JPS6371924A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6371924A
JPS6371924A JP21754086A JP21754086A JPS6371924A JP S6371924 A JPS6371924 A JP S6371924A JP 21754086 A JP21754086 A JP 21754086A JP 21754086 A JP21754086 A JP 21754086A JP S6371924 A JPS6371924 A JP S6371924A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
magnetic
relative intensity
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21754086A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakamura
一彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21754086A priority Critical patent/JPS6371924A/en
Publication of JPS6371924A publication Critical patent/JPS6371924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium of high output, high recording density and low noise by specifying the relative intensity ratios of the X-ray diffraction peaks of Co of a thin magnetic film which has hexagonal close- packed structure. CONSTITUTION:This magnetic recording medium is used for a video tape recorder, etc., is formed by using a thin metallic film in particle as a magnetic layer and is suitable for the high recording density. The relative intensity ratio of the X-ray diffraction peaks of the hexagonal close-packed structure of the thin magnetic film formed to such magnetic recording medium are 0.30<=(100)/(002)<2.0 and 0.15<=(101)/(002)<2.0, where (100)/(002), (101)/(002) respectively denote the relative intensity ratios of the diffracted X-ray peaks of the respective lattice planes. Said ratios are more preferably adequately so dispersed as to attain 0.30<=(100)/(002)<=1.0 and 0.15<=(101)/(002)<=1.0.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビテオテープレコーダ等に利用される磁気記
t、工媒体に関するもので、特に金属薄膜を磁性層とし
高記録密度に通した磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic recording medium used in a videotape recorder, etc., and particularly relates to a magnetic recording medium using a thin metal film as a magnetic layer and passing through a high recording density. It is related to recording media.

〔発明の概要〕[Summary of the invention]

本発明は、基体上に真空蒸着法によりGo−PtIn性
薄膜を形成してなる磁気記録媒体において、前記磁性薄
膜の六方詰込構造のCoのX線回折ピークの相対強度比
を 0.30≦(100) / (002) <2.0かつ
 0.15≦(101) / (002) <2.0〔
但し、(100)/(002)、  (101)/(0
02)はそれぞれ各格子面での回折X線ピークの相対強
度比を表すものとする。〕 とすることにより、 高出力、高記録!度、低ノイズを達成する磁気記録媒体
を提供しようとするものである。
The present invention provides a magnetic recording medium in which a Go-PtIn thin film is formed on a substrate by vacuum evaporation, in which the relative intensity ratio of Co X-ray diffraction peaks in a hexagonally packed structure of the magnetic thin film is 0.30≦ (100) / (002) <2.0 and 0.15≦(101) / (002) <2.0
However, (100)/(002), (101)/(0
02) represents the relative intensity ratio of the diffraction X-ray peaks on each lattice plane. ] By doing so, high output and high records! The object of the present invention is to provide a magnetic recording medium that achieves low noise.

〔従来の技術〕[Conventional technology]

近年、例えばテレビジョン信号のような短波長の信号を
より再現性良く記録することが要求されており、該要求
に対応するために高花度記録を達成しようと各種磁気記
録媒体の開発がされている。
In recent years, there has been a demand for recording short-wavelength signals such as television signals with better reproducibility, and in order to meet this demand, various magnetic recording media have been developed in an attempt to achieve high-performance recording. ing.

その内の一つに金属薄膜からなるTit fi1体を真
空蒸着やユバ。2タリング等の手法により基体上に蒸着
した。いわゆる金属薄膜型磁気記録媒体が提案されてい
る。
One of them is Tit fi 1, which is made of a thin metal film, by vacuum evaporation or evaporation. It was deposited on the substrate by a technique such as 2-talling. So-called metal thin film magnetic recording media have been proposed.

上記金属F4v、型磁気記録媒体としては、Co−Ni
合金薄膜を磁性層とするものが一般的であるが、さらに
co−ptt金薄膜を磁性層とする磁気記録媒体が残留
磁束密度が大きく、耐蝕性に優れる等の点から注目を集
めている。
The metal F4v type magnetic recording medium is Co-Ni.
Generally, magnetic recording media have an alloy thin film as a magnetic layer, but magnetic recording media having a co-ptt gold thin film as a magnetic layer are attracting attention because of their large residual magnetic flux density and excellent corrosion resistance.

ところで、このCo−Pt合金薄膜型磁気記録媒体は、
面内方向に磁化して記録する方式であり、該磁気記録媒
体において高密度記録を達成するには、高保磁力および
良好な角形性を有することが要求される。つまり、これ
は使用する磁性体の磁化容易軸が面内方向に揃っている
ことを意味するものである。
By the way, this Co-Pt alloy thin film magnetic recording medium is
This is a method of recording by magnetizing in the in-plane direction, and in order to achieve high density recording in the magnetic recording medium, it is required to have high coercive force and good squareness. In other words, this means that the axes of easy magnetization of the magnetic material used are aligned in the in-plane direction.

ところが、上述のように面内方向に記録する蒸着型磁気
記録媒体において、磁化容易軸が面内方向に完全に揃っ
ていると短波長記録時には、かえって出力や記録密度が
低下してしまうことが磁気記録媒体の記録パターンやシ
ュミレーション等の結果から解明されてきている。
However, as mentioned above, in a vapor-deposited magnetic recording medium that records in the in-plane direction, if the axis of easy magnetization is perfectly aligned in the in-plane direction, the output and recording density may actually decrease during short wavelength recording. This has been elucidated based on the recording patterns of magnetic recording media and the results of simulations.

また、磁化容易軸が面内方向に完全に揃っていると隣接
する磁性体において、逆向きの磁化領域が隣合ってしま
い、その境界部分において大きな静磁エネルギーが発生
し、これによって境界部分がジグザグ(いわゆる、のこ
ぎり状パターン)になり、ノイズ発生の大きな原因とな
っている。
Additionally, if the easy magnetization axes are perfectly aligned in the in-plane direction, regions of magnetization in opposite directions will be adjacent to each other in adjacent magnetic materials, and a large amount of static magnetic energy will be generated at the boundary. This results in a zigzag (so-called sawtooth pattern), which is a major cause of noise generation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、面内方向に記録する双性型磁気記録媒体に
おいて、磁化容易軸が完全に面内に拘っていると短波長
記録時にかえって出力や記録密度が低下してしまったり
、逆向きの磁化領域が隣合っている境界部分において大
きな静(■エネルギーが発生し、ノイズ発生の大きな原
因となる等各種の問題がある。
In this way, in a bidirectional magnetic recording medium that records in the in-plane direction, if the axis of easy magnetization is completely in-plane, the output and recording density will decrease during short wavelength recording, or if the axis of easy magnetization is completely in-plane, There are various problems such as a large amount of static (■) energy being generated at the boundary between adjacent magnetized regions, which becomes a major cause of noise generation.

そこで本発明は、上iホの実情に鑑みて提案されたもの
であって、co−pt系金金属薄膜型磁気記録媒体おけ
る静磁エネルギーの発生を抑制することを目的とし、高
出力、高記録密度、低ノイズを達成する磁気記録媒体を
提供することを目的とするものである。
The present invention was proposed in view of the above-mentioned circumstances, and aims to suppress the generation of magnetostatic energy in a co-pt type gold metal thin film magnetic recording medium. The object is to provide a magnetic recording medium that achieves high recording density and low noise.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、かかる磁気記録媒体を開発せんものと長期
に亘り鋭意研究の結果、面内方向に記録する蒸着型磁気
記録媒体においては、面内方向の磁化反転成分や面に垂
直あるいは斜め方向からの磁化反転成分が高密度記録を
達成するのに非常に重要な役割を果たしていることを解
明し、該磁気記録媒体の磁性薄膜として使用する六方詰
込構造のCOのX線回折ピークの相対強度を一定の範囲
にすることによって上記諸要求を満足することを見出し
本発明を完成するに至ったものである。
As a result of long-term intensive research to develop such a magnetic recording medium, the present inventor has found that in a vapor deposition magnetic recording medium that records in the in-plane direction, there is a magnetization reversal component in the in-plane direction and a magnetization reversal component in the direction perpendicular or oblique to the plane. We have elucidated that the magnetization reversal component from CO plays a very important role in achieving high-density recording, and we have investigated the relative X-ray diffraction peaks of CO in a hexagonally packed structure used as the magnetic thin film of the magnetic recording medium. The present invention has been completed by discovering that the above requirements can be satisfied by adjusting the strength within a certain range.

すなわち本発明は、基体上に真空蒸着法によりCo −
P t 磁性gt膜を形成してなる磁気記録媒体におい
て、前記磁性薄膜の六方詰込構造のCoのX線回折ピー
クの相対強度比が 0.30≦(100) / (002) <2.0かつ
 0.15≦(101) / (002) <2.0で
あることを特徴とするものである。
That is, the present invention provides Co -
In a magnetic recording medium formed with a P t magnetic gt film, the relative intensity ratio of the X-ray diffraction peaks of Co in the hexagonally packed structure of the magnetic thin film is 0.30≦(100)/(002)<2.0. and 0.15≦(101)/(002)<2.0.

ここで、上記(100)/(002)、  (101)
/(002)はそれぞれ各格子面での回折X線ピークの
相対強度比を表している。(以下同じ)本発明における
磁気記録媒体は、基体上にCOとptを主成分(80原
子%以上)とする金Vrs71膜を形成したもので、1
000〜1500 (Oe)という高保磁力と良好な角
形性を有している。
Here, the above (100)/(002), (101)
/(002) represents the relative intensity ratio of the diffraction X-ray peaks on each lattice plane. (The same applies hereinafter) The magnetic recording medium of the present invention is one in which a gold Vrs71 film containing CO and PT as main components (80 atomic % or more) is formed on a substrate.
It has a high coercive force of 000 to 1500 (Oe) and good squareness.

これは、磁気記録媒体に使用しているCOが六方詰込構
造(hexagonal close packing
 : h、c、p、)のα−COであり、このα−CO
のC軸(磁化容易軸)が面内方向に配向しているためで
ある。
This is because the CO used in magnetic recording media has a hexagonal close packing structure.
: h, c, p,), and this α-CO
This is because the C axis (axis of easy magnetization) of is oriented in the in-plane direction.

例えば高周波スパッタ法により、C0tsPtzs膜を
作成し、保磁力とX線回折ピーク強度比(002)/(
100)の関係を調べると第1図に示すように、高保磁
力になるに従いα−coのC軸が面内方向に存在するこ
とがわかる。このとき、同時に角形性も向上する。
For example, a C0tsPtzs film is created by high-frequency sputtering, and the coercive force and X-ray diffraction peak intensity ratio (002)/(
100), it is found that as the coercive force increases, the C axis of α-co exists in the in-plane direction, as shown in FIG. At this time, the squareness is also improved at the same time.

ところが、前述の如くC軸が面内方向に揃って存在する
と短波長記録時の出力、記録密度の低下、のこぎり状境
界発生によるノイズの増加といった聞届が発生する。
However, as described above, if the C axes are aligned in the in-plane direction, problems such as a decrease in the output during short wavelength recording, a decrease in recording density, and an increase in noise due to the generation of sawtooth boundaries occur.

そこで、磁気記録媒体として使用しているα−COのC
軸を面内方向から面に垂直な方向まで適度に分布させれ
ばよい。その方法として各種角度から倹討した結果、真
空双性法によってCo−Pt磁性薄膜を双性し磁気記録
媒体とするのが有効であることがわかった。
Therefore, the C of α-CO used as a magnetic recording medium
The axes may be appropriately distributed from the in-plane direction to the perpendicular direction to the plane. As a result of careful consideration from various angles as a method for this purpose, it was found that it is effective to bipolarize a Co--Pt magnetic thin film to form a magnetic recording medium using the vacuum bipolar method.

ここで、各種実験の結果からα−COのX線回折ピーク
の相対強度比を 0.30≦(100) / (002) <2.0かつ
 0.15≦(101) / (002) <2.0と
なるように、好ましくは、 0.30≦(100)/ (002)≦1.0かつ 0
.15≦(101)/ (002)≦1.0となるよう
に適度に分散させることが重要となる。
Here, from the results of various experiments, the relative intensity ratio of the X-ray diffraction peak of α-CO is 0.30≦(100)/(002)<2.0 and 0.15≦(101)/(002)<2. .0, preferably 0.30≦(100)/(002)≦1.0 and 0
.. It is important to disperse the particles appropriately so that 15≦(101)/(002)≦1.0.

〔作用] このように、六方詰込構造のα−COを磁性体として使
用し、真空蒸着法によって蒸着し、C軸の方向を基体面
に対して適当な方向に分散させることにより、短波長記
録が良好に行え、高出力。
[Function] In this way, by using α-CO with a hexagonal packing structure as a magnetic material, depositing it by vacuum evaporation, and dispersing the C-axis direction in an appropriate direction with respect to the substrate surface, short wavelength Good recording and high output.

高密度記録が達成される。また、のこぎり状境界の発生
も防ぐことができるため、ノイズの発生が低減される。
High density recording is achieved. Furthermore, since the generation of sawtooth boundaries can also be prevented, the generation of noise is reduced.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明がこれらに限定されるものではないことはいうまで
もない。
Hereinafter, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited thereto.

先ず、第2図に示す真空薄着装置を使用して磁気記録媒
体を作成した。
First, a magnetic recording medium was produced using the vacuum thinning apparatus shown in FIG.

真空茶着装置は、真空室(1) と排気系(2)からな
っており、真空室(1)内には、電子銃(3)、基板ホ
ルダー(4)が設置されている。
The vacuum browning apparatus consists of a vacuum chamber (1) and an exhaust system (2), and an electron gun (3) and a substrate holder (4) are installed inside the vacuum chamber (1).

COとptを別々のルツボに入れ、電子銃(3)に取付
は加熱し、同時に原発させながら電子銃(3)と対向す
る位置に設置した基板ホルダー(4)上の基板(5)に
金属1膜を形成した。その際、不活性ガスとしてArガ
スを使用することによって、金属薄膜1着時の真空度及
び保磁力を調整した。使用する不活性ガスは、A「ガス
に限らすN2ガス1Neガス、Xeガス等が使用可能で
ある。また、不活性ガスを導入することによってCOの
C軸の配向についても(002)面、  (101)面
(100)面の各ピークが見られるようになる。
CO and PT are placed in separate crucibles, heated and attached to the electron gun (3), and metal is placed on the substrate (5) on the substrate holder (4) placed opposite the electron gun (3) while simultaneously generating nuclear power. One film was formed. At that time, by using Ar gas as an inert gas, the degree of vacuum and coercive force at the time of depositing one metal thin film were adjusted. The inert gas used is limited to A gas, but N2 gas, Ne gas, Xe gas, etc. can be used.In addition, by introducing an inert gas, the orientation of the C axis of CO can be changed to the (002) plane, Each peak of the (101) plane and (100) plane can be seen.

本実施例においては、pt含有量を15原子%とし、蒸
着時の真空度を不活性ガスによって調整し5xto−S
、  5X10−’、  lXl0−Torrと変化さ
せた。これらをそれぞれ試料I、試料■、試料■とした
In this example, the pt content was 15 at%, the degree of vacuum during vapor deposition was adjusted with an inert gas, and 5xto-S
, 5X10-', lXl0-Torr. These were designated as Sample I, Sample ■, and Sample ■, respectively.

このようにして得た磁気記録媒体の保磁力及び(100
)/(002)、  (101)/(002)のX性回
折ピーク強度を測定した。結果を第1表に示す。
The coercive force and (100
)/(002) and (101)/(002). The results are shown in Table 1.

第1表 第1表かられかるように不活性ガスを導入して作成した
Co−Pt膜は、保磁力が非常に大きく、(101)面
のピークを有するようになるが、不活性ガスを導入しな
かったものは、保磁力も小さく(101)面のピークも
生じない。
As shown in Table 1, the Co-Pt film created by introducing an inert gas has a very large coercive force and has a peak on the (101) plane. In the case where it is not introduced, the coercive force is small and no peak of the (101) plane occurs.

次に、Co8゜Pt2゜を使用して真空蒸着法によって
成膜した時の保磁力と各ピークの相対強度比を調べた結
果を第3図に示す。このときのpt含有量は20原子%
、膜厚は800人である。また、薄着中使用した不活性
ガスはArガスで、ガス分圧を変化させることによって
保磁力を変化させた。
Next, FIG. 3 shows the results of examining the coercive force and the relative intensity ratio of each peak when a film was formed by vacuum evaporation using Co8°Pt2°. The pt content at this time is 20 at%
, the film thickness is 800 people. Further, the inert gas used during thin deposition was Ar gas, and the coercive force was changed by changing the gas partial pressure.

第3図より明らかなように、保磁力が大きくなるに従い
、<100)/(002)、  (101)/ (00
2)の比が次第に大きくなっていき、軸の面内成分が増
えて行くことがわかる。しかし、保磁力が大きくなって
も(002>面のピークが残っている点がスパッタリン
グ法による成膜方法とは根本的に異なる点である。
As is clear from Figure 3, as the coercive force increases, <100)/(002), (101)/(00
It can be seen that the ratio 2) gradually increases, and the in-plane component of the axis increases. However, even if the coercive force increases, the peak of the (002> plane remains), which is fundamentally different from the film forming method using the sputtering method.

このように<100)面、(101)面、(002)面
のピークが同時に生じている媒体では、C軸が面内方向
だけでなく、面に対して斜め、垂直な方向にも向いてい
ると考えられる。
In a medium where the peaks of the <100) plane, (101) plane, and (002) plane occur simultaneously, the C-axis is oriented not only in the in-plane direction but also in diagonal and perpendicular directions to the plane. It is thought that there are.

そこで、次にCo−Pt膜を用いた磁気記録媒体として
、リジッドディスクを作成し、記録再生特性を評価した
Therefore, next, a rigid disk was prepared as a magnetic recording medium using a Co--Pt film, and its recording and reproducing characteristics were evaluated.

上記リジッドディスクの基板には、N i −Pメッキ
を施したA+21反を用い、膜FE 500人、保=W
1々200人、pt含有ff120原子%の条件で、本
発明によって作成したfイl気記録媒体(ディスクA)
と従来のスパッター法によって作成した磁気記録媒体(
ディスクB)とを比較した。
For the substrate of the above rigid disk, A+21 plated with Ni-P is used, and the film FE is 500 people, and maintenance = W.
An optical recording medium (disc A) produced according to the present invention under the conditions of 200 people each and 120 atom % of PT content.
and magnetic recording media created by conventional sputtering method (
A comparison was made with disc B).

使用した磁気ヘッドは、M n、 −Z nフェライト
The magnetic head used was Mn, -Zn ferrite.

ギャップ長20μm、)ランク輻25璽霜、コイル巻数
13ターン+13ターンである。磁気ヘッドとディスク
の相対速度はl 8m /sec 、浮上量を0.15
μmとして記録再生を行った。その時の結果を第4図及
び第2表に示す。
The gap length is 20 μm, the rank radius is 25 mm, and the number of coil turns is 13 turns + 13 turns. The relative speed between the magnetic head and the disk is l8m/sec, and the flying height is 0.15.
Recording and reproduction were performed as μm. The results are shown in FIG. 4 and Table 2.

第2表 これらの結果から、記録密度の目安となるり、。Table 2 These results can be used as a guideline for recording density.

を求めたところディスクAでは70 (kFRPI)で
あったのに対してディスクBでは50 (kFIIPI
)であり、高記録密度を達成できることがわかる。
When we calculated the value, it was 70 (kFRPI) for disk A, while it was 50 (kFIIPI) for disk B.
), indicating that high recording density can be achieved.

また、S/N比を調べたところ記録密度30(kFRP
I)において、ディスク八では28dBであったのに対
してディスクBでは25dBであった。
In addition, when the S/N ratio was investigated, the recording density was 30 (kFRP
In I), while it was 28 dB for disk 8, it was 25 dB for disk B.

このように本発明法によれば、従来法に比較して出力、
記録密度、ノイズ等の各点で優れていることが実証され
た。
As described above, according to the method of the present invention, compared to the conventional method, the output
It has been demonstrated that it is superior in terms of recording density, noise, etc.

これらの結果をM析したところ、短波長記録時に優れた
記録再生特性を示すものは、X線回折のピークの相対強
度比が 0.30≦(100) / (002) <2.0かつ
 0.15≦(101) / (002) <2.0好
ましくは、 0.30≦(100)/(002)≦1.0かつ 0.
15≦(101)/(002)≦1.0であることが必
要であることがわかった。
M-analysis of these results revealed that those exhibiting excellent recording and reproducing characteristics during short wavelength recording had a relative intensity ratio of X-ray diffraction peaks of 0.30≦(100)/(002)<2.0 and 0. .15≦(101)/(002)<2.0 Preferably, 0.30≦(100)/(002)≦1.0 and 0.
It has been found that it is necessary that 15≦(101)/(002)≦1.0.

本実施例では、Co−Pt膜の例を示したが、Co−P
t膜に他の元素1例えばCr、Nb、St、ACNi、
Fe、Ti等の元素を加えても20原子%以下であるな
らば、上述の結果に何等影響を及ぼすものではない。
In this example, an example of Co-Pt film was shown, but Co-Pt film was used as an example.
Other elements 1 such as Cr, Nb, St, ACNi,
Even if elements such as Fe and Ti are added, if the amount is 20 atomic % or less, it will not affect the above results in any way.

〔発明の効果〕〔Effect of the invention〕

このように、六方詰込構造のα−Coを磁性体として使
用し、真空蒸着法によって蒸着し、C軸の方向を基体面
に対して適当な方向に分散させることにより、高記録密
度になるに従い面内磁化成分の影響は小さく、垂直磁化
成分の影響は大きくなり、短波長記録が良好に行え、高
出力、高密度記録を達成することができる。
In this way, high recording density can be achieved by using α-Co with a hexagonal packing structure as a magnetic material, depositing it by vacuum evaporation, and dispersing the C-axis direction in an appropriate direction with respect to the substrate surface. Accordingly, the influence of the in-plane magnetization component is small, and the influence of the perpendicular magnetization component is large, making it possible to perform short wavelength recording well and achieve high output and high density recording.

また、磁化容易軸を分散させることによって、磁化の境
界領域の静磁エネルギーを現象させることができるため
、面内方向ののこぎり状境界が解消されノイズの発生を
低減することができる。
Further, by dispersing the easy axis of magnetization, the magnetostatic energy in the boundary region of magnetization can be reduced, so that the sawtooth boundary in the in-plane direction can be eliminated and the generation of noise can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスパッター法によるCo−ptFiの保磁力と
回折X線ピークの相対強度比の関係を示す特性図、第2
図は真空蒸着法によるCo−Pt1j3の成膜装置の概
略図、第3図は真空蒸着法によるC0−pt膜の保磁力
と回折X線ピークの相対強度比の関係を示す特性図、第
4図は真空莫若法によるCo−Pt膜の出力−記録密度
特性の関係を示す特性図である。 特許出願人   ソニー株式会社 代理人  弁理士  小泡  晃 同   日付 榮− 俤忌n  [oe] 第1図 イ肇5t’h カ  [Oe] 第3図 第2図 第4図
Figure 1 is a characteristic diagram showing the relationship between the coercive force and the relative intensity ratio of diffraction X-ray peaks of Co-ptFi obtained by sputtering.
The figure is a schematic diagram of a Co-Pt1j3 film forming apparatus using the vacuum evaporation method. Figure 3 is a characteristic diagram showing the relationship between the coercive force and the relative intensity ratio of the diffraction X-ray peak of the Co-Pt film produced by the vacuum evaporation method. The figure is a characteristic diagram showing the relationship between the output and recording density characteristics of a Co--Pt film by the vacuum mowaka method. Patent Applicant: Sony Corporation Representative, Patent Attorney: Kodo Koba Date: 榮- 迤 い n [OE] Figure 1 5t'h KA [Oe] Figure 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 基体上に真空蒸着法によりCo−Pt磁性薄膜を形成し
てなる磁気記録媒体において、 前記磁性薄膜のh.c.p.CoのX線回折ピークの相
対強度比が 0.30≦(100)/(002)<2.0かつ0.1
5≦(101)/(002)<2.0〔但し、(100
)/(002)、(101)/(002)はそれぞれ各
格子面での回折X線ピークの相対強度比を表すものとす
る。〕 であることを特徴とする磁気記録媒体。
[Scope of Claims] A magnetic recording medium in which a Co--Pt magnetic thin film is formed on a substrate by a vacuum evaporation method, wherein h. c. p. The relative intensity ratio of the X-ray diffraction peak of Co is 0.30≦(100)/(002)<2.0 and 0.1
5≦(101)/(002)<2.0 [However, (100
)/(002) and (101)/(002) respectively represent the relative intensity ratio of the diffraction X-ray peaks on each lattice plane. ] A magnetic recording medium characterized by the following.
JP21754086A 1986-09-16 1986-09-16 Magnetic recording medium Pending JPS6371924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21754086A JPS6371924A (en) 1986-09-16 1986-09-16 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21754086A JPS6371924A (en) 1986-09-16 1986-09-16 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6371924A true JPS6371924A (en) 1988-04-01

Family

ID=16705854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21754086A Pending JPS6371924A (en) 1986-09-16 1986-09-16 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6371924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419938A (en) * 1992-07-03 1995-05-30 Tdk Corporation Magnetic recording medium comprising two magnetic layers of hexagonal ferrite magnetic particles and binder wherein the easy axes of the particle is specified

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419938A (en) * 1992-07-03 1995-05-30 Tdk Corporation Magnetic recording medium comprising two magnetic layers of hexagonal ferrite magnetic particles and binder wherein the easy axes of the particle is specified

Similar Documents

Publication Publication Date Title
US5126907A (en) Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density
EP0584768B1 (en) Method for making soft magnetic film
EP0140513A1 (en) Thin film magnetic recording structures
US5162158A (en) Low noise magnetic thin film longitudinal media
US6395413B1 (en) Perpendicular magnetic recording medium
US4544591A (en) Perpendicular magnetic recording medium
US4609593A (en) Magnetic recording medium
JPS6371924A (en) Magnetic recording medium
JP2635422B2 (en) Magnetic head
JPH06168822A (en) Vertical magnetized film, multilayer film for vertical magnetizing and manufacture of vertical magnetizing film
US4641213A (en) Magnetic head
JP2579184B2 (en) Magnetic recording media
JPH0475577B2 (en)
US4400444A (en) Magnetic recording media and process of producing them
JPS6153769B2 (en)
JPH0775062B2 (en) Magnetic recording medium
JPS5948822A (en) Vertical magnetic recording medium and its production
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS59157828A (en) Magnetic recording medium
JPH0387005A (en) Magnetic film
JPH05258272A (en) Prependicular magnetic recording medium and its production
JP2979557B2 (en) Soft magnetic film
JPH0485716A (en) Thin magnetic film for magnetic head
JPS6184005A (en) Magnetic recording material
JPH0573877A (en) Magnetic recording medium