JPS6372342A - Catalyst for removing nitrogen oxide - Google Patents

Catalyst for removing nitrogen oxide

Info

Publication number
JPS6372342A
JPS6372342A JP61216355A JP21635586A JPS6372342A JP S6372342 A JPS6372342 A JP S6372342A JP 61216355 A JP61216355 A JP 61216355A JP 21635586 A JP21635586 A JP 21635586A JP S6372342 A JPS6372342 A JP S6372342A
Authority
JP
Japan
Prior art keywords
catalyst
vanadium
titanium
oxide
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61216355A
Other languages
Japanese (ja)
Inventor
Hiroaki Rikimaru
力丸 浩昭
Tadao Nakatsuji
忠夫 仲辻
Toshikatsu Baba
敏勝 馬場
Kazuhiko Nagano
永野 一彦
Kazuya Mishina
三品 和也
Hiromasu Shimizu
宏益 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP61216355A priority Critical patent/JPS6372342A/en
Priority to CA000546531A priority patent/CA1310005C/en
Priority to DE3780545T priority patent/DE3780545T3/en
Priority to EP87113298A priority patent/EP0260614B2/en
Priority to AT87113298T priority patent/ATE78421T1/en
Publication of JPS6372342A publication Critical patent/JPS6372342A/en
Priority to US07/393,071 priority patent/US4977127A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently remove nitrogen oxide in arsenic-containing flue gas, by forming a catalyst for removing nitrogen oxide in the exhaust gas by containing titanium and vanadium so that vanadium is present in the surface layer part of the catalyst at high concn. CONSTITUTION:Vanadium is supported by honeycomb shaped titanium according to an impregnation method or a roll coating method so as to be present in the surface layer thereof at high concn. to form a catalyst for removing nitrogen oxide in exhaust gas. The ratio of titanium and vanadium is pref. 99.9-92.0:0.1-8.0 on an oxide basis. Titanium and vanadium are pref. used in a form of oxide, sulfate or nitrate. When titanium is used in a form of titanium oxide, titanium oxide wherein a crystal has a particle size of 150-250Angstrom is pref. used. Further, the shape of the catalyst can be wet to a pellet, a globule or a honeycomb shape.

Description

【発明の詳細な説明】 本発明は、窒素酸化物除去用触媒に関する。[Detailed description of the invention] The present invention relates to a catalyst for removing nitrogen oxides.

近年燃焼排ガス中の窒素酸化物を無害化するため還元ガ
スを燃焼排ガス中に加え、触媒の存在下に窒素などの無
害成分に還元する方法が試みられている。−酸化炭素、
炭化水素、水素等を還元ガスとして使用するとき、それ
らが処理ガス中の酸素と反応するため、多量の還元ガス
を必要とし、多量の発熱、アンモニアの副生を伴う等欠
点があるため、普通にはこれらの欠点を有しないアンモ
ニアを還元ガスとして使用し、窒素酸化物と選択的に反
応させる方法が試みられている。
In recent years, attempts have been made to make nitrogen oxides in combustion exhaust gas harmless by adding a reducing gas to the combustion exhaust gas and reducing the nitrogen oxides to harmless components such as nitrogen in the presence of a catalyst. - carbon oxide,
When hydrocarbons, hydrogen, etc. are used as reducing gases, they react with oxygen in the processing gas, so a large amount of reducing gas is required, and there are drawbacks such as a large amount of heat generation and ammonia by-product. Attempts have been made to use ammonia, which does not have these drawbacks, as a reducing gas and react selectively with nitrogen oxides.

使用される触媒としては、種々のものが提案され使用さ
れている。
Various catalysts have been proposed and used.

しかし、いずれも適用される排ガス中には、砒素化合物
が存在しないガスであった。(存在したとしても極めて
微量であった。)ところが石炭の炭種によっては、排ガ
ス中にかなりの量の砒素あるいは砒素化合物(以下砒素
という)が含まれている。これらの砒素を含有する排ガ
ス中の窒素酸化物を無害化するために、従来から使用さ
れている公知の触媒を使用すると砒素の影響を受けて、
所定の効果が発揮されなくなることが判明した。
However, in all cases, the exhaust gases used were gases that did not contain arsenic compounds. (Even if it existed, it was in very small amounts.) However, depending on the type of coal, the exhaust gas contains a considerable amount of arsenic or arsenic compounds (hereinafter referred to as arsenic). When conventionally used known catalysts are used to detoxify nitrogen oxides in exhaust gas containing arsenic, they are affected by arsenic.
It was found that the desired effect was no longer achieved.

そこで本発明者等は種々研究の結果、チタン及びバナジ
ウムを含有し、表層部にバナジウムが高濃度に存在する
触媒を使用すれば極めて効果的であることが判明し本発
明を完成した。
As a result of various studies, the inventors of the present invention found that it is extremely effective to use a catalyst that contains titanium and vanadium and has a high concentration of vanadium in its surface layer, and has completed the present invention.

以下本発明に係る触媒(以下本触媒という)について詳
細に説明する。
The catalyst according to the present invention (hereinafter referred to as the present catalyst) will be explained in detail below.

本触媒は元素としてチタン及びバナジウムを含有するこ
とを必須とするが、他にタングステン、ジルコニウムを
添加することは差支えない。タングステンは、排ガス中
のS02の酸化率が問題となる場合には、タングステン
を加えることにより含有バナジウムの量を少なくしてS
02の酸化率を抑えることに効果がある。
Although this catalyst must contain titanium and vanadium as elements, tungsten and zirconium may also be added. If the oxidation rate of S02 in the exhaust gas is a problem, tungsten can be added to reduce the amount of vanadium contained in S02.
It is effective in suppressing the oxidation rate of 02.

又、ジルコニウムは、砒素の吸着性が酸化チタンが高く
酸化ジルコニウムが低いことから、酸化チタンの表面を
ジルコニウムで覆うことにより砒素による脱硝性能の低
下を弱めるのに効果がある。
Furthermore, since titanium oxide has a high arsenic adsorption property and zirconium oxide has a low adsorption property for arsenic, covering the surface of titanium oxide with zirconium is effective in attenuating the deterioration of denitrification performance caused by arsenic.

チタンとバナジウムの比率は酸化物換算で99.9〜9
2,0対0.1〜8.0の比率で含有しておれば良い。
The ratio of titanium and vanadium is 99.9 to 9 in terms of oxide.
It is sufficient if the content is in a ratio of 2.0 to 0.1 to 8.0.

上記比率を離れるとバナジウムが少なすぎると脱硝性能
が低下するし、8.0以上加えても脱硝性能にはプラス
効果をもたらすことがない。
If vanadium is outside the above ratio, the denitrification performance will deteriorate if the vanadium content is too small, and even if vanadium is added at a ratio of 8.0 or more, no positive effect will be brought about on the denitrification performance.

チタンとタングステンとの比率は酸化物換算で98〜7
0対2.0〜30の割合で含付しておれば良い。タング
ステンの量が2より少なければ、脱硝性能が低く、他の
バナジウム等で性能を向上させようとすれば、排ガス中
の802酸化率が大きくなるため、二次的な弊害を引き
起すため排ガス中に802が存在する場合はSO3酸化
率の低いWO2を2.0以上存在させる必要がある。逆
に30以上存在させると効果の割に経済的負担が大きく
なり好ましくない。
The ratio of titanium to tungsten is 98 to 7 in terms of oxide.
It is sufficient if it is included in a ratio of 0:2.0 to 30. If the amount of tungsten is less than 2, the denitrification performance will be low, and if you try to improve the performance with other vanadium, the oxidation rate of 802 in the exhaust gas will increase, causing secondary problems. When 802 is present in , it is necessary to have WO2 with a low SO3 oxidation rate of 2.0 or more. On the other hand, if there are 30 or more, the economic burden becomes large in comparison to the effect, which is not preferable.

ジルコニウムは砒素吸着性の高いチタン担体を高価では
あるが砒素吸着性が低く脱硝触媒担体としてチタンに劣
らないジルコニウムで被覆して砒素に対する抵抗力を増
やすのが目的であるため、チタンとジルコニウムとの比
率は酸化物換算で99.5〜95:0.5〜10の割合
で含有しておれば良く、10以上存在させても触媒の細
孔を閉塞する等経済的負担と共に負効果が増えるだけで
ある。
The purpose of zirconium is to increase the resistance to arsenic by coating a titanium carrier with a high arsenic adsorption property with zirconium, which is expensive but has a low arsenic adsorption property and is comparable to titanium as a denitrification catalyst carrier. The ratio should be 99.5 to 95:0.5 to 10 in terms of oxides; even if it is present in excess of 10, it will only increase the economic burden and negative effects such as blocking the pores of the catalyst. It is.

チタン、バナジウム、タングステン、ジルコニウムの形
態としては酸化物、硫酸塩、硝酸塩の形態であれば有効
である。チタンを酸化チタンの形態で使用するときは、
結晶子が150〜250人の酸化チタンを使用するのか
好ましい。
Titanium, vanadium, tungsten, and zirconium are effective in the form of oxides, sulfates, and nitrates. When using titanium in the form of titanium oxide,
It is preferable to use titanium oxide having 150 to 250 crystallites.

バナジウム及び必要に応じてタングステン、ジルコニウ
ムが表層部に高1gi度に存在していれば良い。その濃
度は全触媒中の濃度に対し触媒表層部200μ迄の濃度
が1.5倍以上である。
It is sufficient that vanadium and, if necessary, tungsten and zirconium are present in the surface layer at a high degree of 1 gi. The concentration in the catalyst surface layer up to 200μ is 1.5 times or more the concentration in the entire catalyst.

製造方法としては含浸法、ハケ塗り法、ロール塗り法、
噴霧法等特にその方法は問わないが、乾燥と担持を同時
に進めることが好ましく、ハニカム基材では含浸法で含
浸後直ちに乾燥する方法が好ましい。
Manufacturing methods include impregnation method, brush coating method, roll coating method,
Although the method is not particularly limited, such as a spraying method, it is preferable to proceed with drying and supporting at the same time. For honeycomb substrates, it is preferable to use an impregnation method and dry immediately after impregnation.

酸化チタンは排ガス中の砒素との親和性が強く、砒素を
吸着しやすく、しかもその吸着能は酸化チタンの比表面
積に比例するため、脱硝性能に大きな影響を与えない範
囲内で比表面積を小さくすることが好ましく、このため
酸化チタンの結晶子は150〜250人に調製すること
が好ましい。更に酸化チタンの結晶子を大きくするため
に若干低下する脱硝性能を、S02の酸化率を増加させ
ずに向上させるためには、触媒の表層部に高濃度にバナ
ジウムを存在させることが好ましいわけである。 即ち
バナジウム(必要に応じてタングステン、ジルコニウム
)を表層部に高濃度に存在させることにより、初期性能
を向上させ、砒素による性能低下を抑え触媒の寿命を長
くすることができ、しかも共存するS02の酸化能は全
触媒中のバナジウム量に依存するため、SO□の酸化と
いう悪影響を与えず、砒素を含んだ排ガス中の窒素酸化
物の除去触媒として極めて有効である。
Titanium oxide has a strong affinity for arsenic in exhaust gas and easily adsorbs arsenic, and its adsorption capacity is proportional to the specific surface area of titanium oxide, so the specific surface area can be reduced within a range that does not significantly affect denitrification performance. Therefore, the number of titanium oxide crystallites is preferably 150 to 250. Furthermore, in order to improve the denitrification performance, which decreases slightly due to enlarging the crystallites of titanium oxide, without increasing the oxidation rate of S02, it is preferable to have vanadium present in a high concentration in the surface layer of the catalyst. be. In other words, by making vanadium (tungsten, zirconium if necessary) exist in a high concentration in the surface layer, it is possible to improve the initial performance, suppress the performance deterioration caused by arsenic, and extend the life of the catalyst. Since the oxidizing ability depends on the amount of vanadium in the total catalyst, it does not have the adverse effect of oxidizing SO□ and is extremely effective as a catalyst for removing nitrogen oxides from arsenic-containing exhaust gas.

触媒の形状はベレット状、球状、ハニカム状等いずれで
も良い。
The shape of the catalyst may be any shape such as a pellet shape, a spherical shape, or a honeycomb shape.

窒素酸化物の除去方法は、上記した如く還元剤の存在下
に行われるが、通常は還元剤としてはアンモニアが好適
である。
The method for removing nitrogen oxides is carried out in the presence of a reducing agent as described above, and ammonia is usually preferred as the reducing agent.

本触媒により窒素酸化物を含有する混合ガスから窒素酸
化物を除去するには、その混合ガスが含有する窒素酸化
物の0. 5〜5倍モル、好マしくは1〜2倍モルのア
ンモニアを加え、これを触媒を充填した反応層を通過さ
せる。反応層は移動層、流動層、固定層等、いずれも使
用できる。反応温度は200〜500℃の範囲にわたっ
てよいが、好ましくは250〜400℃の範囲である。
In order to remove nitrogen oxides from a mixed gas containing nitrogen oxides using this catalyst, 0% of the nitrogen oxides contained in the mixed gas must be removed. Ammonia is added in an amount of 5 to 5 times the mole, preferably 1 to 2 times the mole, and is passed through a reaction bed filled with a catalyst. Any of a moving bed, a fluidized bed, a fixed bed, etc. can be used as the reaction bed. The reaction temperature may range from 200 to 500°C, preferably from 250 to 400°C.

又、ガスの空間速度は1.000〜100,000hr
、好ましくは3,000〜300,000hrの範囲で
ある。
Also, the space velocity of gas is 1.000 to 100,000 hr.
, preferably in the range of 3,000 to 300,000 hr.

本触媒は窒素酸化物を含有する任意のガス処理に用いる
ことができるが、特に、ボイラー排ガス、即ち、100
〜1,000 pp■の窒素酸化物、主として一酸化窒
素の他に、200〜2.000 ppmのイオウ酸化物
、主として二酸化、イオウ、1〜10容量06の酸素、
5〜20容ffl Q、6の炭酸ガス、5〜20容量%
の水蒸気の他1:o、01ppm以上のAs2O3が含
Hされている排ガス中の窒素酸化物を除去するのに好適
に用いることができる。
The catalyst can be used to treat any gas containing nitrogen oxides, but especially boiler exhaust gas, i.e.
~1,000 ppm of nitrogen oxides, mainly nitric oxide, as well as 200-2.000 ppm of sulfur oxides, mainly dioxide, sulfur, 1-10 volumes of oxygen,
5-20 volume ffl Q, 6 carbon dioxide gas, 5-20 volume%
It can be suitably used to remove nitrogen oxides from exhaust gas containing H of 1:0,01 ppm or more in addition to water vapor.

以下実施例により具体的に説明する。This will be explained in detail below using examples.

実施例1 硫酸法による酸化チタン製造工程から得られるメタチタ
ン酸を中和した後、濾過水洗してケーキ状メタチタン酸
を得た。このメタチタン酸く酸化チタン換算800kg
)に67.5%硝酸8kgを加えメタチタン酸を部分的
に解膠した後、このゾル液を噴霧乾燥した後450℃で
3時間焼成した。この後冷却後微粉砕して平均2μmの
酸化チタン粉末を得た。
Example 1 Metatitanic acid obtained from a titanium oxide production process using a sulfuric acid method was neutralized, filtered and washed with water to obtain cake-like metatitanic acid. This meta-titanium acid is equivalent to 800 kg of titanium oxide.
) was added with 8 kg of 67.5% nitric acid to partially peptize the metatitanic acid, and the sol solution was spray-dried and then calcined at 450° C. for 3 hours. Thereafter, it was cooled and pulverized to obtain titanium oxide powder with an average size of 2 μm.

モノエタノールアミン水溶液にパラタングステン酸アン
モニウム100kgを溶解した水溶液300fl、ポリ
ビニルアルコール5旧【g及びEガラスチョツプドスト
ランド(繊維長さ5mm、繊維径9μm1日東紡績沖製
)100kgを上記酸化チタン粉末800kgに本釣1
00flと共に加え、ニーダ−でこれらを混練した。
300 fl of an aqueous solution in which 100 kg of ammonium paratungstate was dissolved in a monoethanolamine aqueous solution, 100 kg of polyvinyl alcohol 5 [g and E glass chopped strands (fiber length 5 mm, fiber diameter 9 μm, manufactured by Nitto Boseki Oki), and 800 kg of the above titanium oxide powder. Hon fishing 1
00fl and kneaded them with a kneader.

次いでこの混練物をハニカム押出用ノズルを備えたスク
リュー付き押出機によってハニカム状に成形した。成形
したハニカムを充分時間をかけて自然乾燥させた後、1
00℃で5時間通風乾燥した。この後、軸方向の両端を
切り揃え電気炉で450℃、3時間焼成してセルピッチ
7.4mm、壁厚1.35mm、外径150+on+X
 150’mm、軸方向長さ500anの脱硝用ハニカ
ム触媒(相当直径5.9mm)を得た。
Next, this kneaded material was molded into a honeycomb shape using a screw extruder equipped with a honeycomb extrusion nozzle. After allowing the formed honeycomb to air dry for a sufficient amount of time,
It was dried with ventilation at 00°C for 5 hours. After that, both ends in the axial direction were trimmed and fired in an electric furnace at 450°C for 3 hours to obtain a cell pitch of 7.4mm, wall thickness of 1.35mm, and outer diameter of 150+on+X.
A honeycomb catalyst for denitration (equivalent diameter of 5.9 mm) with a length of 150 mm and an axial length of 500 an was obtained.

次いで修酸19.2kg、メタバナジン酸アンモニウム
7、 7kgに加水して401とし’150g/Ωのバ
ナジウム含浸液を調製した。
Next, 19.2 kg of oxalic acid and 7.7 kg of ammonium metavanadate were added with water to prepare a vanadium impregnating solution of 401 and 150 g/Ω.

その後、含浸液1gに対し7,4g加水して17.9g
/Rに希釈したこの希釈液を60°Cに保ち前記触媒を
含浸した。
After that, 7.4g of water was added to 1g of impregnating liquid to yield 17.9g.
This diluted solution was kept at 60°C and impregnated with the catalyst.

含浸後直ちに60℃に保たれた触媒セル内を流通する通
風乾燥機に入れて1時間で100℃迄昇温し、100℃
で5時間乾燥した。その後450℃にて3時間焼成した
Immediately after impregnation, the inside of the catalyst cell kept at 60°C was placed in a circulating ventilation dryer, and the temperature was raised to 100°C in 1 hour.
It was dried for 5 hours. Thereafter, it was fired at 450°C for 3 hours.

比較例1 実施例1と同様にして調製された触媒を実施例1と同様
に希釈された常温のバナジウム含浸液に含浸した。含浸
板常温の実施例1記載の通風乾燥機に入れ常温で2.5
時間通風乾燥した。その後、5時間かけて100℃迄昇
温し、100℃で5時間乾燥した。更に450℃にて3
時間焼成した。
Comparative Example 1 A catalyst prepared in the same manner as in Example 1 was impregnated with a diluted vanadium impregnating solution at room temperature in the same manner as in Example 1. The impregnated plate was placed in the ventilation dryer described in Example 1 at room temperature for 2.5 hours at room temperature.
Air dry for an hour. Thereafter, the temperature was raised to 100°C over 5 hours, and the mixture was dried at 100°C for 5 hours. Further at 450℃ 3
Baked for an hour.

実施例2 実施例1で得られたセルピッチ7.4市、壁厚1.35
II11.外径150mmX 150mm。
Example 2 Cell pitch 7.4 and wall thickness 1.35 obtained in Example 1
II11. Outer diameter 150mm x 150mm.

軸方向長さ500關の脱硝用ハニカム触媒を、常1Mに
保った240.9g/Ωのオキシ塩化ジルコニウムの水
溶液に含浸した。その後実施例1の乾燥方法により乾燥
後450℃にて3時間焼成した。この触媒を冷却後型に
実施例1と同様に60℃に保った17.9g/Nのバナ
ジウム希釈液に含浸し、実施例1の方法にて乾燥後45
0℃にて3時間焼成した。
A denitrification honeycomb catalyst having an axial length of 500 mm was impregnated with an aqueous solution of 240.9 g/Ω of zirconium oxychloride, which was kept at 1M. Thereafter, it was dried by the drying method of Example 1 and then baked at 450° C. for 3 hours. After cooling, this catalyst was impregnated into a mold with a 17.9 g/N diluted vanadium solution kept at 60°C in the same manner as in Example 1, and dried in the same manner as in Example 1.
It was baked at 0°C for 3 hours.

実施例3 実施例1、比較例1で得た触媒中のバナジウムの濃度分
布を金蒸着後X線マイクロアナライザー(品性製ASM
−8X)で測定した。
Example 3 The concentration distribution of vanadium in the catalysts obtained in Example 1 and Comparative Example 1 was measured using an X-ray microanalyzer (ASM manufactured by Kansei Corporation) after gold deposition.
-8X).

nI定条件は下記第1表のとおりである。The nI constant conditions are shown in Table 1 below.

第1表 結果は第1図、第2図のとおりである。Table 1 The results are shown in Figures 1 and 2.

更に触媒中の■20.を■触媒全体、■表層から約20
0μm削り落した粉体に分けて分析した。
Furthermore, ■20. ■ Entire catalyst, ■ Approximately 20 from the surface layer
The powder was divided into 0 μm scraped pieces and analyzed.

結果は第2表のとおりである。The results are shown in Table 2.

第2表 実施例4 以上の実施例及び比較例で得た各窒素酸化物除去用触媒
を3セル×3セル長さ300mmに切り出し、その触媒
に窒素酸化物200ppm 、アンモニア200pl)
111水蒸気10%、二酸化炭素12%、二酸化イオウ
800 ppm、亜砒酸ガス25 ppm 、残部窒素
からなる組成の混合ガスを温度380℃、空間速度4,
700hr’にて接触させ、窒素酸化物(NOX )除
去率及び二酸化イオウ(So□)酸化率をAPJ定した
。結果を第2表に示す。尚、窒素酸化物除去率(%)及
び二酸化イオウ酸化率(%)はそれぞれ次式により求め
た。
Table 2 Example 4 Each catalyst for removing nitrogen oxides obtained in the above Examples and Comparative Examples was cut into 3 cells x 3 cells 300 mm in length, and the catalyst contained 200 ppm of nitrogen oxides and 200 pl of ammonia).
A mixed gas consisting of 10% 111 water vapor, 12% carbon dioxide, 800 ppm sulfur dioxide, 25 ppm arsenite gas, and the balance nitrogen was heated at a temperature of 380°C and a space velocity of 4.
The nitrogen oxide (NOX) removal rate and the sulfur dioxide (So□) oxidation rate were determined by APJ. The results are shown in Table 2. Note that the nitrogen oxide removal rate (%) and the sulfur dioxide oxidation rate (%) were determined by the following formulas.

窒素酸化物除去率(%)−(触媒層入口NOx濃度−触
媒層出口N0xa度)/(触媒層入口NOx濃度)X1
00 二酸化イオウ酸化率(%)−(触媒層入口SO濃度−触
媒層出口SO2濃度)/(触煤層入口(S02+803
)濃度)×100結果は第3表のとおりである。
Nitrogen oxide removal rate (%) - (catalyst layer inlet NOx concentration - catalyst layer outlet NOxa degree) / (catalyst layer inlet NOx concentration) X1
00 Sulfur dioxide oxidation rate (%) - (SO concentration at catalyst layer inlet - SO2 concentration at catalyst layer outlet) / (soot layer inlet (S02 + 803
) Concentration) x 100 The results are shown in Table 3.

第3表Table 3

Claims (1)

【特許請求の範囲】[Claims] チタン及びバナジウムを含有し、表層部にバナジウムが
高濃度に存在する砒素が存在する排ガス中の窒素酸化物
除去用触媒
Catalyst for removing nitrogen oxides from exhaust gas containing arsenic, containing titanium and vanadium, with a high concentration of vanadium in the surface layer.
JP61216355A 1986-09-13 1986-09-13 Catalyst for removing nitrogen oxide Pending JPS6372342A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61216355A JPS6372342A (en) 1986-09-13 1986-09-13 Catalyst for removing nitrogen oxide
CA000546531A CA1310005C (en) 1986-09-13 1987-09-10 Catalyst and a method for denitrizing nitrogen oxides contained in waste gases
DE3780545T DE3780545T3 (en) 1986-09-13 1987-09-11 A catalyst and method for denoxifying nitrogen oxides in exhaust gases.
EP87113298A EP0260614B2 (en) 1986-09-13 1987-09-11 A catalyst and a method for denitrizing nitrogen oxides contained in waste gases
AT87113298T ATE78421T1 (en) 1986-09-13 1987-09-11 A CATALYST AND PROCESS TO DENOX NITROUS OXIDES IN EXHAUST GASES.
US07/393,071 US4977127A (en) 1986-09-13 1989-08-07 Catalyst for denitrizing nitrogen oxides contained in waste gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216355A JPS6372342A (en) 1986-09-13 1986-09-13 Catalyst for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPS6372342A true JPS6372342A (en) 1988-04-02

Family

ID=16687257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216355A Pending JPS6372342A (en) 1986-09-13 1986-09-13 Catalyst for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS6372342A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134057A (en) * 1986-11-27 1988-06-06 Mitsubishi Heavy Ind Ltd Production of catalyst for denitrification of flue gas
KR100427397B1 (en) * 2001-02-27 2004-04-27 세신전자(주) Method of manufacturing catalyst for reduction of nitrogen oxides
JP2007014960A (en) * 2006-09-28 2007-01-25 Babcock Hitachi Kk Production method of catalyst for removing nox in exhaust gas
US20120121486A1 (en) * 2010-02-01 2012-05-17 Johnson Matthey Public Limited Company Filter comprising combined soot oxidation and nh3-scr catalyst
JPWO2012086413A1 (en) * 2010-12-20 2014-05-22 三菱重工業株式会社 NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
US9138731B2 (en) 2011-08-03 2015-09-22 Johnson Matthey Public Limited Company Extruded honeycomb catalyst

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134057A (en) * 1986-11-27 1988-06-06 Mitsubishi Heavy Ind Ltd Production of catalyst for denitrification of flue gas
KR100427397B1 (en) * 2001-02-27 2004-04-27 세신전자(주) Method of manufacturing catalyst for reduction of nitrogen oxides
JP2007014960A (en) * 2006-09-28 2007-01-25 Babcock Hitachi Kk Production method of catalyst for removing nox in exhaust gas
US8641993B2 (en) 2010-02-01 2014-02-04 Johnson Matthey Public Limited Co. NOx absorber catalysts
US8263032B2 (en) 2010-02-01 2012-09-11 Johnson Matthey Public Limited Company Oxidation catalyst
US8603423B2 (en) 2010-02-01 2013-12-10 Johnson Matthey Public Limited Co. Three way catalyst comprising extruded solid body
US20120121486A1 (en) * 2010-02-01 2012-05-17 Johnson Matthey Public Limited Company Filter comprising combined soot oxidation and nh3-scr catalyst
US8815190B2 (en) 2010-02-01 2014-08-26 Johnson Matthey Public Limited Company Extruded SCR filter
US9040003B2 (en) 2010-02-01 2015-05-26 Johnson Matthey Public Limited Company Three way catalyst comprising extruded solid body
US9283519B2 (en) * 2010-02-01 2016-03-15 Johnson Matthey Public Limited Company Filter comprising combined soot oxidation and NH3-SCR catalyst
JPWO2012086413A1 (en) * 2010-12-20 2014-05-22 三菱重工業株式会社 NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
JP5787901B2 (en) * 2010-12-20 2015-09-30 三菱日立パワーシステムズ株式会社 NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
US9138731B2 (en) 2011-08-03 2015-09-22 Johnson Matthey Public Limited Company Extruded honeycomb catalyst

Similar Documents

Publication Publication Date Title
JPS5982930A (en) Reduction of nitrogen oxide
WO2015099024A1 (en) Ammonia decomposition catalyst
EP0260614B1 (en) A catalyst and a method for denitrizing nitrogen oxides contained in waste gases
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
CN111097442B (en) Flue gas synergistic denitration and demercuration catalyst and preparation method thereof
JPS63185448A (en) Catalyst and method for removing nitrogen oxide in exhaust gas
JPH0714484B2 (en) Nitrogen oxide reduction catalyst
JPS6372342A (en) Catalyst for removing nitrogen oxide
JP2005342711A (en) Denitration method of diesel engine exhaust gas
CS273192B2 (en) Method of catalyst production for nitrogen oxide removal from waste gases,resistant to arsenic deactivation
JPS5812057B2 (en) Shiyokubaisosabutsu
JP6157916B2 (en) NOx removal catalyst and method for producing the same
KR102558168B1 (en) Catalyst for ammonia oxidation, and method for producing the same
JPS5935027A (en) Preparation of calcined titanium oxide and catalyst
JPS6372341A (en) Catalyst for removing nitrogen oxide
JPS6215247B2 (en)
KR20220057376A (en) Non-platinum metal oxide catalyst for selective oxidation of ammonia and process for selective oxidation of ammonia using the same
JP4511920B2 (en) Method for producing denitration catalyst
JP2825343B2 (en) Method for producing catalyst for removing nitrogen oxides
KR20180019866A (en) SiO2 based carbon dioxide regenerablesorbent at low temperature
CN112808303B (en) Sulfur-containing organic waste gas catalytic oxidation catalyst and preparation method thereof
JPH0596165A (en) Denitrating catalyst inhibiting oxyidation of sulfur dioxide and its production
JPH038820B2 (en)
KR100963080B1 (en) DIVANADIUM PENTAOXIDE-BASED CATALYSTS WASHCOATING Ag FOR REDUCING SULFUR DIOXIDE OXIDATION
JP3270082B2 (en) Decomposition and removal method of nitrous oxide