JPS637291B2 - - Google Patents

Info

Publication number
JPS637291B2
JPS637291B2 JP57090542A JP9054282A JPS637291B2 JP S637291 B2 JPS637291 B2 JP S637291B2 JP 57090542 A JP57090542 A JP 57090542A JP 9054282 A JP9054282 A JP 9054282A JP S637291 B2 JPS637291 B2 JP S637291B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
voltage
blower
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57090542A
Other languages
Japanese (ja)
Other versions
JPS58205036A (en
Inventor
Mikio Hisamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57090542A priority Critical patent/JPS58205036A/en
Publication of JPS58205036A publication Critical patent/JPS58205036A/en
Publication of JPS637291B2 publication Critical patent/JPS637291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device

Description

【発明の詳細な説明】 この発明は空気調和機の送風機速度制御装置の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a blower speed control device for an air conditioner.

一般に、空気調和機の制御装置は負荷である送
風機用交流電動機の回転数を可変させる必要があ
り、この交流負荷を制御する方法として、サイリ
スタやトライアツクを用いる方法が従来から広く
知られている。しかしながら、その負荷電圧波形
は第1図に示す様に波形歪が大きく、しかも高周
波成分を多分に含んでいるため、上記電動機の振
動や、磁気音、電磁音等を発生することがあつ
た。この問題に対する従来の対策としては、電動
機のケースを鋳物で製作することが行われたが、
近年電動機のコストダウン、軽量化により、上記
ケースを板金又はプラスチツクで製作することが
多くなり、そのため消去されていた上述の振動、
磁気音、電磁音を発生しやすいという欠点が出て
きた。
Generally, a control device for an air conditioner needs to vary the rotational speed of an AC motor for a blower, which is a load, and methods using thyristors or triaxes have been widely known as methods for controlling this AC load. However, as shown in FIG. 1, the load voltage waveform has large waveform distortion and contains a large amount of high frequency components, which may cause vibrations of the motor, magnetic sound, electromagnetic sound, etc. The conventional solution to this problem was to make the motor case out of casting.
In recent years, due to the reduction in cost and weight of electric motors, the cases mentioned above are often made of sheet metal or plastic, which eliminates the vibrations mentioned above.
The drawback is that it easily generates magnetic and electromagnetic noise.

この発明は上記の欠点を解消するために成され
たもので、交流電動機等の交流負荷を制御する新
たな制御手段を用いることにより、振動、磁気
音、電磁音を消去できると共に、所定環境温度と
設定温度の偏差をとらえて行わしめる送風機の回
転数制御あるいは運転停止により省エネルギ化を
図ることができる空気調和機の送風機速度制御装
置を提供することを目的とするものである。
This invention was made to eliminate the above-mentioned drawbacks, and by using a new control means for controlling AC loads such as AC motors, it is possible to eliminate vibrations, magnetic sounds, and electromagnetic sounds, and at a given environmental temperature. An object of the present invention is to provide a blower speed control device for an air conditioner that can save energy by controlling the rotation speed of the blower or stopping its operation by detecting deviations between the temperature and the set temperature.

以下、この発明の一実施例を第1図〜第5図と
共に説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第2図、第3図はこの発明の一実施例を示すブ
ロツク図及びその詳細回路図であつて、図中、1
は室温を検知するサーミスタ等の温度センサ、2
a,2b,2cは冷房と暖房を切り換える三極双
投の切換えスイツチ、3は直流電源で、図示しな
い交流電源電流を整流平滑する整流、平滑回路と
ツエナーダイオード等とで安定化電源を構成して
得たものである。4は可変抵抗器で、顧客が設定
温度を任意に可変するためのものである。5は半
固定抵抗器で、上記可変抵抗器4の任意の設定温
度に対して上記サーミスタ1の抵抗値、すなわち
室温が設定温度に達した場合、上記切換えスイツ
チ2を冷・暖それぞれに切換えても上記サーミス
タ1とこの半固定抵抗器5との接続分岐点の電位
が変わらず等しくなるよう予め設定されているた
め、送風機に印加される電圧は等しくなる。6は
増幅回路で、入力電位が低下すると出力が上昇
し、逆に入力電位が高くなれば出力は低くなる。
7,8はダイオード、9は最低電圧設定回路、1
0は最高電圧設定回路であり、上記ダイオード
7,8のアノード側電位をそれぞれ設定された最
低電圧、最高電圧以内に限定する。13は比較回
路で、この一方の入力A点の電位は上記最低電圧
設定回路9の電位よりも高く、上記最高電圧設定
回路10の電位よりも低く、かつ上記サーミスタ
1にて検出された室内温度相当の電位が供給され
る。14はリアクトル回路で、その内部には各々
同一の特性を有する第1の可飽和リアクトル14
aと第2の可飽和リアクトル14bを備え、制御
側巻線の接続は一方の巻き終り側と他方の巻き始
め側を直列接続し、又負荷側巻線の接続は一方の
巻き終り側と他方の巻き終り側とを接続し、各々
巻き始め側は負荷である送風機15と交流電源1
6とに直列接続する。また、制御側の巻き線数
は、負荷側の巻き線数に比べ数倍多く巻かれてお
り、制御側の小さな電流変化で負荷側に大きな電
流変化を得るよう構成される。なお、上記リアク
トル14a,14bは上述の負荷側巻線接続方法
によつて互いに発生電圧を打ち消し合い、制御側
に高電圧を発生させない様に構成されている。
FIGS. 2 and 3 are block diagrams and detailed circuit diagrams showing one embodiment of the present invention.
is a temperature sensor such as a thermistor that detects room temperature, 2
A, 2b, and 2c are three-pole, double-throw changeover switches that switch between cooling and heating, and 3 is a DC power supply, which constitutes a stabilized power supply with a rectifier and smoothing circuit (not shown) that rectifies and smoothes the AC power supply current, a Zener diode, etc. This is what I got. 4 is a variable resistor, which allows the customer to arbitrarily vary the set temperature. 5 is a semi-fixed resistor, and when the resistance value of the thermistor 1, that is, the room temperature reaches the set temperature for any set temperature of the variable resistor 4, the changeover switch 2 is switched to cold and warm respectively. Since the voltages applied to the blower are set in advance so that the potentials at the connection branch point between the thermistor 1 and the semi-fixed resistor 5 remain the same, the voltages applied to the blower become equal. 6 is an amplifier circuit whose output increases when the input potential decreases, and conversely, when the input potential increases, the output decreases.
7 and 8 are diodes, 9 is the lowest voltage setting circuit, 1
0 is a maximum voltage setting circuit, which limits the anode side potentials of the diodes 7 and 8 to within the set minimum voltage and maximum voltage, respectively. Reference numeral 13 denotes a comparison circuit, the potential of one input point A of which is higher than the potential of the minimum voltage setting circuit 9, lower than the potential of the maximum voltage setting circuit 10, and the indoor temperature detected by the thermistor 1. A considerable potential is supplied. 14 is a reactor circuit, inside which are first saturable reactors 14 each having the same characteristics.
a and a second saturable reactor 14b, the control side winding is connected in series between the end of one winding and the start of the other, and the load side winding is connected between the end of one winding and the other. The winding end side is connected to the winding end side, and the winding start side is connected to the blower 15 which is a load and the AC power supply 1.
Connect in series with 6. Further, the number of windings on the control side is several times larger than the number of windings on the load side, and the configuration is such that a small current change on the control side produces a large current change on the load side. Note that the reactors 14a and 14b are constructed so as to cancel out the generated voltages with each other by the above-described load side winding connection method so as not to generate high voltage on the control side.

17は停止回路で内部に図示しないICとリレ
ーを備え、入力電位が上昇した場合ICの出力電
位が上昇し、リレーをONさせる様に構成され、
このリレーの常閉接点18はリアクトル回路1
4、送風機モータ15、交流電源16に直列接続
されている。また、冷暖房に室内温度が設定温度
より任意の温度だけ低下した場合、この停止回路
17のリレーをONさせる様に予め設定してお
き、かつ、このリレーのON・OFF動作温度には
ヒステリシス効果を持たせておく。19は定電流
の帰還回路であり、リアクトル14a,14bの
制御側巻線に流れる電流を検出し、比較回路13
の他方の入力端に帰還させておく。
17 is a stop circuit, which is equipped with an IC (not shown) and a relay inside, and is configured so that when the input potential rises, the output potential of the IC rises and turns on the relay.
The normally closed contact 18 of this relay is the reactor circuit 1
4. It is connected in series to the blower motor 15 and AC power source 16. In addition, when the indoor temperature for heating and cooling is lowered by an arbitrary temperature than the set temperature, the relay of this stop circuit 17 is set in advance to turn on, and a hysteresis effect is applied to the ON/OFF operating temperature of this relay. I'll keep it. Reference numeral 19 denotes a constant current feedback circuit, which detects the current flowing through the control side windings of the reactors 14a and 14b.
It is fed back to the other input terminal of the .

以上の構成に基づき、この発明の一実施例の動
作を図面と共に説明する。
Based on the above configuration, the operation of an embodiment of the present invention will be explained with reference to the drawings.

いま、冷房時を考えると、設定温度に対して室
内温度が非常に高い場合、サーミスタ1の抵抗値
は小さく、増幅回路6の入力電位も低い、その結
果、上記増幅回路6の出力電位は高く、最高電圧
設定回路10で設定される電位が比較回路13の
一方の入力A点に供給され、その出力電位がリア
クトル回路14に与えられる。そこで、リアクト
ル14a,14bは飽和状態に近づくため、その
負荷側インピーダンスが低下し、送風機15は最
高電圧で回転し、急速に冷房される。そして室内
温度が低下してくると、上記サーミスタ1で検出
した電位が上昇し始め、上記増幅回路6及び比較
回路13を介して上記リアクトル回路14に供給
される電位が低下し始め、上記両リアクトル14
a,14bが非飽和状態に近づくため、上記送風
機15の回転数は低下し始める。やがて室内温度
が設定温度に達した場合、最低電圧設定回路9で
設定される低い電圧が比較回路13を介してリア
クトル回路14に供給されるため、送風機15の
回転数は最低回転数で運転する。さらに設定温度
よりも室内温度が低下し、停止回路17で設定さ
れる任意の温度だけ低下した場合は、停止回路1
7の内部に設けられているリレーがONし、この
リレーの常閉接点18により送風機15の動作は
停止する。その後、再び室内温度が停止回路17
で設定されるヒステリシス分だけ温度上昇する
と、送風機15は最低電圧で動作し始め、以下同
様の動作を繰り返す。なお、暖房の場合は、切換
えスイツチ2にて室内温度を検出するサーミスタ
1の接続が切り換えられるため、送風機15に印
加される最低電圧、最高電圧、停止温度、ヒステ
リシス温度幅などは等しいが、室内温度に対する
送風機15の電圧変化特性は全く逆になる。また
室内温度が設定温度に達した時、切換えスイツチ
2を切り換えても送風機15に印加される電圧は
変わらずに等しくなるよう予め半固定抵抗器5を
設定しているため、第4図に示す如き送風機15
の電圧変化特性が得られる。また、送風機15に
印加される電圧波形は可飽和リアクトルを用いて
いるため、第5図に示す如き電圧波形となる。す
なわち、可飽和リアクトルの効果により送風機電
圧が大きい時は殆んど電源電圧波形に近い正弦波
となる。また、送風機電圧が小さい時は多少の波
形歪を含んだ波形となるが、これは低周波数の歪
であり、従来のトライアツクやサイリスタで制御
した時の高周波数の波形歪でないため、送風機の
振動や磁気音、電磁音を防止できる。
Now, considering the case of cooling, when the indoor temperature is very high compared to the set temperature, the resistance value of the thermistor 1 is small and the input potential of the amplifier circuit 6 is also low.As a result, the output potential of the amplifier circuit 6 is high. , the potential set by the highest voltage setting circuit 10 is supplied to one input point A of the comparator circuit 13, and its output potential is supplied to the reactor circuit 14. Then, since the reactors 14a and 14b approach a saturated state, their load-side impedance decreases, the blower 15 rotates at the highest voltage, and air cooling is rapidly performed. Then, when the room temperature falls, the potential detected by the thermistor 1 starts to rise, and the potential supplied to the reactor circuit 14 via the amplifier circuit 6 and comparator circuit 13 starts to drop, causing both the reactors to 14
Since a and 14b approach a non-saturated state, the rotational speed of the blower 15 begins to decrease. When the indoor temperature eventually reaches the set temperature, the low voltage set by the minimum voltage setting circuit 9 is supplied to the reactor circuit 14 via the comparison circuit 13, so the rotation speed of the blower 15 is operated at the minimum rotation speed. . Furthermore, if the indoor temperature drops below the set temperature by an arbitrary temperature set by the stop circuit 17, the stop circuit 1
A relay provided inside the air blower 7 is turned on, and the normally closed contact 18 of this relay stops the operation of the blower 15. After that, the indoor temperature is reduced again to the stop circuit 17.
When the temperature rises by the amount of hysteresis set in , the blower 15 starts operating at the lowest voltage, and the same operation is repeated thereafter. In addition, in the case of heating, the connection of the thermistor 1 that detects the indoor temperature is switched by the changeover switch 2, so the minimum voltage, maximum voltage, stop temperature, hysteresis temperature width, etc. applied to the blower 15 are the same, but the indoor The voltage change characteristics of the blower 15 with respect to temperature are completely opposite. Furthermore, when the indoor temperature reaches the set temperature, the semi-fixed resistor 5 is set in advance so that the voltage applied to the blower 15 remains the same even if the changeover switch 2 is changed, as shown in FIG. Like a blower 15
voltage change characteristics can be obtained. Further, since a saturable reactor is used, the voltage waveform applied to the blower 15 is as shown in FIG. 5. That is, due to the effect of the saturable reactor, when the blower voltage is large, the waveform becomes a sine wave that is almost similar to the power supply voltage waveform. Also, when the blower voltage is low, the waveform will contain some waveform distortion, but this is low-frequency distortion and not the high-frequency waveform distortion that occurs when controlling with a conventional triax or thyristor. It can prevent noise, magnetic noise, and electromagnetic noise.

また、通電運転中にリアクトル14a,14b
の負荷側巻線には送風機モータ15による大電流
が流れ、リアクトル本体が発熱によりそのインピ
ーダンスを低下するため、サーミスタ1により室
温を検出して比較回路の一方の入力A点に供給さ
れる電位が一定であつても送風機15の設定電圧
は変動することがある。この発明の一実施例で
は、定電流の帰還回路19を設けることにより、
リアクトル14a,14bの制御側巻線に流れる
電流が増加すれば電流増加による電位の増加を検
出し、比較回路13の他方の入力端へ帰還させ、
比較回路13の出力電位を低下させ、上記リアク
トル14a,14bの制御側巻線には常に一定の
電流が流れるようにすることができ、その結果、
長時間通電運転してもリアクトルの発熱による送
風機15の設定電圧変動を防止することができ
る。
Also, during energized operation, reactors 14a and 14b
A large current from the blower motor 15 flows through the load side winding of the reactor, and the impedance of the reactor body decreases due to heat generation, so the thermistor 1 detects the room temperature and the potential supplied to one input point A of the comparator circuit changes. Even if it is constant, the set voltage of the blower 15 may vary. In one embodiment of the present invention, by providing a constant current feedback circuit 19,
When the current flowing through the control side windings of the reactors 14a and 14b increases, an increase in potential due to the increase in current is detected and fed back to the other input terminal of the comparison circuit 13,
By lowering the output potential of the comparator circuit 13, a constant current can always flow through the control side windings of the reactors 14a and 14b, and as a result,
Even during long-time energized operation, fluctuations in the set voltage of the blower 15 due to heat generation in the reactor can be prevented.

以上説明のとおり、この発明によれば送風機の
振動、磁気音、電磁音等の問題を解消し、所定環
境温度により送風機の回転数を自動的に可変又は
停止させることができ、かつ無駄なエネルギを使
用することなく省エネルギ化が図ることができ、
なおかつリアクトルの発熱による送風機の設定電
圧変動を防止できるという大なる実用的効果を奏
する。
As explained above, according to the present invention, problems such as vibration, magnetic noise, electromagnetic noise, etc. of the blower can be solved, the rotation speed of the blower can be automatically varied or stopped depending on the predetermined environmental temperature, and wasteful energy can be avoided. Energy saving can be achieved without using
Furthermore, it has a great practical effect of being able to prevent fluctuations in the set voltage of the blower due to heat generation in the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和機の送風機電圧を示す
電圧波形図、第2図、第3図はこの発明の一実施
例を示すブロツク図及び詳細回路図、第4図は第
4図はこの発明の一実施例を示す動作特性図、第
5図はこの発明の一実施例を示す第1図相当図で
ある。 1……サーミスタ、6……増幅回路、9……最
低電圧設定回路、10……最高電圧設定回路、1
3……比較回路、14……リアクトル回路、15
……送風機、17……停止回路、19……定電流
帰還回路。なお、図中、同一符号は同一部分、又
は相当部分を示す。
Fig. 1 is a voltage waveform diagram showing the blower voltage of a conventional air conditioner, Figs. 2 and 3 are a block diagram and detailed circuit diagram showing an embodiment of the present invention, and Fig. FIG. 5 is an operating characteristic diagram showing an embodiment of the invention, and is a diagram corresponding to FIG. 1 showing an embodiment of the invention. 1...Thermistor, 6...Amplification circuit, 9...Minimum voltage setting circuit, 10...Maximum voltage setting circuit, 1
3... Comparison circuit, 14... Reactor circuit, 15
...Blower, 17...Stop circuit, 19...Constant current feedback circuit. In addition, in the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 送風機と、冷房と暖房を切り換える切換え手
段と、所定環境の任意の設定温度を可変する第1
の温度制御手段と、上記所定環境温度を検知する
温度検知手段と、この温度検知手段が上記第1の
温度制御手段で予め設定された設定温度に達した
上記所定環境温度を検知した時、上記切換え手段
を切り換えても上記温度検知手段との接続点の電
位が変わらず等電位となる様に設定された第2の
温度制御手段と、上記接続点の電位を入力する増
幅回路と、この増幅回路の出力に接続された最高
電圧を設定する最高電圧設定回路及び最低電圧を
設定する最低電圧設定回路と、上記最高電圧と最
低電圧との電圧範囲内で上記所定環境温度相当で
ある上記増幅回路の出力電圧を予め設定された基
準電圧と比較し、その偏差に応じて出力する比較
回路と、上記比較回路の出力を入力する飽和リア
クトル回路と、上記接続点の電位に応じて上記送
風機をオン・オフ制御すると共にそのオン・オフ
動作温度にヒステリシス特性を持たせた停止回路
と、上記飽和リアクトル回路の制御側巻線に流れ
る電流を検出し、上記比較回路の基準電圧として
帰還させる定電流回路とを備えて成る空気調和機
の送風機速度制御装置。
1 a blower, a switching means for switching between cooling and heating, and a first
temperature control means; temperature detection means for detecting the predetermined environmental temperature; and when the temperature detection means detects the predetermined environmental temperature reaching the preset temperature set in advance by the first temperature control means; a second temperature control means set so that the potential at the connection point with the temperature detection means remains equal even if the switching means is switched; an amplifier circuit into which the potential at the connection point is input; and the amplification circuit. A maximum voltage setting circuit that sets the maximum voltage and a minimum voltage setting circuit that sets the minimum voltage connected to the output of the circuit, and the amplifier circuit that corresponds to the predetermined environmental temperature within the voltage range of the maximum voltage and the minimum voltage. A comparison circuit that compares the output voltage of the above with a preset reference voltage and outputs an output according to the deviation, a saturation reactor circuit that inputs the output of the above comparison circuit, and turns on the above blower according to the potential of the above connection point. - A stop circuit that performs off control and has hysteresis characteristics in its on/off operating temperature, and a constant current circuit that detects the current flowing in the control side winding of the saturation reactor circuit and feeds it back as a reference voltage for the comparison circuit. A blower speed control device for an air conditioner, comprising:
JP57090542A 1982-05-26 1982-05-26 Blower speed controller for airconditioner Granted JPS58205036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57090542A JPS58205036A (en) 1982-05-26 1982-05-26 Blower speed controller for airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57090542A JPS58205036A (en) 1982-05-26 1982-05-26 Blower speed controller for airconditioner

Publications (2)

Publication Number Publication Date
JPS58205036A JPS58205036A (en) 1983-11-29
JPS637291B2 true JPS637291B2 (en) 1988-02-16

Family

ID=14001295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57090542A Granted JPS58205036A (en) 1982-05-26 1982-05-26 Blower speed controller for airconditioner

Country Status (1)

Country Link
JP (1) JPS58205036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094899A (en) * 2009-10-30 2011-05-12 Sanki Eng Co Ltd Air conditioning system and air conditioning method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780137A (en) * 1980-11-08 1982-05-19 Mitsubishi Electric Corp Fan-speed controlling circuit for air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780137A (en) * 1980-11-08 1982-05-19 Mitsubishi Electric Corp Fan-speed controlling circuit for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094899A (en) * 2009-10-30 2011-05-12 Sanki Eng Co Ltd Air conditioning system and air conditioning method

Also Published As

Publication number Publication date
JPS58205036A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
US5267344A (en) Direct current power control circuit for use in conjunction with regulated input signal
JPH07240636A (en) Power amplifier
EP0506883A4 (en) Direct current power control circuit
JP3168842B2 (en) High frequency heating equipment
JPS637291B2 (en)
JPH01231289A (en) Microwave energy generator
JPS58205035A (en) Blower speed controller for airconditioner
JPH07222437A (en) Switching power-supply apparatus
JPS58205034A (en) Blower speed controller for airconditioner
JPS623447B2 (en)
JPH0313600Y2 (en)
JPS6033214B2 (en) Air conditioner blower speed control circuit
JP2842941B2 (en) Pre-regulated output variable power supply
JPS633112Y2 (en)
KR200201150Y1 (en) Power device for relay
JP3473290B2 (en) Load control device
JPS5930032B2 (en) Constant voltage control method
US2978624A (en) Multiple-feedback amplifier series motor control system
JPS5914978B2 (en) switching regulator
JPS62149Y2 (en)
JPS6337735Y2 (en)
JPS5847108Y2 (en) Electric shovel protection circuit
JPS58103898A (en) Controller for air conditioner
JPS5938672Y2 (en) Air conditioner control device using a pole converter compressor
JPS5832104Y2 (en) Air conditioner control circuit