to 850°C and then cooling in the air and cold drawing were repeated seven times, and the wire was drawn to a diameter of 0. Two dragon wire rods were used. The tensile strength at this time was 171+r/Ryu2.
これを濃度35%の塩酸溶液中に20分間浸漬して線材
の最外層として残存する金属体(A)最外周部の金属製
パイプfl)の炭素鋼(STK30)を溶解除去し、ア
ルカリ溶液で中和し洗浄した。This was immersed in a hydrochloric acid solution with a concentration of 35% for 20 minutes to dissolve and remove the carbon steel (STK30) of the metal body (A) and the metal pipe fl at the outermost periphery that remained as the outermost layer of the wire, and then soaked in an alkaline solution. Neutralized and washed.
このようにして製造したCBN砥粒インクラストワイヤ
は従来のパイプ状金属体や金属薄帯を用いず、伸線法に
よって製造する同線径のCBNインクラストワイヤに比
べて、後述する第2表の結果より明らかなように、更に
CBN砥粒子が中心部の金属棒部分に喰い込み、中心部
に切欠きが生じ、破断しやすいというおそれのない著し
く寿命が長いものであった。The CBN abrasive incrust wire manufactured in this way has a higher value as shown in Table 2 below, compared to a CBN incrust wire of the same wire diameter manufactured by the wire drawing method without using a conventional pipe-shaped metal body or metal ribbon. As is clear from the results, there was no fear that the CBN abrasive particles would bite into the metal bar at the center, creating a notch in the center and causing breakage, and the life was extremely long.
第 2 表
実施例7
第1図に示す円筒状金属体(A)の素材として最外周の
金属製パイプ(1)にJ I S−3S41綱材。Table 2 Example 7 As the raw material for the cylindrical metal body (A) shown in FIG. 1, JIS-3S41 wire was used for the outermost metal pipe (1).
中心部の金属棒(2)にはJ I S−3K7鋼材を用
いた。このとき円筒状金属体(A)の寸法としては最外
径70mφ、最外周全最外パイプ(1)の厚さ5嘗■、
間隙(S)の幅8龍とした。そして該間隙(S)内に純
Ni粉末に平均粒度150μmのアルミナ(A A’
zO3)粉末(3)を体積波で13%混合した混合粉末
(D)を充填した後、金属体(A)の間隙(S)部両端
を溶接密閉した。JIS-3K7 steel was used for the metal rod (2) in the center. At this time, the dimensions of the cylindrical metal body (A) are the outermost diameter of 70mφ, the thickness of the entire outermost pipe (1) of 5cm,
The width of the gap (S) was set to 8 dragons. Then, in the gap (S), pure Ni powder is mixed with alumina (A A'
After filling the mixed powder (D) in which 13% of the zO3) powder (3) was mixed by volume wave, both ends of the gap (S) of the metal body (A) were sealed by welding.
その後、1050℃で2時間加熱し、押出比15で熱押
出しを行った。更に熱処理及び冷間伸線加工を繰り返し
1.Ommφの線材とした。この時の引張強度は183
kg/cjであった。これを濃度35%の塩酸溶液中
に15分間浸漬して線材の最外層として残存している金
属体(A)最外周の金属製パイプ(1)の炭素1(SS
41)を溶解除去しアルカリ溶液で中和し洗浄した。Thereafter, it was heated at 1050° C. for 2 hours and hot extruded at an extrusion ratio of 15. Further heat treatment and cold wire drawing are repeated.1. The wire rod had a diameter of 0 mm. The tensile strength at this time is 183
kg/cj. This was immersed in a hydrochloric acid solution with a concentration of 35% for 15 minutes, and the metal body (A) remained as the outermost layer of the wire. Carbon 1 (SS) of the outermost metal pipe (1)
41) was dissolved and removed, neutralized with an alkaline solution, and washed.
このようにして製造した砥粒インクラストワイヤは鉄系
素材の切断並びに研削加工時において、従来のメツキ法
になるダイヤモンドワイヤでは表面のダイヤモンド粉末
が被加工鉄材表面の鉄との反応による微菌な摩滅が生じ
、加工が困難であったのに比し、極めて良好な切断なら
びに研削加工が可能であった。The abrasive incrust wire manufactured in this way is used during cutting and grinding of ferrous materials.In the conventional diamond wire plating method, the diamond powder on the surface reacts with the iron on the surface of the workpiece, causing microorganisms. Although wear occurred and machining was difficult, extremely good cutting and grinding were possible.
実施例8
第1図に示す円筒状金属体(A)の素材として最外周の
金属製パイプ(1)にJIS−3S41鋼材、中心の金
属体(2)にはJ I S5−3KT材を用いた。Example 8 As materials for the cylindrical metal body (A) shown in Figure 1, the outermost metal pipe (1) was made of JIS-3S41 steel, and the central metal body (2) was made of JIS-3S5-3KT material. there was.
この時円筒状金属体(A)の寸法としては、最大径70
1mφ、金属製パイプ(1)の厚さ10mm、間隙(S
)の幅4關とした。そして、該間隙(S)内には純Ni
粉末に砥粒子として平均粒度15μmのアルミナ(A
l z(h)粉末(3)を体積比で10%混合した混合
粉末(D)を充填した後、金属体(A)の間隙(S)部
の両端を溶接密閉した。At this time, the maximum diameter of the cylindrical metal body (A) is 70 mm.
1 mφ, metal pipe (1) thickness 10 mm, gap (S
) width of 4 angles. In the gap (S), there is pure Ni.
Alumina (A) with an average particle size of 15 μm was added to the powder as abrasive particles.
After filling the mixed powder (D) containing 10% by volume of the lz(h) powder (3), both ends of the gap (S) of the metal body (A) were welded and sealed.
その後、1050℃で2時間加熱し押出比15で熱間押
出しを行った。更に熱処理及び冷間伸線加工を繰り返し
0.2m■φの線材とした。このときの引張強度は21
0kg/**2であった。これを濃度35%の塩酸溶液
中に20分間浸漬して洗剤の最外層として残存している
金属体(A)最外周部(1)の炭素鋼(SS41)を溶
解除去し、アルカリ溶液で中和し洗浄した。Thereafter, it was heated at 1050° C. for 2 hours and hot extruded at an extrusion ratio of 15. Further, heat treatment and cold wire drawing were repeated to obtain a wire rod of 0.2 mφ. The tensile strength at this time is 21
It was 0 kg/**2. This was immersed in a hydrochloric acid solution with a concentration of 35% for 20 minutes to dissolve and remove the carbon steel (SS41) at the outermost periphery (1) of the metal body (A) remaining as the outermost layer of the detergent, and then soaked in an alkaline solution. Washed and washed.
このようにして製造した砥粒インクラストワイヤは従来
の伸線法により表面にCBN粉末を付着した同線径のワ
イヤに比し、砥粒子粉末(3)のワイヤ表面での固着力
が強く、切断スピードを増加さセることができると共に
、著しく寿命の長いことが明らかであった。The abrasive incrust wire produced in this way has a stronger adhesion force of the abrasive powder (3) on the wire surface than a wire of the same wire diameter with CBN powder attached to the surface by the conventional wire drawing method. It was clear that the cutting speed could be increased and the service life would be significantly longer.
(発明の効果)
本発明は以上説明した如く、使用条件に応じた適合材料
、寸法により容易に形成できる円筒状金属体を用い、そ
の間隙内に所要の成分、混合比になる金属粉末とモース
硬度6以上の砥粒子との混合粉末を充填密閉したもので
、その最外周部は金属製パイプによる金属のみであるか
ら、従来の二重構造線製造技術をそのまま適用して加工
しても砥粒子粉末が伸線用ダイスを直接攻撃する等の懸
念は全くなく、従来の二重構造鋼線と同様に所要線径に
至るまで容易に伸線加工することができる。(Effects of the Invention) As explained above, the present invention uses a cylindrical metal body that can be easily formed with compatible materials and dimensions depending on the usage conditions, and fills the gap with metal powder and Morse with the required ingredients and mixing ratio. It is filled and sealed with a mixed powder with abrasive particles with a hardness of 6 or more, and since the outermost part is only made of metal from a metal pipe, it cannot be abrasive even if processed using conventional double structure wire manufacturing technology. There is no concern that the powder particles will directly attack the wire drawing die, and the wire can be easily drawn to the required wire diameter in the same way as conventional double-structured steel wire.
そして、線材の最表面層としてモース硬度6以上の砥粒
子粉末の混入した混合層を顕出せしめる最終工程におい
ても、通常の研摩、酸洗処理などを適用することにより
、線材表面に残存している金属を容易に除去し得る。In the final step of revealing the mixed layer containing abrasive powder with a Mohs hardness of 6 or higher as the outermost layer of the wire, ordinary polishing, pickling, etc. are applied to remove the remaining particles on the wire surface. metals can be easily removed.
しかも、間隙内に混合粉末を充填密閉した金属体を、そ
のまま直接熱間加工を含み広汎な意味での熱処理及び冷
間伸線加工するものであるから、混合粉末中の金属粉末
が焼結されてなる混合層中には充填時の混合比そのまま
に前記砥粒子を均質、かつ強固に配設保持せしめること
ができ、従来のメツキ法によるワイヤ表面にダイヤモン
ド粉末が付着されているのみのダイヤモンドワイヤに比
し、被加工材が鉄系材料であっても、加工時における砥
粒の微菌な摩滅は殆ど生じることなく、例えば粒径30
μmのダイヤモンド砥粒子を用いた本発明ワイヤでZn
、Seの結晶体を切断した場合、従来法のワイヤに比し
5倍以上、切断速度を速くすることができると共に、ワ
イヤの寿命も著しく延長し得て、極めて優れた切断或い
は面取加工能力を有する切断並びに研削加工用に好適な
砥粒インクラストワイヤを容易に製造することができる
。Moreover, since the metal body whose gap is filled with mixed powder and sealed is subjected to a wide range of heat treatment including direct hot working and cold wire drawing, the metal powder in the mixed powder is not sintered. The abrasive particles can be uniformly and firmly arranged and held in the mixed layer with the same mixing ratio as when filling, and the diamond wire can be made by simply attaching diamond powder to the wire surface by the conventional plating method. In contrast, even if the workpiece is an iron-based material, there is almost no microbial abrasion of the abrasive grains during machining;
Zn with the wire of the present invention using μm diamond abrasive particles.
When cutting Se crystals, the cutting speed can be increased by more than 5 times compared to conventional wires, and the life of the wire can be significantly extended, resulting in extremely excellent cutting or chamfering ability. An abrasive incrust wire suitable for cutting and grinding can be easily produced.
又、本発明による上記ワイヤはメツキ法によるものに比
しベンディングに対する砥粒子の把持力も著しく大であ
る。Furthermore, the wire according to the present invention has a significantly greater gripping force on the abrasive particles against bending than the wire made by the plating method.
なお、本発明による砥粒インクラストワイヤは特にワイ
ヤ表面に砥粒子を強固に埋め込ませているため精密切断
用ワイヤとして脆い材料や水や油などの液体を使用する
切断方法では困難な材料の切断に最適である。The abrasive incrust wire according to the present invention has abrasive particles firmly embedded in the wire surface, so it can be used as a precision cutting wire to cut brittle materials or materials that are difficult to cut with cutting methods that use liquids such as water or oil. Ideal for
第1図は本発明に用いる金属体の構造を示す模式図で、
fatはその上面図、(blは同側断面図である。
第2図は本発明方法により製造された砥粒インクラスト
ワイヤの概念図を示し、第3図(a)は該ワイヤ表面の
金属組織の一例を示す顕微鏡写真(倍率40倍)であり
、第3図(blは本発明方法による製造途中での線材(
研摩、酸洗処理以前の)断面の金属組織の一例を示す顕
微鏡写真(倍率40倍)である。
又、第4図(a) (bl及び第5図(a) (blは
本発明に用いる金属体の変形各実施例を示す模式図で、
fillは上面図、(′b)は同側断面図を示し、第4
図は金属棒にパイプ状金属を被着した場合、第5図は金
属棒に金属薄膜を巻きつけた場合である。
(A) ・・・金属体、(B)・・・パイプ状金属。
(C) ・・・金属薄膜。
(S) ・・・金属製パイプと金属棒との間隙。
(S) ・・・金属製パイプとパイプ状金属又は金属
薄膜との間隙。
(1)・・・金属製パイプ、(2)・・・金属棒。
(3)・・・砥粒子、(4)・・・金属粉末。
(4)′・・・金属層。
(D) ・・・混合物、(D)′・・・混合層。
特許出願人 住友電気工業株式会社
夕
竿1図
vz図
芋3図
Ca>
(b)
華4図
手続主甫正書(自発)
昭和62年 5月25日
特許庁長官 黒 1)明 雄 殿
1、事件の表示
昭和61年特許願第150108号
2、発明の名称
砥粒インクラストワイヤ及びその製造方法3、事件との
関係 特許出願人
住所 大阪市東区北浜5丁目15番地
名称 (213)住友電気工業株式会社(はが1名)代
表者用上哲部
4、代理人
居所 大阪市南区南船場3丁目9番10号6、補正の対
象 明細書の特許請求の範囲の欄7、補正の内容 別紙
の通り
2、特許請求の範囲
る砥粒インクラストワイヤ。
2、砥粒子がセラミック、超硬合金、ガラスからなる群
より選ばれた1種以上である特許請求の範囲第1項記載
の砥粒インクラストワイヤ。
3、金属製パイプの中心部に間隙を存して金属棒を装入
し、該金属棒と金属製パイプとの間の前記間隙内に金属
粉末とモース硬度6度以上の砥粒子を主体とする混合物
を充填して密閉し、のち前記金属製パイプに焼鈍又はパ
テンティング等の熱処理と冷間伸線を繰り返し施して線
材となし、次いで該線材の最表面部を構成する金属製パ
イプを研摩、酸洗等により除去して表面層を金属粉末と
砥粒子の結合混合層となすことを特徴とする砥粒インク
ラストワイヤの製造方法。
4、砥粒子がセラミック、超硬合金、ガラスからなる群
より選ばれた1種以上である特許請求の範間第3項記載
の砥粒インクラストワイヤの製造方法。
5、混合物を予め造粒して充填する特許請求の範囲第3
項又は第4項記載の砥粒インクラストワイヤの製造方法
。
6、金属製パイプ端部を密閉した後、熱間押出し、又は
熱間圧延による熱間加工を施し、その後、冷間加工して
線材となす特許請求の範囲第3項、第4項又は第5項記
載の砥粒インクラストワイヤの製造方法。
7、中心に装入される金属棒の外周に密着して別のパイ
プ状金属が被着され、又は金属薄膜が巻き付けられる特
許請求の範囲第3項、第4項、第5項又は第6項記載の
砥粒インクラストワイヤの製造方法。
8、金属製パイプと中心の金属棒およびこれに被着また
は巻きつけられるパイプ状金属、金属薄膜が同種又は異
種の金属成分よりなる特許請求の範囲第3〜7項の何れ
かの項に記載の砥粒インクラストワイヤの製造方法。FIG. 1 is a schematic diagram showing the structure of the metal body used in the present invention.
fat is a top view thereof, (bl is a cross-sectional view of the same side. Fig. 2 shows a conceptual diagram of the abrasive incrust wire manufactured by the method of the present invention, and Fig. 3 (a) shows the metal on the surface of the wire. This is a micrograph (40x magnification) showing an example of the structure, and FIG.
This is a micrograph (40x magnification) showing an example of a cross-sectional metal structure (before polishing and pickling treatment). In addition, FIG. 4(a) (bl) and FIG. 5(a) (bl) are schematic diagrams showing each modification example of the metal body used in the present invention,
fill is a top view, ('b) is a sectional view on the same side, and
The figure shows a case in which a pipe-shaped metal is attached to a metal rod, and FIG. 5 shows a case in which a metal thin film is wrapped around a metal rod. (A)...Metal body, (B)...Pipe-shaped metal. (C) ...Metal thin film. (S) ...Gap between metal pipe and metal rod. (S) ...Gap between a metal pipe and a pipe-shaped metal or metal thin film. (1)...Metal pipe, (2)...Metal rod. (3)...Abrasive particles, (4)...Metal powder. (4)′...Metal layer. (D)...Mixture, (D)'...Mixed layer. Patent Applicant: Sumitomo Electric Industries, Ltd. Yugan 1 Figure vz Tuimo 3 Figure Ca> (b) Hua 4 Figure Procedures Principal Fusho (Spontaneous) May 25, 1986 Commissioner of the Patent Office Black 1) Akira Yu Tono 1 , Indication of the case 1986 Patent Application No. 150108 2 Name of the invention Abrasive grain incrust wire and its manufacturing method 3 Relationship to the case Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (213) Sumitomo Electric Kogyo Co., Ltd. (1 person) Representative's Kamitetsu Department 4, Agent residence: 3-9-10-6, Minamisenba, Minami-ku, Osaka, subject of amendment: Claims column 7 of the specification, Contents of amendment As shown in Attachment 2, the claimed abrasive incrust wire. 2. The abrasive incrust wire according to claim 1, wherein the abrasive particles are one or more selected from the group consisting of ceramic, cemented carbide, and glass. 3. A metal rod is inserted into the center of the metal pipe with a gap, and the gap between the metal rod and the metal pipe contains mainly metal powder and abrasive particles with a Mohs hardness of 6 degrees or more. The metal pipe is then repeatedly subjected to heat treatment such as annealing or patenting and cold wire drawing to form a wire rod, and then the metal pipe constituting the outermost surface of the wire rod is polished. A method for producing an abrasive incrust wire, characterized in that the surface layer is removed by pickling or the like to form a bonded mixed layer of metal powder and abrasive particles. 4. The method for producing an abrasive incrust wire according to claim 3, wherein the abrasive particles are one or more selected from the group consisting of ceramic, cemented carbide, and glass. 5. Claim 3 in which the mixture is granulated and filled in advance
A method for producing an abrasive incrust wire according to item 1 or 4. 6. After sealing the end of the metal pipe, it is hot worked by hot extrusion or hot rolling, and then cold worked to form a wire rod. The method for producing an abrasive incrust wire according to item 5. 7. Claims 3, 4, 5, or 6, in which another pipe-shaped metal is closely adhered to the outer periphery of the metal rod inserted into the center, or a metal thin film is wrapped around the outer periphery of the metal rod. A method for producing an abrasive incrust wire as described in Section 1. 8. The metal pipe, the central metal rod, and the pipe-shaped metal and metal thin film adhered to or wound around the metal pipe are made of the same or different metal components, as described in any one of claims 3 to 7. Method of manufacturing abrasive incrust wire.
Claims (1)
した金属体の前記間隙内に金属粉末とモース硬度6度以
上の砥粒子を主体とする混合物を装入し、熱処理、冷間
伸線を施し、外周の金属製パイプを除去して形成してな
ることを特徴とする砥粒インクラストワイヤ。 2、砥粒子がセラミック、超硬合金、ガラスからなる群
より選ばれた1種以上である特許請求の範囲第1項記載
の砥粒インクラストワイヤ。 3、金属製パイプの中心部に間隙を存して金属棒を装入
し、該金属棒と金属製パイプとの間の前記間隙内に金属
粉末とモース硬度6度以上の砥粒子を主体とする混合物
を充填して密閉し、のち前記金属製パイプに焼鈍又はパ
テンティング等の熱処理と冷間伸線を繰り返し施して線
材となし、次いで該線材の最表面部を構成する金属製パ
イプを研摩、酸洗等により除去して表面層を金属粉末と
砥粒子の結合混合層となすことを特徴とする砥粒インク
ラストワイヤの製造方法。 4、砥粒子がセラミック、超硬合金、ガラスからなる群
より選ばれた1種以上である特許請求の範囲第3項記載
の砥粒インクラストワイヤの製造方法。 5、混合物を予め造粒して充填する特許請求の範囲第3
項又は第4項記載の砥粒インクラストワイヤの製造方法
。 6、金属製パイプ端部を密閉した後、熱間押出し、又は
熱間圧延による熱間加工を施し、その後、冷間加工して
線材となす特許請求の範囲第3項、第4項又は第5項記
載の砥粒インクラストワイヤの製造方法。 7、中心に装入される金属棒の外周に密着して別のパイ
プ状金属が被着され、又は金属薄膜が巻き付けられる特
許請求の範囲第3項、第4項、第5項又は第6項記載の
砥粒インクラストワイヤの製造方法。 8、金属製パイプと中心の金属棒およびこれに被着また
は巻きつけられるパイプ状金属、金属薄膜が同種又は異
種の金属成分よりなる特許請求の範囲第3〜7項の何れ
かの項に記載の砥粒インクラストワイヤの製造方法。[Claims] 1. A metal body in which a metal rod is inserted into a gap in the center of a metal pipe, and a mixture mainly consisting of metal powder and abrasive particles having a Mohs hardness of 6 degrees or more is installed in the gap. An abrasive incrust wire characterized in that it is formed by subjecting it to heat treatment, cold wire drawing, and removing a metal pipe on the outer periphery. 2. The abrasive incrust wire according to claim 1, wherein the abrasive particles are one or more selected from the group consisting of ceramic, cemented carbide, and glass. 3. A metal rod is inserted into the center of the metal pipe with a gap, and the gap between the metal rod and the metal pipe contains mainly metal powder and abrasive particles with a Mohs hardness of 6 degrees or more. The metal pipe is then repeatedly subjected to heat treatment such as annealing or patenting and cold wire drawing to form a wire rod, and then the metal pipe constituting the outermost surface of the wire rod is polished. A method for producing an abrasive incrust wire, characterized in that the surface layer is removed by pickling or the like to form a bonded mixed layer of metal powder and abrasive particles. 4. The method for producing an abrasive incrust wire according to claim 3, wherein the abrasive particles are one or more selected from the group consisting of ceramic, cemented carbide, and glass. 5. Claim 3 in which the mixture is granulated and filled in advance
A method for producing an abrasive incrust wire according to item 1 or 4. 6. After sealing the end of the metal pipe, it is hot worked by hot extrusion or hot rolling, and then cold worked to form a wire rod. The method for producing an abrasive incrust wire according to item 5. 7. Claims 3, 4, 5, or 6, in which another pipe-shaped metal is closely adhered to the outer periphery of the metal rod inserted into the center, or a metal thin film is wrapped around the outer periphery of the metal rod. A method for producing an abrasive incrust wire as described in Section 1. 8. The metal pipe, the central metal rod, and the pipe-shaped metal and metal thin film adhered to or wound around the metal pipe are made of the same or different metal components, as described in any one of claims 3 to 7. A method for manufacturing abrasive incrust wire.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15010886A JPS637304A (en) | 1986-06-26 | 1986-06-26 | Abrasive grain incrusted wire and its production |
CA 534908 CA1305324C (en) | 1986-04-17 | 1987-04-16 | Wire incrusted with abrasive grain and method for producing the same |
EP19870105714 EP0243825B1 (en) | 1986-04-17 | 1987-04-16 | Wire incrusted with abrasive grain and method for producing the same |
DE87105714T DE3788673T2 (en) | 1986-04-17 | 1987-04-16 | Wire encrusted with abrasive grains and process for its manufacture. |
US07/039,253 US4866888A (en) | 1986-04-17 | 1987-04-17 | Wire incrusted with abrasive grain |
US07/333,647 US4964209A (en) | 1986-04-17 | 1989-04-05 | Method for producing a wire incrusted with abrasive grain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15010886A JPS637304A (en) | 1986-06-26 | 1986-06-26 | Abrasive grain incrusted wire and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS637304A true JPS637304A (en) | 1988-01-13 |
JPH0377842B2 JPH0377842B2 (en) | 1991-12-11 |
Family
ID=15489669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15010886A Granted JPS637304A (en) | 1986-04-17 | 1986-06-26 | Abrasive grain incrusted wire and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS637304A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0584667A (en) * | 1990-03-19 | 1993-04-06 | De Beers Ind Diamond Div Ltd | Saw and its constitutional element |
JP2007203393A (en) * | 2006-01-31 | 2007-08-16 | Nippon Seisen Co Ltd | Saw wire and its manufacturing method |
-
1986
- 1986-06-26 JP JP15010886A patent/JPS637304A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0584667A (en) * | 1990-03-19 | 1993-04-06 | De Beers Ind Diamond Div Ltd | Saw and its constitutional element |
JP2007203393A (en) * | 2006-01-31 | 2007-08-16 | Nippon Seisen Co Ltd | Saw wire and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0377842B2 (en) | 1991-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0243825B1 (en) | Wire incrusted with abrasive grain and method for producing the same | |
US5126207A (en) | Diamond having multiple coatings and methods for their manufacture | |
Artini et al. | Diamond–metal interfaces in cutting tools: a review | |
US5024680A (en) | Multiple metal coated superabrasive grit and methods for their manufacture | |
EP1709135B1 (en) | Coated abrasives | |
CN109368635B (en) | Method for plating boron-doped metal carbide on surface of diamond | |
US4278448A (en) | Diamond abrasive grits | |
JPS637304A (en) | Abrasive grain incrusted wire and its production | |
US7807220B2 (en) | Boron coated abrasives | |
JPS62140758A (en) | Mechanical wire cut saw | |
JPH11309661A (en) | Method for cutting process by means of wire saw | |
JPH0313283B2 (en) | ||
JPS62161901A (en) | Production of diamond wire | |
JP2735685B2 (en) | Coated superabrasive abrasive grains and tools comprising the same | |
JP2001322067A (en) | Extra-abrasive grain coated with metal carbide, its manufacturing method and extra-abrasive grain tool | |
CN1272455C (en) | Tool for machine tools | |
JPS6322217A (en) | Encrust wire made of cubic system boron nitride and manufacture thereof | |
JPH07155884A (en) | Working jig for valve spring excellent in lubricity/wear resistance, its production, producing method of working jig for valve spring and working method of valve spring | |
JPH0149667B2 (en) | ||
JPH0313284B2 (en) | ||
JPH0314881B2 (en) | ||
JPH02243270A (en) | Grindstone containing covered abrasive grain and manufacture thereof | |
JPS62297405A (en) | Production of wire incrusted with diamond | |
JPH0154302B2 (en) |