JPS6372177A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS6372177A
JPS6372177A JP21741286A JP21741286A JPS6372177A JP S6372177 A JPS6372177 A JP S6372177A JP 21741286 A JP21741286 A JP 21741286A JP 21741286 A JP21741286 A JP 21741286A JP S6372177 A JPS6372177 A JP S6372177A
Authority
JP
Japan
Prior art keywords
layer
buried
etching
type inp
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21741286A
Other languages
Japanese (ja)
Inventor
Akihisa Ikuta
晃久 生田
Nagataka Ishiguro
永孝 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21741286A priority Critical patent/JPS6372177A/en
Publication of JPS6372177A publication Critical patent/JPS6372177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize an excellent characteristic with respect to a high output level, a basic horizontal mode and a low threshold electric current by a method wherein, after an inversely structured mesa has been formed by etching using a bromine methanol solution, a clad layer at the lower part is etched to form a stripe by means of hydrochloric acid so that the second epitaxial growth can be made. CONSTITUTION:During the first liquid phase epitaxial growth, a stripe-like pattern with a <001> crystal orientation is formed on a flat N-type InP substrate 6 in such a way that a lattice is aligned in succession, and, by means of etching using a bromine methanol solution, an active layer 4 with a width of about 2 mum is formed at the position where an inverted mesa shows the minimum width. After that, by using a mixed solution which is composed of one part of hydrochloric acid and two parts of phosphoric acid, an N-type InP layer 5 is etched almost vertically (about 2.5 mum). Then, during the second liquid phase epitaxial growth, the first buried P-type InP layer 8 is grown to the height of the active layer 4, and, after that, the second buried N-type InP layer 7 is growth. After the pattern of an SiO2 film 1 has been removed, an electrode part is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、埋め込み型の半導体レーザの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a buried semiconductor laser.

従来の技術 1μm帯の半導体レーザは、InGaAsPおよびIn
Pを主材料とし、低しきい電流・高出力を達成するため
に、活性層における光の閉じ込め効果やキャリアの閉じ
込め効果を高めるように設計される。代表的な素子構造
である埋め込み型ストライプレーザ(Buried H
eterostructure La5er以下BHレ
ーザと記す。)の従来構造を第3図に示す。
Conventional technology 1 μm band semiconductor lasers are made of InGaAsP and InGaAsP.
The main material is P, and in order to achieve low threshold current and high output, it is designed to enhance the light confinement effect and carrier confinement effect in the active layer. Buried stripe laser (Buried H) is a typical device structure.
The eterostructure La5er is hereinafter referred to as a BH laser. ) is shown in Figure 3.

従来のBHレーザの製造方法は、1回目の液相エピタキ
シャル成長法で、(100)InP基板16上に、1n
Pクラッド層15 、 I n、Ga、−xAs、 P
 、−y活性層14およびInPnチクド層13からな
るダブルヘテロ接合を成長させ、さらに、オーミック電
極としてのInGaAsP層12を設けたのち、これら
を臭素メタノール溶液でエツチングし、<011>結晶
方向の逆メサストライプ構造を得る。これに統(,2回
目の液相エピタキシャル成長法で、エツチングの行われ
た部分に、N型およびP型のInP層18.17を順次
埋め込み成長し、埋め込み層を形成する。BH構造は、
ダブルヘテロ接合により、クラッド層への少数キャリア
の拡散を制限して、活性層のキャリア密度を大きくし、
さらに、埋め込み層のN型、P型の境界に生じる逆バイ
アス領域のために電流が活性層のみに流れ込むという電
流挟窄構造を実現している。また、活性層を屈折率の低
いInPで囲んでいるため、レーザ光が活性層に効果的
に閉じ込められる。しかもストライプ幅を狭(制御する
ことで、基本横モード発振が実現でき、BHレーザでは
、低しきい電流9発振モード特性など一実用上、きわめ
て優れた特性を有する。
In the conventional BH laser manufacturing method, a 1n
P cladding layer 15, In, Ga, -xAs, P
After growing a double heterojunction consisting of the , -y active layer 14 and the InPn tinted layer 13, and further providing the InGaAsP layer 12 as an ohmic electrode, these are etched with a bromine methanol solution to reverse the <011> crystal direction. Obtain a mesa stripe structure. Following this, in the second liquid phase epitaxial growth method, N-type and P-type InP layers 18 and 17 are successively buried and grown in the etched area to form a buried layer.The BH structure is
The double heterojunction limits the diffusion of minority carriers into the cladding layer and increases the carrier density in the active layer.
Furthermore, due to the reverse bias region generated at the boundary between the N-type and P-type of the buried layer, a current confinement structure is realized in which current flows only into the active layer. Furthermore, since the active layer is surrounded by InP having a low refractive index, laser light is effectively confined in the active layer. Moreover, fundamental transverse mode oscillation can be realized by controlling the stripe width to be narrow, and the BH laser has extremely excellent characteristics in practical use, such as low threshold current and 9 oscillation mode characteristics.

発明が解決しようとする問題点 従来の製造方法より製作したBHレーザでは。The problem that the invention seeks to solve For BH lasers manufactured using conventional manufacturing methods.

電流−光出力特性において、第2図の特性曲線10.1
1のように、ある電流値から光出力が急減する現象や、
光出力が飽和する現象が起こり。
In the current-light output characteristics, characteristic curve 10.1 in Figure 2
1, the phenomenon where the light output suddenly decreases from a certain current value,
A phenomenon occurs in which the optical output becomes saturated.

高出力化には不向きであった。この現象について調査し
たところ、その原因として、以下の事実が確認された。
It was not suitable for high output. When this phenomenon was investigated, the following facts were confirmed as the cause.

すなわち、埋め込み層17.18は、クラッド層13.
15と合せて、サイリスク構造を形成し、クラッド層1
3から、埋め込み第1層18に、矢印19で示されるよ
うなリーク電流が注入されると、ブレークオーバ電圧が
減少し、通常、オン状態(導通状態)にならない低いバ
イアス電圧であっても、容易にオン状態となる。このた
め、電流挟窄構造が作用しなくなって、第3図中の矢印
20の経路を流れるサイリスク電流が、リーク電流とし
て、増大し、前記の光出力の減少や飽和現象を引き起こ
すものである。
That is, the buried layers 17.18 are the cladding layers 13.
15 to form a silisk structure, and the cladding layer 1
3, when a leakage current as shown by arrow 19 is injected into the buried first layer 18, the breakover voltage decreases, even at a low bias voltage that does not normally result in an on state (conducting state). Easily turns on. As a result, the current confinement structure ceases to function, and the cyrisk current flowing along the path indicated by the arrow 20 in FIG. 3 increases as a leakage current, causing the decrease in optical output and the saturation phenomenon described above.

これを防ぐには、前記のクラッド層13から埋め込み第
1層18へのリーク電流を減少させ、さらに、埋め込み
第1層18をベースと見たときの埋め込み層18および
クラッド層15でなるトランジスタ構造の電流利得を減
少させて、ブレークオーバ電圧が低下するのを抑制しな
ければならない。しかし、前者についての改善を行うた
め、クラッド層13と、埋め込み第1層18の接触面積
を狭(すると、埋め込み第1層が薄くなり、電流利得が
大きくなるため、むしろ、オン状態になり易(なってし
まう。一方、後者の改善のために、前記埋め込み第1層
を厚(すると、リーク電流19が増大し、光出力が飽和
する結果となる。したがって、従来、同時に両者の改善
を行うことはできなかった。また、別の方法として、活
性層を最小幅よりも上部に位置させて埋め込み第1層1
8を厚くするという方法も考えられるが、活性層を狭く
コントロールできず、基本横モード発振が得られに(い
。以上のように、従来の製造方法では、電流挟窄効果を
、高電流域まで保持することが難しく、高出力化などの
要求に対して、不満足な結果しか得られていなかった。
In order to prevent this, the leakage current from the cladding layer 13 to the buried first layer 18 is reduced, and the transistor structure consisting of the buried layer 18 and the cladding layer 15 when the buried first layer 18 is viewed as a base. The current gain of the current gain must be reduced to suppress the drop in breakover voltage. However, in order to improve the former, the contact area between the cladding layer 13 and the buried first layer 18 is narrowed (this makes the buried first layer thinner and the current gain increases, so it is more likely to turn on). On the other hand, in order to improve the latter, the buried first layer is made thicker (then the leakage current 19 increases and the optical output becomes saturated. Another method is to position the active layer above the minimum width and fill the buried first layer 1.
8 could be considered, but the active layer cannot be controlled narrowly and fundamental transverse mode oscillation cannot be obtained.As described above, in the conventional manufacturing method, the current pinching effect is It is difficult to maintain this level, and results have been unsatisfactory in response to demands for higher output.

問題点を解決するための手段 本発明は、上記の問題点を解決するため、新たな逆メサ
ストライプ形状を得るための製造方法を提案するもので
あり、臭素メタノール溶液で、活性層を越えるまでエツ
チングして逆メサ構造形成後、下方のクラッド層を塩酸
により、ストライプ状にエツチングしたのち、2回目の
エピタキシャル成長を行うものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention proposes a manufacturing method for obtaining a new reverse mesa stripe shape. After etching to form an inverted mesa structure, the lower cladding layer is etched in stripes using hydrochloric acid, and then a second epitaxial growth is performed.

作用 本発明によると、塩酸によるエツチングは、InGaA
sPからなる活性層やコンタクト層をほとんどエツチン
グせずに、InPのみエツチングし、そのエツチング速
度も、結晶面方位により異なり、(0111,(111
1面では非常に遅いという特性があり、この特性により
、活性層以下の領域を、はぼ活性層と同程度の幅を残し
て、鉛直にエツチングできる。このようにして形成され
た新しい逆メサ形状に、2回目のエピタキシャル成長を
行うと、埋め込み第1層およびクラッド層への接触面積
を小さくした状態で、埋め込み第1層を厚くでき、埋め
込み層からクラッド層へのリーク電流を極力減少させる
とともに、サイリスク構造のブレークオーバ電圧が減少
するのを抑えることができ、従来のBH構造が有する長
所を損うことなく高出力化に対応できる。
According to the present invention, etching with hydrochloric acid
Only InP is etched without etching the active layer or contact layer made of sP, and the etching rate also varies depending on the crystal plane orientation.
It has the characteristic of being extremely slow on one surface, and due to this characteristic, the region below the active layer can be etched vertically, leaving a width approximately the same as that of the active layer. When a second epitaxial growth is performed on the new inverted mesa shape thus formed, the buried first layer can be made thicker while the contact area between the buried first layer and the cladding layer is reduced, and the buried layer can be grown from the buried layer to the cladding layer. It is possible to reduce the leakage current to the layer as much as possible, and also to suppress the decrease in the breakover voltage of the SiRisk structure, and it is possible to cope with high output without impairing the advantages of the conventional BH structure.

実施例 本発明を実際に応用した実施例を用いてさらに詳細に述
べる。第1図a −dは本発明実施例の工程順断面図で
ある。1回目の液相エピタキシャル成長で、第1図aの
ように、平坦な(100)N型!nP基板6上に、N型
1nPクラッド層5゜I n、Ga、−xAs、 P 
、−、活性層4.P型1nPクラッド層3.P型InG
aAsPオーミックコンタクト層2を、膜厚それぞれ3
μ輪、0.1μm、2.5μ■。
EXAMPLE The present invention will be described in more detail using an example in which the present invention is actually applied. FIGS. 1A to 1D are cross-sectional views in order of steps of an embodiment of the present invention. The first liquid phase epitaxial growth resulted in a flat (100)N type, as shown in Figure 1a! On the nP substrate 6, an N-type 1nP cladding layer 5°In, Ga, -xAs, P
,-,active layer 4. P-type 1nP cladding layer 3. P-type InG
The aAsP ohmic contact layer 2 has a film thickness of 3
μ ring, 0.1 μm, 2.5 μ■.

0.5μ閣として順次格子整合する様に成長した後、そ
の表面に約3000Aの5i02膜1を埋積させ、<0
11>結晶方向の幅、約6μ諺のストライプ状パターン
を形成し、次に1%の臭素メタノール溶液で50秒間エ
ツチングすることで、第1図すのように、逆メサの最小
幅の位置に幅2μ蔵程度の活性層4が位置するようにす
る。この後、塩酸とりん酸とを1=2に混合した溶液で
、30秒間エツチングを行うと、第1図Cのように、N
型InP層5が、はぼ鉛直に約2.5μmエツチングさ
れ、残された幅は、活性層とほぼ同じく約2μ諺となっ
た。これに続き、2回目の液相エピタキシャル成長で、
第1図dのように、活性層4の位置まで、埋め込み第1
届P型1nP8を成長し、その後、埋め込み第2層のN
型InP7を成長した。さらに5i02膜1のパターン
を除去し、電極部を形成した後、実際に、半導体レーザ
を作製して、電流−光出力特性を測定したところ、第2
図の特性曲線9に示される結果が得られた。従来法で製
造したものでは、電流値が約30On+Aで光出力が急
減、飽和を示したのに対し、本発明によるBH構造半導
体レーザでは、500mA以上の高電流値まで光出力は
増加し、60 cW、#acet以上の高出力化を達成
できた。しかも、しきい電流は従来と変わらず、基本横
モードが得られた。
After growing in a lattice-matched manner as a 0.5μ film, a 5i02 film 1 of approximately 3000A is buried on the surface, and <0
11> Form a striped pattern with a width of approximately 6μ in the crystal direction, and then etching it with a 1% bromine methanol solution for 50 seconds to form a striped pattern at the minimum width position of the inverted mesa, as shown in Figure 1. The active layer 4 having a width of about 2 μm is positioned. After this, when etching is performed for 30 seconds with a solution containing 1=2 of hydrochloric acid and phosphoric acid, N
The type InP layer 5 was etched vertically by about 2.5 μm, and the remaining width was about 2 μm, which is almost the same as the active layer. Following this, in the second liquid phase epitaxial growth,
As shown in FIG. 1d, the buried first
Grow P-type 1nP8, then embed the second layer of N
Type InP7 was grown. Furthermore, after removing the pattern of the 5i02 film 1 and forming an electrode part, a semiconductor laser was actually fabricated and the current-light output characteristics were measured.
The results shown in characteristic curve 9 in the figure were obtained. In the conventional method, the optical output suddenly decreased and reached saturation at a current value of about 30 On+A, whereas in the BH structure semiconductor laser according to the present invention, the optical output increased up to a high current value of 500 mA or more, and reached 60 On+A. We were able to achieve higher output than cW, #acet. Moreover, the threshold current remained the same as before, and the fundamental transverse mode was obtained.

本発明の実施例では、N型1nP基板を用いた場合につ
いて述べたが、P型1nPを基板とした場合についても
全(同様な効果があることはもちろんである。
In the embodiment of the present invention, the case where an N-type 1nP substrate is used has been described, but it goes without saying that the same effect can be obtained when a P-type 1nP substrate is used.

発明の効果 本発明は、BH構造半導体レーザの製造方法で、そのク
ラッド層のメサエッチ工程に、塩酸を含む溶液でのエツ
チングを加えることで、高出力・基本横モード・低しき
い電流の優れた特性を達成することができ、その技術的
効果は大である。
Effects of the Invention The present invention is a method for manufacturing a BH structure semiconductor laser, in which etching with a solution containing hydrochloric acid is added to the mesa etching process of the cladding layer, thereby achieving excellent high output, fundamental transverse mode, and low threshold current. characteristics can be achieved, and its technical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体レーザの製造方法の概略を
示す実施例工程順断面図、第2図は従来法と本発明の方
法で得られた半導体レーザの電流−光出力特性を比較し
た特性図、第3図は従来のInGaAsP埋め込み型半
導体レーザの構造を示す断面図である。 1・・・・・・<011>結晶方向のストライプ状5i
02膜、2・・・・・・InGaAsPオミックコンタ
クト層、3・・・・・・InPクラッド層、4・・・・
・・InGaAsP活性層、5・・・・・・InPクラ
ッド層、6・・・・・・InP基板、7・・・・・・I
nP埋め込み第1層、8・・・・・・埋め込み第2層。 代理人の氏名 弁理士 中尾敏男 ほか1名第2図 o     too    zoo    300  
 46)θ   9゜電 涼、 第 3 図
FIG. 1 is a cross-sectional view of an example process showing an outline of the method for manufacturing a semiconductor laser according to the present invention, and FIG. 2 is a comparison of the current-light output characteristics of semiconductor lasers obtained by the conventional method and the method of the present invention. 3 are cross-sectional views showing the structure of a conventional InGaAsP buried semiconductor laser. 1...<011> Striped pattern 5i in crystal direction
02 film, 2... InGaAsP ohmic contact layer, 3... InP cladding layer, 4...
...InGaAsP active layer, 5...InP cladding layer, 6...InP substrate, 7...I
nP buried first layer, 8... buried second layer. Name of agent Patent attorney Toshio Nakao and one other person Figure 2 o too zoo 300
46) θ 9° Den Ryo, Fig. 3

Claims (1)

【特許請求の範囲】[Claims] In_xGa_1_−_xAs_yP_1_−_y活性
層と、隣接するInPクラッド層、もしくは前記活性層
と組成の異なるInGaAsP層を介してのInPクラ
ッド層からなるダブルヘテロ接合を、(100)InP
基板表面上に成長した多層エピタキシャル層に対して、
〈011〉結晶方向のストライプ状マスクのエッチング
第1工程として、臭素メタノール溶液で、逆メサの最小
幅の位置が前記活性層を越えるまでエッチングを行った
後、これに続く第2工程として、塩酸を含む溶液で、前
記逆メサ最小幅の位置以下の所定の深さ領域を、前記逆
メサ最小幅と同程度幅にエッチングを行う工程をそなえ
たことを特徴とする半導体レーザの製造方法。
(100) InP
For multilayer epitaxial layers grown on the substrate surface,
<011> Etching of a striped mask in the crystal direction As a first step, etching is performed with a bromine methanol solution until the position of the minimum width of the inverted mesa exceeds the active layer, and then as a second step, etching is performed with hydrochloric acid. A method for manufacturing a semiconductor laser, comprising the step of etching a predetermined depth region below the minimum width of the inverted mesa to a width approximately equal to the minimum width of the inverted mesa, using a solution containing the inverted mesa.
JP21741286A 1986-09-16 1986-09-16 Manufacture of semiconductor laser Pending JPS6372177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21741286A JPS6372177A (en) 1986-09-16 1986-09-16 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21741286A JPS6372177A (en) 1986-09-16 1986-09-16 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6372177A true JPS6372177A (en) 1988-04-01

Family

ID=16703795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21741286A Pending JPS6372177A (en) 1986-09-16 1986-09-16 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6372177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229016A (en) * 2004-02-16 2005-08-25 Sharp Corp Semiconductor laser element, manufacturing method thereof, optical transmitting system, and optical disk apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068685A (en) * 1983-09-26 1985-04-19 Toshiba Corp Manufacture of buried semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068685A (en) * 1983-09-26 1985-04-19 Toshiba Corp Manufacture of buried semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229016A (en) * 2004-02-16 2005-08-25 Sharp Corp Semiconductor laser element, manufacturing method thereof, optical transmitting system, and optical disk apparatus

Similar Documents

Publication Publication Date Title
JP3791589B2 (en) End face non-injection type semiconductor laser and manufacturing method thereof
US5108948A (en) Method of producing a semiconductor device having a disordered superlattice using an epitaxial solid diffusion source
US5665612A (en) Method for fabricating a planar buried heterostructure laser diode
US5441912A (en) Method of manufacturing a laser diode
JPH0474877B2 (en)
JP2894186B2 (en) Optical semiconductor device
JPS6372177A (en) Manufacture of semiconductor laser
JPS61220489A (en) Manufacture of semiconductor laser
JPS5956783A (en) Semiconductor laser
JPH05226774A (en) Semiconductor laser element and its production
JPH01185988A (en) Semiconductor light emitting element and manufacture thereof
JPS6292385A (en) Semiconductor laser
JPS6376393A (en) Semiconductor laser device and manufacture thereof
JPH02246289A (en) Semiconductor light-emitting element
JPH04229682A (en) Manufacture of semiconductor laser
JPS6241436B2 (en)
JPH088482A (en) Semiconductor laser and manufacture thereof
JPH04369886A (en) Manufacture of semiconductor laser
JPH08222809A (en) Semiconductor light-emitting device
JPH09283846A (en) Semiconductor laser manufacturing method
JPH04257284A (en) Buried hetero structured semiconductor laser
JP2001077466A (en) Semiconductor laser
JPH01309393A (en) Semiconductor laser device and its manufacture
JPS59181020A (en) Etching of semiconductor device
JPH084172B2 (en) Embedded quantum well semiconductor laser