JPS6371648A - Diode type humidity sensor - Google Patents

Diode type humidity sensor

Info

Publication number
JPS6371648A
JPS6371648A JP21597886A JP21597886A JPS6371648A JP S6371648 A JPS6371648 A JP S6371648A JP 21597886 A JP21597886 A JP 21597886A JP 21597886 A JP21597886 A JP 21597886A JP S6371648 A JPS6371648 A JP S6371648A
Authority
JP
Japan
Prior art keywords
layer
zno
humidity
lower electrode
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21597886A
Other languages
Japanese (ja)
Inventor
Shigeyuki Tsurumi
重行 鶴見
Kazuo Mogi
一男 茂木
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21597886A priority Critical patent/JPS6371648A/en
Publication of JPS6371648A publication Critical patent/JPS6371648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a diode type humidity sensor which needs not be put in a periodic refreshing operation by constituting the thin film of ZnO and a Schottky diode while using one of Cr, Ni, W, and Au which has a high work function and is not affected by reducing gas such as hydrogen as an electrode. CONSTITUTION:A 1st ZnO layer 1a with <=10<-2>OMEGAcm electric resistivity and a 2nd ZnO layer 1b with >=10<5>OMEGAcm electric resistivity are laminated in order on a lower electrode 2 formed by laminating Cr and Au in order and then kind of metal among Cr, Ni, W, Au, Pd, and Pt is laminated. The ZnO film 1 is formed by having its section in an inverted L shape, a part of it is joined with a glass substrate 4, and the lower electrode 2 is arranged in the gap between the ZnO film 1 and glass substrate 4. Further, the lower electrode 2 is formed of two layers, a Cr layer (100Angstrom thickness) is formed as 2a on the side contacting the glass substrate 4, and an Au layer (1,000Angstrom thickness) is formed as 2b on the Cr layer. An Ni layer (200Angstrom thickness) is formed as the upper electrode 3 on the ZnO film. Consequently, rectification characteristics corresponding to humidity are obtained by applying an about 2V AC voltage. Therefore, high-temperature refreshing operation is not required and sensor is miniaturized and power consumption is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は小型、低電力にしてメンテナンスフリーの湿度
センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a compact, low-power, maintenance-free humidity sensor.

(従来技術および発明が解決しようとする問題点〕従来
より湿度センサは物理的・化学的に安定なセラミックス
によるものが多く開発されている。セラミックスの感湿
家構には物理吸着水によるイオン伝4金利用するタイプ
〔内用他9表面科学、 s、 189 cx9s2):
清水他、電気化学。
(Prior art and problems to be solved by the invention) Conventionally, many humidity sensors have been developed that are made of physically and chemically stable ceramics.The ceramic moisture-sensitive structure has a structure in which ions are transmitted by physically adsorbed water. 4 Types that use gold [internal use and other 9 surface science, s, 189 cx9s2):
Shimizu et al., Electrochemistry.

so、 831 (x9sz) :定岡他、電気化学、
 51.437(1983))と化学的吸着水による半
導体の電子伝導度変化を利用するタイプ(H,Arai
 et al。
so, 831 (x9sz): Sadaoka et al., electrochemistry,
51.437 (1983)) and a type that utilizes the change in electronic conductivity of semiconductors due to chemically adsorbed water (H, Arai
et al.

Proceedings of the Intern
ational Meeting onChemica
l 5ensora+ 393 (1983): T、
 N1tta et al。
Proceedings of the Intern
ational Meeting on Chemica
l 5ensora+ 393 (1983): T,
N1tta et al.

Proceedings of the Intern
ational Meeting onChemica
l 5ensors+ 387 (1983))とがあ
る。前者のタイプはセラミックスの細孔に水が物理吸着
することによって、ヒドロニウムイオンが電気伝導キャ
リアとなり素子のインピーダンスが低下することKよっ
て湿度を知ることができる。
Proceedings of the Intern
ational Meeting on Chemica
15sensors+387 (1983)). In the former type, humidity can be determined by physically adsorbing water into the pores of the ceramic, causing hydronium ions to become electrically conductive carriers and lowering the impedance of the element.

このため感湿性は素子の粗孔分布とインピーダンスとに
大きく依存する欠点を有すると共に、細孔に入り込んだ
水は出にくくなり、長時間便用すると誤差を生じるため
、定期的に300℃前板に加熱してリフレッシュしなけ
ればならないという欠点を有していた。後者のタイプは
通常、素子の動作温度は300〜500℃であシ、高温
で使用しなければならないという欠点を有していたO 最近、CuOとZnOの焼結体を機械的圧着により湿度
を測定する方法が提唱されている(中村他1日本化学会
誌 1154 (1985) 〕o CuO/ ZnO
のへテロ接合の整流性がCuO/ ZnOの界面に水が
入り込むことにより変化することを利用している。高温
を必要としない利点はあるが、焼結体t−機械的圧層し
て、素子化しているため微細化して、チップ上で他の素
子と集積化することは不可能である欠点を有していた。
For this reason, the moisture sensitivity has the drawback that it depends greatly on the pore distribution and impedance of the element, and the water that has entered the pores becomes difficult to come out, causing errors when used for a long time. It had the disadvantage that it had to be heated and refreshed. The latter type usually has an operating temperature of 300 to 500°C and has the disadvantage of having to be used at high temperatures.Recently, sintered bodies of CuO and ZnO have been mechanically bonded to reduce humidity A method for measuring CuO/ZnO has been proposed (Nakamura et al. 1 Journal of the Chemical Society of Japan 1154 (1985))
This method takes advantage of the fact that the rectifying properties of the heterojunction change when water enters the CuO/ZnO interface. Although it has the advantage of not requiring high temperatures, it has the disadvantage that it is impossible to miniaturize it and integrate it with other elements on a chip because it is made into elements by applying a mechanical pressure layer to the sintered body. Was.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもので
、従来の湿度センサが必要とした高温によるリフレッシ
ュ、従来の湿度センナでは不可能であった微細化、他の
素子との集積化の点を解決したメンテナンスフリーの薄
膜のダイオード型湿度センナを提供することを目的とす
る0 (問題点’t−解決するだめの手段) 上記の目的を達成する丸め、本発明はCr、Auと順次
に横=して形成された下部!極上に、電気抵抗率が1O
−ffiΩ譚以下の第1のZn01U 、電気抵抗率が
10’Ω百以上の第2のZnO層を順次に槓J−した後
、Cr層 Ni 、 We Au層 Pd+ Ptのう
ちの一種類の金Sを積層したことを特徴とするダイオー
ド型湿度センナを発明の要旨とするものである。
(Objective of the Invention) The present invention was proposed to improve the above-mentioned drawbacks, and includes refreshing at high temperatures required by conventional humidity sensors, miniaturization, which was impossible with conventional humidity sensors, and the need for other elements. It is an object of the present invention to provide a maintenance-free thin film diode-type humidity sensor that solves the problem of integration with the above object. The lower part is formed by sequentially horizontally forming Cr and Au! Extremely high electrical resistivity of 1O
After sequentially rolling the first ZnO layer with an electrical resistivity of -ffiΩ or less and the second ZnO layer with an electrical resistivity of 10'Ω or more, a Cr layer (Ni), a We (Au) layer of one type of gold (Pd+Pt) The gist of the invention is a diode type humidity sensor characterized by laminating S.

しかして本発明の最も主要な特徴とする点は、仕事関数
が高く水素等の還元性ガスに影響されないCr、 Ni
 、 W、 Auのいずれか一つを上S電極として薄膜
のZnOとショットキーダイオードを構成することにあ
る。従来技術とはすべて薄M[I、したショットキー接
合を用いて湿度センサを構成した点、上部電極にCr、
 Ni 、 W、 Auのいずれか一つを用いた点及び
これらの動作メカニズムから吻理吸看水によるイオン伝
導性をオリ用したセラミックス湿度センサに見られる定
期的なリフレッシュ動作全必要としないいわゆるメンテ
ナンスフリーである点が異なる。
However, the most important feature of the present invention is that Cr and Ni have a high work function and are not affected by reducing gases such as hydrogen.
, W, or Au as the upper S electrode to form a Schottky diode with a thin film of ZnO. The conventional technology is different from the conventional technology in that the humidity sensor is constructed using a thin M[I, Schottky junction, and the upper electrode is made of Cr.
Due to the fact that it uses one of Ni, W, and Au and its operating mechanism, it does not require the regular refresh operation that is seen in ceramic humidity sensors that utilize ionic conductivity due to the absorption and absorption of water. The difference is that it is free.

次に本発明の詳細な説明する。なお実施例は一つの例示
でめって、本発明の梢神を逸脱しない範囲で%種々の変
更あるいは改良を行いうろことは言うまでもない。
Next, the present invention will be explained in detail. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the scope of the present invention.

第1図は本発明の第1の実施例を示すものであって、(
イ)は斜視図、(ロ)は断面図を示す0図において、工
はZnO膜を示すもので、この膜は2層構造となってお
9% 1a[気抵抗10′″30備の層を厚さ1ooo
A 、 1 b電気抵抗106Ω側の層を厚さ1μmの
1幀に積層する。しかしてZnO膜は断面が逆り字状に
形成され、その中の一部はガラス基板4に接合され、こ
のZnO膜とガラス基板4との間の間隙に下部電極2が
配置されている0さらにこの下部電極2も2層に形成さ
れておシ、ガラス基板4に接する側には2aとしてCr
層(厚さ100^) r Cr層の上には2bとしてA
u層(厚さ1000λンが形成されているo3は上部電
極でNi層(厚さ200^)がZnO膜上に形成されて
いる。
FIG. 1 shows a first embodiment of the present invention, (
A) is a perspective view, and (B) is a cross-sectional view. In Figure 0, 0 shows a ZnO film, and this film has a two-layer structure with 9% 1a [air resistance 10'''30 layers]. The thickness is 1ooo
A, 1b The layer on the electrical resistance 106Ω side is laminated in one layer with a thickness of 1 μm. Thus, the ZnO film has an inverted cross-section, a part of which is bonded to the glass substrate 4, and the lower electrode 2 is disposed in the gap between the ZnO film and the glass substrate 4. Further, this lower electrode 2 is also formed in two layers, and the side in contact with the glass substrate 4 is made of Cr as 2a.
layer (thickness 100^) r On top of the Cr layer is A as 2b.
The u layer (1000λ thick) o3 is the upper electrode, and the Ni layer (200^ thick) is formed on the ZnO film.

これを動作するには、下部電極2と上部電極30間に5
Hz程度の低周波数で約2vの交流電圧を印加する。下
部電極2bi′i電気抵抗lO−!ΩdのZn0層1a
と接しているためオーミック接続されているが、下部電
極3は電気抵抗106Ω側のZnO層lbと接続してお
りショットキー接合を形成しているために整流性を示す
。上S″QI憾3は厚さ200AのNi層で、隙間が多
く存在し、水の十人やも自白な状況となっている。まf
c、Z210J曽1の表面は水が吸膚しやすいため上部
電極3とZnO* 1の界面には湿度に応じた水が存在
している。
To operate this, it is necessary to
An alternating current voltage of about 2 V is applied at a low frequency of about Hz. Lower electrode 2bi'i electrical resistance lO-! Zn0 layer 1a of Ωd
The lower electrode 3 is connected to the ZnO layer lb on the electrical resistance 106Ω side and forms a Schottky junction, so it exhibits rectifying properties. The upper S″QI 3 is a Ni layer with a thickness of 200A, and there are many gaps, making it a situation that is self-evident.
c. Since the surface of Z210J So1 is susceptible to water absorption, water is present at the interface between the upper electrode 3 and ZnO*1 in proportion to the humidity.

このようなm遺になっているから1.f12Vの交流電
圧を印加すると湿度に応じて第2図に示すような整流特
性を得ることができる。この整流性は低湿度時には化学
吸着水が鱗心して生じたHのポツピング伝導によるもの
でお夕、高湿度時では物理吸潜水から生じるH3O+の
拡散低感によるものである。いずれにしても水の嘔気分
解反応に起因する効果で69、隊間に入り込んだ水は分
解されて消費≧れる。このため、高温によるリフレッシ
ュ動作を必要としない。この結果から明らかなように従
来技術に比べて、4膜を用いて湿度センナを構成でき、
かつ高温によるリフレッシュ動作を必要としないため小
型。
Because it has become such a legacy, 1. When an AC voltage of f12V is applied, rectification characteristics as shown in FIG. 2 can be obtained depending on the humidity. This rectification is due to the popping conduction of H generated by the scale center of chemically adsorbed water at low humidity, and is due to the low diffusion of H3O+ generated from physical water absorption at high humidity. In any case, due to the effect caused by the vomit decomposition reaction of water69, the water that has entered between the formations is decomposed and consumed. Therefore, there is no need for a refresh operation at high temperatures. As is clear from this result, compared to the conventional technology, it is possible to construct a humidity sensor using four membranes.
Moreover, it is small because it does not require refresh operation due to high temperature.

低電力化が可能となる改善がめった。Improvements have been made that enable lower power consumption.

なお、第1のZnO層の電気抵抗率は101Ωd以下が
好ましいが、101Ωcmf超過すると下部電極に対し
てオーミック接続されがたく好ましくない。また第2の
ZnOF−の電気抵抗率は1080口以上が好ましいが
10’Ω閤未満の場合は、上部電極に対して整流性を示
さず好ましくない。
Note that the electrical resistivity of the first ZnO layer is preferably 101 Ωd or less, but if it exceeds 101 Ωcmf, it is difficult to form an ohmic connection with the lower electrode, which is not preferable. Further, the electrical resistivity of the second ZnOF is preferably 1080 or more, but if it is less than 10'Ω, it does not exhibit rectifying properties with respect to the upper electrode, which is not preferable.

〔実施例2〕 実施例1におけるm1図の素子構造において下部電極3
をCr+ Ni、 W、 Aug Pd とした場合の
感湿性及び水素ガスに対する感ガス性を第1表に示す。
[Example 2] In the element structure of the m1 diagram in Example 1, the lower electrode 3
Table 1 shows the moisture sensitivity and gas sensitivity to hydrogen gas when Cr+Ni, W, and Aug Pd are used.

第1表 バイアス+1.5vのもとて I/I。で評価する Io  湿度0%での電流値 工 加湿時の゛電流値 第1表において、乾燥空気中で、順方向バイアス1.5
vに設定した場合の電a値を工。、湿度を与えた場合さ
らに水素を含ませた場合の電流値を工とし、  I/I
。で感湿性及び感ガス性を評価した。参考のため実施例
1におけるNiの上部電極3の結果も合わせて示した。
Table 1 Bias +1.5v source I/I. Io Current value at 0% humidity In humidified current value Table 1, in dry air, forward bias 1.5
Calculate the electric a value when set to v. , the current value when humidity is applied and when hydrogen is added is defined as I/I
. Moisture sensitivity and gas sensitivity were evaluated. For reference, the results of the Ni upper electrode 3 in Example 1 are also shown.

湿度70%のみの場合は上部電極に依存せず感湿性が見
られるが、湿度70チの空気に1000 ppmの水素
を添加するとPdだけが反応して大きな感度を示した。
In the case of only 70% humidity, moisture sensitivity was observed independent of the upper electrode, but when 1000 ppm of hydrogen was added to air with a humidity of 70%, only Pd reacted and high sensitivity was observed.

Pd、Ptなとの白金系金属薄膜は低温で水素などの還
元性ガスに反応するが、還元性ガスのない雰囲気におけ
る温度センサとしては使用可能である。この結果から明
らかなようにCr HNl *W、Auは湿度のみを感
知するという改善があった0 〔実施例3」 第3図は本発明の第3の実施例を説明する図であって、
Si基板5上に、白金温度計6.IC部7.電極バッド
8が設けられている。素子部分の下部電極3にはNiを
用いである。これらの動作としては、素子部分で水分を
感知し、白金m度計6で温度を感知し、これらをIC部
7で演算して相対湿度を計算し、七の結果を電極バッド
8を逃して出力させる。このように演算を受は持つIC
部7及び白金温度計6と湿度センナの素子部分を同−S
t基板上に形成できる理由は、本発明のダイオード型湿
度センサがすべて薄膜で形成できること、高温によるリ
フレッシュを必要としないためである。この結果から明
らかなように、従来の技術に比べ、演算部を含めて小型
化、低消費電力化ができる改善があった0 (発明の効果) 以上説明したように本発明によれば、ZnO薄膜とCr
 * Nl + W * Auの薄膜とでショットキー
接合を構成し、これらの接合の隙間に入り込んだ水分全
電気分解することによショットキー接合の整流性を変化
させて湿度を測定するため、これまでのセラミックスを
利用した湿度センサと異なシ高温によるリフレッシュに
よって水を追い出す動作を必要とせず、かつ薄膜を用い
て素子を構成できるためメンテナンスフリーであシ小型
化、低駆動電力化できる利点がある。さらに、 Stプ
ロセスをオリ用できるためM錆化も図れる。
Although platinum-based metal thin films such as Pd and Pt react with reducing gases such as hydrogen at low temperatures, they can be used as temperature sensors in an atmosphere free of reducing gases. As is clear from this result, there was an improvement in that Cr HNl *W and Au sensed only humidity. [Example 3] FIG. 3 is a diagram explaining the third example of the present invention,
A platinum thermometer 6. is placed on the Si substrate 5. IC section 7. An electrode pad 8 is provided. Ni is used for the lower electrode 3 of the element portion. These operations include sensing moisture with the element part, sensing temperature with the platinum thermometer 6, calculating these in the IC part 7 to calculate the relative humidity, and passing the result of step 7 through the electrode pad 8. Output. In this way, an IC that can perform calculations
Part 7 and the platinum thermometer 6 and humidity sensor element part are the same-S.
The reason why the diode type humidity sensor of the present invention can be formed on the T substrate is that all of the diode type humidity sensors of the present invention can be formed with thin films and do not require refreshing at high temperatures. As is clear from this result, compared to the conventional technology, there was an improvement in miniaturization including the arithmetic unit and lower power consumption (Effect of the invention) As explained above, according to the present invention, ZnO Thin film and Cr
* Nl + W * A Schottky junction is formed with a thin film of Au, and the water that has entered the gaps between these junctions is completely electrolyzed, changing the rectification of the Schottky junction and measuring humidity. Unlike previous humidity sensors using ceramics, this sensor does not require an operation to expel water by refreshing at high temperatures, and because the element can be constructed using a thin film, it has the advantage of being maintenance-free, smaller, and with lower driving power. . Furthermore, since the St process can be used, M rusting can also be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の湿度センサの実施例、第2図は第1崗
の素子による感湿特性、第3図は第1図の素子と白金温
度計及びそれらの情報を処理して出力するxcg分を集
積化した湿度センサを示す。 l・・・・・・・・・ZnO膜 2・・・・・・・・・Cr * Auからなる下部1J
L極、3・・・・・・・・・Cr + Ni 、 W 
* Auのいずれか一つの金属薄膜からなる上部電極 4・・・・・・・・・ガラス基板 5・・・・・・・・・St基板 6・・・・・・・・・白金温度計 7・・・・・・・・・IC部 8・・・・・・・・・電極パッド 特許出願人  日本電信電話株式会社 塔・−7 ほか1名 第2図 る湿特性
Fig. 1 shows an example of the humidity sensor of the present invention, Fig. 2 shows the humidity sensing characteristics of the first element, and Fig. 3 shows the element shown in Fig. 1 and a platinum thermometer, and their information is processed and output. This shows a humidity sensor that integrates xcg. l...ZnO film 2...Lower 1J made of Cr*Au
L pole, 3...Cr+Ni, W
* Upper electrode 4 made of any one metal thin film of Au...Glass substrate 5...St substrate 6...Platinum thermometer 7...IC section 8...Electrode pad patent applicant: Nippon Telegraph and Telephone Co., Ltd. -7 and 1 other person 2nd humidity characteristics

Claims (1)

【特許請求の範囲】[Claims]  Cr,Auと順次に積層して形成された下部電極上に
、電気抵抗率が10^−^2Ωcm以下の第1のZnO
層、電気抵抗率が10^RΩcm以上の第2のZnO層
を順次に積層した後、Cr,Ni,W,Au,Pd,P
tのうちの一種類の金属を積層したことを特徴とするダ
イオード型湿度センサ。
A first ZnO layer having an electrical resistivity of 10^-^2 Ωcm or less is placed on the lower electrode formed by sequentially laminating Cr and Au.
After sequentially laminating a second ZnO layer with an electrical resistivity of 10^RΩcm or more, Cr, Ni, W, Au, Pd, P
A diode type humidity sensor characterized by laminating one type of metal among the above.
JP21597886A 1986-09-16 1986-09-16 Diode type humidity sensor Pending JPS6371648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21597886A JPS6371648A (en) 1986-09-16 1986-09-16 Diode type humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21597886A JPS6371648A (en) 1986-09-16 1986-09-16 Diode type humidity sensor

Publications (1)

Publication Number Publication Date
JPS6371648A true JPS6371648A (en) 1988-04-01

Family

ID=16681387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21597886A Pending JPS6371648A (en) 1986-09-16 1986-09-16 Diode type humidity sensor

Country Status (1)

Country Link
JP (1) JPS6371648A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047359U (en) * 1990-05-02 1992-01-23
EP1254478A4 (en) * 2000-01-19 2004-12-01 Adrena Inc A chemical sensor using chemically induced electron-hole production at a schottky barrier
US6903433B1 (en) 2000-01-19 2005-06-07 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a schottky barrier
US7274082B2 (en) 2000-01-19 2007-09-25 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a schottky barrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047359U (en) * 1990-05-02 1992-01-23
EP1254478A4 (en) * 2000-01-19 2004-12-01 Adrena Inc A chemical sensor using chemically induced electron-hole production at a schottky barrier
US6903433B1 (en) 2000-01-19 2005-06-07 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a schottky barrier
US6998693B2 (en) 2000-01-19 2006-02-14 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a schottky barrier
US7057213B2 (en) 2000-01-19 2006-06-06 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a schottky barrier
US7274082B2 (en) 2000-01-19 2007-09-25 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a schottky barrier
US7282778B2 (en) 2000-01-19 2007-10-16 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a Schottky barrier
US7385271B2 (en) 2000-01-19 2008-06-10 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a schottky barrier
US7391056B2 (en) 2000-01-19 2008-06-24 Adrena, Inc. Chemical sensor using chemically induced electron-hole production at a Schottky barrier

Similar Documents

Publication Publication Date Title
Eranna et al. Oxide materials for development of integrated gas sensors—a comprehensive review
TWI302197B (en) Reference ph sensor, the preparation and application thereof
US8426932B2 (en) Apparatus and method for microfabricated multi-dimensional sensors and sensing systems
WO1998012550A1 (en) Gas sensor
KR101052618B1 (en) Nitrogen oxide gas sensor with long term signal stability
JP4162262B2 (en) Sensor for measuring the concentration of oxidizable components in a gas mixture
JP2002328109A (en) Element for detecting hydrogen gas, and method of manufacturing the same
US4356150A (en) Humidity sensor with electrical rejection of contaminants
JPS6371648A (en) Diode type humidity sensor
JPS58103654A (en) Multifunctional gas sensor
US5382341A (en) Method of making smoke detector
JPS63139241A (en) Diode type humidity sensor
JPH0731153B2 (en) Flammable gas sensor
Stoev et al. An integrated gas sensor on silicon substrate with sensitive SnOx layer
US6218687B1 (en) Smart microsensor arrays with silicon-on-insulator readouts for damage control
US3294662A (en) ph meter
JPS62124454A (en) Hetero junction type gas sensor
JP2005098742A (en) Catalytic combustion type hydrogen sensor
JPS6312252B2 (en)
JPH0315975B2 (en)
JP2001033423A (en) Ion-sensitive field-effect transistor-type sensor with reference electrode function
JPH11344464A (en) Oxygen concentration sensor and its manufacture
JPH05322821A (en) Gas sensor
JPS63171351A (en) Differential type field-effect transistor oxygen sensor
JPS62250352A (en) Field effect transistor type oxygen gas sensor