JPS637192B2 - - Google Patents

Info

Publication number
JPS637192B2
JPS637192B2 JP8802781A JP8802781A JPS637192B2 JP S637192 B2 JPS637192 B2 JP S637192B2 JP 8802781 A JP8802781 A JP 8802781A JP 8802781 A JP8802781 A JP 8802781A JP S637192 B2 JPS637192 B2 JP S637192B2
Authority
JP
Japan
Prior art keywords
formula
general formula
reaction
germanium
following general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8802781A
Other languages
Japanese (ja)
Other versions
JPS57203091A (en
Inventor
Teizo Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8802781A priority Critical patent/JPS57203091A/en
Publication of JPS57203091A publication Critical patent/JPS57203091A/en
Publication of JPS637192B2 publication Critical patent/JPS637192B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機ゲルマニウム化合物、特に下記一
般式〔〕 (但し式中Rは水素原子または炭素数1〜3のア
ルキル基を示す。) で表わされる有機ゲルマニウム化合物の製造法に
関するものである。 本発明で目的とする前記一般式〔〕で表わさ
れる有機ゲルマニウム化合物は、その特有な性
質、水溶性、脂溶性のため生理活性物質として近
年注目されているものである。その生理活性は、
ヌクロフアージアクチベーター、インターフエロ
ンインジユーサーのなどの作用により制ガン、ア
レルギーの抑制、高血圧症、利尿、肺せんい症、
気管支喘息などが明らかとなつている。 この様な生理活性を有する前記有機ゲルマニウ
ム化合物の製造法として、例えば(A)特公昭46−
2964号公報記載のハロゲルマニウムヒドリドにア
クリロニトリルを反応させ、シアノエチルトリハ
ロゲルマニウムを得これを、酸分解により、カル
ボキシエチルゲルマニウムクロリドとなし、さら
にこれにチオニルクロリドを作用させ、カルボキ
シル基をカルボニルクロル基となし、次いでこれ
を加水分解して、カルボキシエチルゲルマニウム
セスオキシドを得る方法や(B)特開昭55−81890号
公報記載のカルボキシアルキルエチルトリハロゲ
ルマニウムを酸性加水分解することによりカルボ
キシエチルゲルマニウムセスキオキシドを得る方
法等がある。 しかし、前記(A)の方法は反応工程が多く複雑で
工業的には不利である。また(B)の方法は反応後に
メタノールの如き有機物が副生し、排水などの問
題が生起するとともに、例えばその原料として、
アクリル酸メチルの如き化合物を用いたときはそ
の臭気が問題となる。 本発明者はかかる欠点を克服すべく前記一般式
〔〕で表わされる有機ゲルマニウム化合物の製
造法を研究した結果、本発明に到達した。 すなわち、本発明は下記一般式〔〕 (但し式中Xはハロゲン原子、Rは水素原子また
は炭素数1〜3のアルキル基を示す。) で表わされるハロ環状ゲルマニウム化合物をPH
1.5〜6.5の範囲で加水分解することを特徴とする
下記一般式〔〕 (但し式中Rは前記定義と同じ) で表わされる有機ゲルマニウム化合物の製造法で
ある。 かゝる本発明方法によれば、前記一般式〔〕
のハロ環状ゲルマニウム化合物をPH0.5〜6.5の範
囲、好ましくはPH1〜6の範囲の酸性で加水分解
することにより収率よく、簡単に前記一般式
〔〕の有機ゲルマニウム化合物が得られる。 また本発明者らの研究によれば、前記一般式
〔〕は下記一般式〔〕 X3GeH ……〔〕 (但し式中Xは前記定義と同じ) で表わされるハロゲン化ゲルマニウムと下記一般
式〔〕 (但し式中Rは前記定義と同じであり、Mはアル
カリ金属を示す。) で表わされるアクリル酸誘導体とを反応せしめる
ことにより得られることがわかつた。 本発明は、前記の如くして前記一般式〔〕と
〔〕との反応によつて得られた下記一般式〔〕 (但し式中XおよびRは前記定義と同じ) で表わされるハロ環状ゲルマニウム化合物は、こ
れを含む反応混合物のPHを前記酸性状態として加
水分解することもできるが、特に特徴的なことは
その反応混合物から式〔〕のハロ環状ゲルマニ
ウム化合物を蒸留により単離できることであり、
かくすることにより高純度の式〔〕のハロ環状
ゲルマニウムを得、次いでこれを前記酸性条件下
で加水分解して純度の良好な目的とする式〔〕
の有機ゲルマニウム化合物を得ることが可能とな
る。 本発明において使用する前記一般式〔〕で表
わされるハロゲン化ゲルマニウムは、例えば(i)ケ
ミカルアブストラクト536996i(1959)記載の如
く、金属ゲルマニウムと塩化水素ガスとの反応に
よるトリクロルゲルマニウムハイドライドを得る
方法に従つて、金属ゲルマニウムとハロゲン化水
素との反応による方法、(ii)グメリン・ハンドブツ
ハ・デル・アンオルガニツシユ・ヘミーシステ
ム、No.45、520頁に記載されている如く、四塩化
ゲルマニウムを高温気相下、分子状水素と反応さ
せて、トリクロロゲルマニウムハイドライドを製
造する方法に従つて、四ハロゲルマニウムと分子
状水素とを反応させる方法などがある。式〔〕
のXのハロゲンとしては塩素が好ましい。 しかし、この他いかなる方法で製造したもので
も使用は可能であり、特に製造法に限定されるも
のではない。 また前記式〔〕のハロゲン化ゲルマニウムと
反応せしめられるアクリル酸誘導体は下記式
〔〕で表わされる。 この式中Rは水素原子または炭素数1〜3のア
ルキル基であり、好ましくは水素原子またはメチ
ル基である。またMはアルカリ金属を示し、殊に
周期律表A属のものが好ましい。特にリチウ
ム、ナトリウム、カリウムなどが工業的見地から
好ましい。 この〔〕のアクリル酸誘導体は、〔〕のア
ルカリ塩に対応するアクリル酸の水溶液を、重合
防止剤の存在下、アルカリ金属の水溶液と接触反
応させることにより得ることもできるし、また例
えば、特公昭48−31085公報記載の如く、不飽和
酸のエステルに重合防止剤の存在下アルカリ水溶
液を反応させてつくることも出来る。しかし、一
般式〔〕に相当するものであれば、その製造法
は特に限定されるものではない。 以上の如き、原料〔〕と〔〕との反応によ
り化合物〔〕を製造するわけであるが、この反
応は無溶媒でもよいが、一般には溶媒が用いられ
る。かかる溶媒としては、アルコール、ケトン、
エーテル、炭化水素、ハロゲン化炭化水素、カル
ボン酸等があるが、かかる溶媒のうち、例えばエ
タノール、メタノール、プロピルアルコール、ア
セトン、エチルエーテル、プロピルエーテル、四
塩化炭素等が好んで用いられる。 かかる溶媒のもと、ほゞ化学量論量の反応物を
用いて、一般に反応は行なわれる。 本発明におけるかゝる反応温度は、特に限定は
されないが、例えば0℃以上、好ましくは常温〜
200℃の範囲がよい。 かくして得られたハロ環状ゲルマニウム〔〕
を加水分解するのであるが、前記の如くして得ら
れた〔〕を含有する反応混合物に対して加水分
解を行うこともできるし、また前記反応混合物か
ら〔〕を単離して加水分解することもできる。
この単離の方法としては蒸留によつて行うことが
できる。例えば〔〕式中Xが塩素原子でありR
が水素原子のものは2mmHgの圧力において85℃
の沸点を有している。 本発明における式〔〕の加水分解反応におい
ては特に加水分解液のPHが重要であり、一定の範
囲PHで加水分解を行う必要がある。すなわち加水
分解はPH0.5以上6.5以下、好ましくはPH1以上、
6以下の範囲で行なわれ、これ以外のPHにおいて
は、加水分解により、目的生成物をうることがで
きないか、生成物が非常に少なくしか得ることが
できない。 以下本発明を実施例をかかげて詳述する。 実施例 1 (トリクロロゲルマニウムハイドライドの合
成) 内径直10mmφ×長さ250mmの石英管に、石英ウ
ールをつめ、管内温度を900℃に保つ。これにH2
ガスと四塩化ゲルマニウムの混合物を供給し、反
応液をドライアイス−メタノールトラツプで捕集
する。反応終了後、60〜70℃でトラツプを加熱
し、単蒸発させこれを別のトラツプに移し、精製
する。無色透明な液体が得られる。沸点75℃。 実施例 2 内容量50c.c.のフラスコに、アクリル酸ナトリウ
ム1.0gr、ハイドロキノン10mg、エチルアルコ
ール20c.c.を仕込み、氷冷しつつ、前記実施例1で
得られたGeHCl31.26c.c.を5分間で滴下する。一
時間常温で撹拌したのち、60℃で更に1時間反応
さす。反応終了後、エタノールを追い出し、クロ
ロゲルマニウム環状化合物
The present invention relates to organic germanium compounds, particularly the following general formula [] (In the formula, R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) The present invention relates to a method for producing an organic germanium compound represented by the following formula. The organic germanium compound represented by the general formula [], which is the object of the present invention, has recently attracted attention as a physiologically active substance due to its unique properties, water solubility, and fat solubility. Its physiological activity is
Due to the effects of nucleophage activator and interferon inducer, it is effective against cancer, suppresses allergies, hypertension, diuresis, pulmonary spasms, etc.
Bronchial asthma has become evident. As a method for producing the organic germanium compound having such physiological activity, for example, (A)
The halogermanium hydride described in Publication No. 2964 is reacted with acrylonitrile to obtain cyanoethyltrihalogermanium, which is converted into carboxyethylgermanium chloride by acid decomposition, and further treated with thionyl chloride to convert the carboxyl group into a carbonylchlor group. Then, this is hydrolyzed to obtain carboxyethyl germanium sesoxide, and (B) carboxyethyl germanium sesquioxide is obtained by acidic hydrolysis of carboxyalkylethyl trihalogermanium described in JP-A-55-81890. There are methods etc. However, method (A) is complicated and has many reaction steps, and is industrially disadvantageous. In addition, in method (B), organic substances such as methanol are produced as by-products after the reaction, causing problems such as drainage.
When a compound such as methyl acrylate is used, its odor becomes a problem. In order to overcome these drawbacks, the present inventors researched a method for producing an organic germanium compound represented by the above general formula [], and as a result, they arrived at the present invention. That is, the present invention is based on the following general formula [] (However, in the formula, X is a halogen atom, R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) A halocyclic germanium compound represented by PH
The following general formula [] is characterized by being hydrolyzed in the range of 1.5 to 6.5 (However, R in the formula is the same as defined above.) This is a method for producing an organic germanium compound represented by the following formula. According to the method of the present invention, the general formula []
By hydrolyzing the halocyclic germanium compound with an acidity in the pH range of 0.5 to 6.5, preferably in the pH range of 1 to 6, the organic germanium compound of the general formula [] can be easily obtained in good yield. Further, according to the research of the present inventors, the above general formula [] is a germanium halide represented by the following general formula [] [] (However, in the formula, R is the same as defined above, and M represents an alkali metal.) It was found that it can be obtained by reacting with an acrylic acid derivative represented by the following. The present invention provides the following general formula [] obtained by the reaction of the general formula [] and [] as described above. (However, in the formula, X and R are the same as defined above.) The halocyclic germanium compound represented by the following can also be hydrolyzed by setting the pH of the reaction mixture containing it to the acidic state, but the particularly characteristic feature is that the reaction The halocyclic germanium compound of the formula [] can be isolated from a mixture by distillation,
In this way, a highly pure halocyclic germanium of the formula [] is obtained, which is then hydrolyzed under the acidic conditions to obtain the target formula [] with good purity.
It becomes possible to obtain an organic germanium compound of. The germanium halide represented by the general formula [] used in the present invention can be prepared by the method of obtaining trichlorogermanium hydride by reacting metal germanium with hydrogen chloride gas, for example, as described in (i) Chemical Abstracts 536996i (1959). (ii) Germanium tetrachloride is heated to a high temperature as described in Gmelin Handbutzha der Anorganizichem Chemie System, No. 45, p. 520. There is a method for producing trichlorogermanium hydride by reacting with molecular hydrogen in a gas phase, and a method for reacting tetrahalogermanium with molecular hydrogen. formula〔〕
The halogen for X is preferably chlorine. However, it is possible to use products produced by any other method, and the production method is not particularly limited. Further, the acrylic acid derivative reacted with the germanium halide of the above formula [] is represented by the following formula []. In this formula, R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group. Further, M represents an alkali metal, and metals from group A of the periodic table are particularly preferred. In particular, lithium, sodium, potassium, etc. are preferred from an industrial standpoint. This acrylic acid derivative [] can be obtained by contacting and reacting an aqueous solution of acrylic acid corresponding to the alkali salt of [] with an aqueous solution of an alkali metal in the presence of a polymerization inhibitor. As described in Japanese Publication No. 48-31085, it can also be produced by reacting an ester of an unsaturated acid with an aqueous alkaline solution in the presence of a polymerization inhibitor. However, the manufacturing method is not particularly limited as long as it corresponds to the general formula []. As described above, the compound [ ] is produced by the reaction of the raw materials [ ] and [ ], and although this reaction may be carried out without a solvent, a solvent is generally used. Such solvents include alcohols, ketones,
Examples of such solvents include ethers, hydrocarbons, halogenated hydrocarbons, and carboxylic acids. Among these solvents, for example, ethanol, methanol, propyl alcohol, acetone, ethyl ether, propyl ether, carbon tetrachloride, and the like are preferably used. The reaction is generally carried out in such a solvent and using approximately stoichiometric amounts of the reactants. The reaction temperature in the present invention is not particularly limited, but is, for example, 0°C or higher, preferably room temperature to
A range of 200℃ is recommended. The thus obtained halocyclic germanium []
The reaction mixture containing [] obtained as described above can be hydrolyzed, or [] can be isolated from the reaction mixture and hydrolyzed. You can also do it.
This isolation can be carried out by distillation. For example, in the formula [], X is a chlorine atom and R
is a hydrogen atom at 85°C at a pressure of 2 mmHg.
It has a boiling point of In the hydrolysis reaction of formula [] in the present invention, the pH of the hydrolysis solution is particularly important, and the hydrolysis must be carried out within a certain range of pH. That is, hydrolysis is performed at a pH of 0.5 or higher and 6.5 or lower, preferably PH1 or higher,
Hydrolysis is carried out within a pH range of 6 or below; at other pH's, the desired product cannot be obtained by hydrolysis, or only a very small amount of the product can be obtained. The present invention will be described in detail below with reference to Examples. Example 1 (Synthesis of trichlorogermanium hydride) A quartz tube with an inner diameter of 10 mmφ and a length of 250 mm is filled with quartz wool, and the temperature inside the tube is maintained at 900°C. H2 to this
A mixture of gas and germanium tetrachloride is supplied, and the reaction solution is collected in a dry ice-methanol trap. After the reaction is completed, the trap is heated to 60-70°C for single evaporation and transferred to another trap for purification. A colorless and transparent liquid is obtained. Boiling point 75℃. Example 2 A flask with an internal capacity of 50 c.c. was charged with 1.0 gr of sodium acrylate, 10 mg of hydroquinone, and 20 c.c. of ethyl alcohol, and while cooling on ice, 1.26 cc of GeHCl 3 obtained in Example 1 was added to the flask. Drip in minutes. After stirring at room temperature for 1 hour, the reaction was continued at 60°C for another 1 hour. After the reaction is complete, ethanol is expelled and the chlorogermanium cyclic compound is

【式】を得る。 これをPH5で加水分解すると白沈がでる。冷蔵
庫内に一夜放置し沈澱を過する。1.82gのヒド
ロキシエチルゲルマニウムセスキオキシドを得
た。収率は90%であつた。 実施例 3 内容量50c.c.のフラスコにアクリル酸ナトリウム
1.0gr、ハイドロキノン10mg、エチルアルコー
ル20c.c.を仕込み外側から氷冷しつつ実施例〔〕
で得られたGeHCl31.26c.c.を5分間で滴下する。
一時間常温で撹拌したのち60℃で更に1時間反応
さす。反応終了後エタノールを追い出し、しかる
のち10c.c.の水を加え70%NaoHを4にし一時間反
応させ冷蔵庫内で一夜放置すると白沈が出る。沈
澱を過する。 1.96grのヒドロキシエチルゲルマニウムセス
オキシドを得た。収率は98%であつた。 実施例 4 内容量50c.c.のフラスコに、アクリル酸ナトリウ
ム2g、ハイドロキノン10mg、エチルアルコール
30c.c.を仕込み、氷冷しつつ、前記実施例1で得た
GeHCl32.52c.c.を5分で滴下する。一時間常温で
撹拌したのち、60℃で更に1時間反応さす。反応
後エタノールから白沈を除く。しかるのち、エタ
ノールを追い出した。残液を2mmHgで減圧蒸留
した所、86℃の主溜分が得られた。これをマスペ
クトルおよび赤外線スペクトル、脱離食塩のモル
数、塩素分析、および元素分析より
Obtain [formula]. When this is hydrolyzed at pH5, a white precipitate appears. Leave in the refrigerator overnight to allow precipitation. 1.82 g of hydroxyethyl germanium sesquioxide was obtained. The yield was 90%. Example 3 Sodium acrylate in a flask with an internal capacity of 50 c.c.
Example: Prepare 1.0 gr, 10 mg of hydroquinone, and 20 c.c. of ethyl alcohol and cool on ice from the outside.
1.26 cc of GeHCl 3 obtained in step 1 was added dropwise over 5 minutes.
After stirring at room temperature for 1 hour, the reaction was continued at 60°C for another 1 hour. After the reaction is complete, ethanol is expelled, then 10 c.c. of water is added and 70% NaoH is added to 4, reacted for 1 hour and left in the refrigerator overnight to form a white precipitate. Allow precipitation. 1.96 gr of hydroxyethyl germanium sessoxide was obtained. The yield was 98%. Example 4 In a flask with an internal capacity of 50 c.c., 2 g of sodium acrylate, 10 mg of hydroquinone, and ethyl alcohol were added.
30c.c. was prepared and cooled on ice, obtained in Example 1 above.
Add 2.52 cc of GeHCl 3 dropwise over 5 minutes. After stirring at room temperature for 1 hour, the reaction was continued at 60°C for another 1 hour. After the reaction, remove the white precipitate from the ethanol. Afterwards, the ethanol was expelled. When the residual liquid was distilled under reduced pressure at 2 mmHg, a main fraction with a temperature of 86°C was obtained. This was determined from the mass spectrum and infrared spectrum, the number of moles of eliminated salt, chlorine analysis, and elemental analysis.

【式】であることをを確認し た。この化合物をPH2で加水分解した所定量的に
(Ge−CH2−CH2−COOH)2O3が得られた。
It was confirmed that [Formula]. This compound was hydrolyzed at PH2 to obtain (Ge- CH2 - CH2 -COOH) 2O3 in a predetermined amount.

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕 (但し式中Xはハロゲン原子、Rは水素原子また
は炭素数1〜3のアルキル基を示す) で表わされるハロ環状ゲルマニウム化合物をPH
0.5〜6.5の範囲で加水分解することを特徴とする
下記一般式〔〕 (但し式中Rは前記定義と同じ) で表わされる有機ゲルマニウム化合物の製造法。 2 下記一般式〔〕 X3GeH ……〔〕 (但し式中Xは前記定義と同じ) で表わされるハロゲン化ゲルマニウムと下記一般
式〔〕 (但し式中Rは前記定義と同じであり、Mはアル
カリ金属を示す。) で表わされるアクリル酸誘導体とを反応せしめ、
下記一般式〔〕 (但し式中XおよびRは前記定義と同じ) で表わされるハロ環状ゲルマニウム化合物を得、
次いでこれをPH0.5〜6.5の範囲で加水分解するこ
とを特徴とする下記一般式〔〕 (但し式中Rは前記定義と同じ) で表わされる有機ゲルマニウム化合物の製造法。
[Claims] 1. The following general formula [] (However, in the formula, X is a halogen atom and R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
The following general formula [] is characterized by being hydrolyzed in the range of 0.5 to 6.5 (However, R in the formula is the same as defined above.) A method for producing an organic germanium compound represented by: 2 Germanium halide represented by the following general formula [] (However, in the formula, R is the same as the above definition, and M represents an alkali metal.)
General formula below [] (wherein X and R are the same as defined above) to obtain a halocyclic germanium compound represented by
The following general formula [] is then hydrolyzed at a pH of 0.5 to 6.5. (However, R in the formula is the same as defined above.) A method for producing an organic germanium compound represented by:
JP8802781A 1981-06-10 1981-06-10 Production of organogermanium compound Granted JPS57203091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8802781A JPS57203091A (en) 1981-06-10 1981-06-10 Production of organogermanium compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8802781A JPS57203091A (en) 1981-06-10 1981-06-10 Production of organogermanium compound

Publications (2)

Publication Number Publication Date
JPS57203091A JPS57203091A (en) 1982-12-13
JPS637192B2 true JPS637192B2 (en) 1988-02-15

Family

ID=13931336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8802781A Granted JPS57203091A (en) 1981-06-10 1981-06-10 Production of organogermanium compound

Country Status (1)

Country Link
JP (1) JPS57203091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142569A1 (en) 2018-01-18 2019-07-25 Jfeスチール株式会社 Spectroscopic analysis device, spectroscopic analysis method, method for manufacturing steel strip, and steel strip quality assurance method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142569A1 (en) 2018-01-18 2019-07-25 Jfeスチール株式会社 Spectroscopic analysis device, spectroscopic analysis method, method for manufacturing steel strip, and steel strip quality assurance method

Also Published As

Publication number Publication date
JPS57203091A (en) 1982-12-13

Similar Documents

Publication Publication Date Title
US4156687A (en) Tetrahydrofuran polycarboxylates
AU2002224131A1 (en) Process for producing 5-(3-cyanophenyl)-3-formylbenzoic acid compound
RU2056402C1 (en) Method for producting hydrate of trifluoroacetaldehyde
JPS637192B2 (en)
JP2955283B2 (en) Tri-substituted benzoic acid intermediate
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
JPH11501314A (en) Method for preparing esters of stilbene dicarboxylic acid
JPH02292263A (en) Production of 1-methyl-3-alkyl-5-pyrazole carboxylate
US4426536A (en) Synthesis of phenylacetic acid esters
JPH02306950A (en) Aminoacetal derivative
US2459059A (en) Method for preparing alkyl acyloxy acrylates
JPH0662488B2 (en) Method for producing valproic acid
US4172208A (en) 5-Bromo-5,5-dicarboxyethylvalaraldehyde diethyl acetal
JP2708617B2 (en) Method for producing 4,4-dialkyl-substituted thiazolidinethione
JP2682687B2 (en) New thiophene compounds and their manufacture
JPS5935917B2 (en) Method for producing organic germanium compounds and organic germanium sesquioxides
JPS6232188B2 (en)
JP2007131600A (en) Production method for fluorine-containing lactic acid derivative, and its intermediate
JPH0558953A (en) Production of 2-hydroxyisobutyric acid ester
JP3777407B2 (en) Method for producing carboxylic acid derivative
JPH0232266B2 (en) 22 * 44ETOKISHIFUENIRU ** 2MECHIRUPUROPIRUARUKOORUOYOBISONOSEIZOHO
JPH0469362A (en) Preparation of acetoacetic acid l-menthyl ester
JPH0544448B2 (en)
JPS5948832B2 (en) New method for producing 2-(6-methoxy-2-naphthyl)propionic acid
JPH0267249A (en) Production of 2-chloro-3,3,3-trifluoropropyl ester