JPS637150B2 - - Google Patents

Info

Publication number
JPS637150B2
JPS637150B2 JP17857880A JP17857880A JPS637150B2 JP S637150 B2 JPS637150 B2 JP S637150B2 JP 17857880 A JP17857880 A JP 17857880A JP 17857880 A JP17857880 A JP 17857880A JP S637150 B2 JPS637150 B2 JP S637150B2
Authority
JP
Japan
Prior art keywords
core material
weight
rubber sheet
sheet
smc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17857880A
Other languages
Japanese (ja)
Other versions
JPS57102344A (en
Inventor
Tadayuki Ookawa
Takuhiro Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP17857880A priority Critical patent/JPS57102344A/en
Publication of JPS57102344A publication Critical patent/JPS57102344A/en
Publication of JPS637150B2 publication Critical patent/JPS637150B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、防水性、摩耗性及び全体の剛性に優
れた多層構造体の製造方法に関するものである。 現在、パレツトの材質は木製が主流であるが、
木製パレツトは腐蝕する、木、釘等で積層袋物が
破袋する、水分を吸収して重量が増加する、こわ
れ易い、不衛生であるなど多くの問題がある。 これを解決するため、ベニア板を芯材とし、こ
の芯材の表裏面を、イソシアネート系接着剤を用
いてガラス繊維補強樹脂(以下FRPという)に
て被覆してサンドウイツチ構造体をデツキボード
として用いたパレツトが提案されているが、その
表面が滑り易く、空積み移送時には操作及び安全
性の面で問題がある。 一方、この滑り性防上の為、ポリエチレン性デ
ツキボードの表面に凹凸の絞模様を付し、更に、
デツキボード表面の一部分およびフオークリフト
の爪が当接するデツキボードの裏面に部分的にゴ
ムシートをイソシアネート系接着剤又は酢酸ビニ
ル系ラテツクス等で張り合わせて滑りを防止した
パレツトが提案されている。 しかし、このプラスチツク製パレツトは滑り性
および防水性は解決されても耐荷重性に問題があ
り、重い荷物を積載した場合、たわみにより、荷
くずれが起る。 本出願人はこれら従来のパレツトの欠点を改良
する目的で、ゴム物質による表皮層と、木材、石
材或は金属材等による所定の剛性を有する芯材層
と、繊維布基材に熱硬化性樹脂を含浸させたシー
ト状予備成形材(SMC)によるバツクアツプ層
とを載置積層して積層物を形成し、該積層物を加
熱、圧縮により一体化成形する事を特徴とする多
層構造体の製造方法を出願した(特開昭53−
110691号)。 この製造方法は、上記ゴム表皮層、芯材層及び
バツクアツプ層(SMC)から形成した積層物を、
同時に加熱圧縮する事により接着剤が不要で、一
回の圧縮工程で各層の一体化が可能であり、工程
短縮によるコストダウンを図れる多層構造体の製
造方法である。 また、この方法により製造された多層構造体は
表面の防水、摩擦性に優れ、且つ全体の剛性も充
分であり、パレツトのデツキボードとして最適で
ある。 しかしながら、前記芯材としてパーテイクルボ
ード、ベニア板、パルプ紙製ダンボール等の常温
で約0.5〜10%の水分を含むものを用いた場合、
通常のSMCの圧縮成形条件、即ち、温度120〜
160℃、圧力15〜150Kg/cm2の条件下では架橋性ゴ
ムシートの架橋時間がSMCの硬化時間よりも長
く(通常6〜12分)、芯材の水分が水蒸気として
発生して得られる製品にふくれ、われ等の悪影響
を与えることがしばしばある。 発生する水蒸気を逸散させるにガス抜き孔を有
する金型を用いることが考えられるが、SMCを
構成する不飽和ポリエステル樹脂が圧縮成形時の
加圧によりガス抜き孔内に流れ込み、そこで硬化
してガス抜き孔を塞ぐことがあり、逃げ場所を失
つた水蒸気により成形品芯材にふくれ又は割れが
生じ、実用性に乏しい製品しか得られない。 かかる欠点を改良するために、含水性芯材を予
備乾燥してから成形に用いることが考えられる
が、加工屋としてはかかる乾燥設備を新たに設け
ることは経済的に得策でない。 本発明は含水性の芯材を用いた場合のこれら欠
点を、圧縮成形時に金型のガス抜き孔にSMCの
不飽和ポリエステル樹脂が侵入しても、水蒸気が
発生する迄の時間にゴムの架橋およびSMCの硬
化を行うことにより、あるいは水蒸気が発生して
も得られる多層複合構造体を変形する程の内圧に
達せぬうちにゴムの架橋およびSMCの硬化を行
なうことにより解決するものである。 かかる目的は架橋性ゴムシートとして1〜5分
間で、好ましくは1〜3分間で架橋が行われるも
のを使用することにより達成される。即ち、本発
明は木材、ダンボール紙等の含水性芯材の少なく
とも片面にシート・モールデイング・コンパウン
ドを載置積層し、更にこのシート・モールデイン
グ・コンパウンドの面上に架橋性ゴムシートを載
置積層した積層物を、加熱、圧縮成形して架橋ゴ
ムシートとガラス繊維強化樹脂と芯材が一体化し
た多層複合構造体を製造する方法において、上記
架橋性ゴムシートはエチレン含量が30〜75重量%
で、ムーニー粘度ML1+4(100℃)が10〜150のエ
チレン・プロピレン系共重合体ゴム100重量部に
対し、有機過酸化物が1〜10重量部、およびアク
リロイルオキシ基および/またはメタクリロイル
オキシ基を少くとも2個以上有する化合物が
0.005〜0.2モルの割合で配合されている組成物よ
り形成されたものであることを特徴とする多層複
合構造体の製造方法を提供するものである。 本発明の実施において、含水性の芯材として
は、例えば、合板、軟質又は硬質繊維板、パーテ
イクルボード、石綿スレート板、石膏ボード、石
綿セメント板、コルゲート紙、ダンボール紙など
の様に、ある程度の剛性(具体的には曲げ弾性率
1000Kg/cm2)以上を有し、且つその表面から熱
硬化性樹脂液がある程度浸入・含浸が可能な多孔
質のもの、或は表面に凹凸を有するものが挙げら
れる。 *〔木材−日本農林規格(農林省告示932号)、石
綿スレート−JISA1408建築用ボード類の曲げ試
験法〕。 これらの中でも、耐衝撃性の高い木質のものが
好ましい。 そして、シート・モールデイング・コンパウン
ド(SMC)としては、“FRP−生産と技術−
(1973年12月10日(株)プラスチツクス・エージ刊)”
の第148〜153頁に記載される通常市販されている
SMC、特願昭54−134643号、同54−152301号、
同55−62642号、同55−86088号明細書に開示され
る低圧成形用SMC等が使用できる。 一般にSMCは次の組成の液状不飽和ポリエス
テル樹脂組成物を、無機繊維(ガラス繊維、アス
ベスト繊維など)又は有機繊維(熱可塑性ポリエ
ステル繊維など)で製造された不織布又は織布の
基材に含浸させ、持ち運び、任意な形状に切断で
きるように樹脂を増粘させて得られるシート状の
ものであり、圧縮金型内に入れ、加熱、加圧して
任意な形状に成形されうるものである。 不飽和ポリエステル樹脂組成物 (A) 不飽和ポリエステル 30〜80重量部 (B) スチレンを主体とするビニル単量体
70〜20重量部 (C) 重合開始剤 (A)と(B)の和の0.01〜5重量% (D) 増 粘 剤 (A)と(B)の和の0.1〜2重量% (E) ラジカル吸収性化合物 0〜少量 なお、必要に応じて下記のものが上記組成物に
添加される。 充填剤:タルク、炭酸カルシウム、珪石、珪藻
土、マイカ、水酸化アルミニウム 離型剤:ステアリン酸亜鉛、ステアリン酸、ス
テアリン酸アルミニウム 顔 料:酸化チタン、カーボンブラツク、ベン
ガラ、カドミウムイエロー 収縮防止剤:ポリアクリル酸、ポリスチレン、
スチレン−マレイン酸共重合体等の粒
子。 上記(A)の不飽和ポリエステルとしては、例えば
無水マレイン酸、フマル酸、イタコン酸等の不飽
和多塩基酸とエチレングリコール、プロピレング
リコール、ジエチレングリコール等の多価アルコ
ールとを、必要に応じて無水フタル酸、イソフタ
ル酸、アジピン酸等の飽和多塩基酸を配合して、
反応させることにより得られる。 また、スチレン以外のビニル単量体としてはビ
ニルトルエン、クロルスチレン、メチルスチレ
ン、メチルメタクリレート等が挙げられる。 更に、重合開始剤としては、10時間の半減期を
得るための温度が72.5℃〜104℃のものであり、
その重合開始剤を不飽和ポリエステルとビニル単
量体の和100重量部に対し、1重量部配合した不
飽和ポリエステル樹脂が15分でゲル化する温度が
71℃〜95℃のものが好ましい。 かかる重合開始剤(括弧内は10時間で半減期を
得る温度)としては、ジアシルパーオキサイド系
のベンゾイルパーオキサイド(74℃)又はパーオ
キシエステル系のt−ブチルパーオキシ−2−エ
チルヘキサノエート(72.5℃)、t−ブチルパー
オキシベンゾエート(104℃)等の有機過酸化物
が挙げられ、特にベンゾイルパーオキサイド、t
−ブチルパーオキシベンゾエートが好ましい。 増粘剤としては、酸化マグネシウム、水酸化マ
グネシウム、酸化カルシウム、水酸化カルシウム
が単独で、または2種以上混合して用いられる。 また、極めて稀であるがSMCのゲル化時間を
調整するために重合禁止剤を不飽和ポリエステル
とスチレン等のビニル単量体の和の30p.p.m以下
の量配合してもよい。かかる重合禁止剤としては
ハイドロキノン、ベンゾキノン、モノ−t−ブチ
ルハイドロキノン、カテコール等が挙げられる。 更に、架橋性ゴムシートを構成するエチレン・
プロピレン系共重合体ゴムとしてはエチレン含量
が30〜75重量%、プロピレン含量が70〜25重量
%、必要によりエチリデンノルボーネン、ジシク
ロペンタジエン等のジエン類を5〜30重量%の割
合で共重合させたエチレン・プロピレン共重合体
ゴム、ヨーソ価12〜20のエチレン・プロピレン・
ジエン三元共重合体ゴムが挙げられる。 これらゴムのムーニー粘度ML1+4(100℃)は10
〜150で好ましくは30〜110のものがよい。 また有機過酸化物よりなる架橋剤としてはベン
ゾイルパーオキサイド、t−ブチルパーオキシ−
2−エチルヘキサノエート、t−ブチルパーオキ
シベンゾエート、ジクミルパーオキサイド、ラウ
ロイルパーオキサイド、1,1−ビス(t−ブチ
ルパーオキシ)シクロヘキサン、1,1−ビス
(t−ブチルパーオキシ)−3,3,5−トリメチ
ルシクロヘキサノン、t−ブチルパーオキシマレ
イン酸等が挙げられる。本発明の実施において、
SMCに配合する重合開始剤と架橋性ゴムシート
に配合する架橋剤は同一であつても異なつていて
もよいが、SMCの硬化反応とゴムの架橋反応を
同時に、あるいは前後して開始させることによつ
て架橋シートとFRPの接着を強固とするために
半減期10時間を得るための分解温度の差が0〜15
℃、好ましくは0〜10℃のものを用いるべきであ
る。 更に、分子中にアクリロイルオキシ基および/
またはメタクリロイルオキシ基を少なくとも2個
以上有する化合物としてはエチレングリコールジ
メタクリレート、トリエチレングリコールジメタ
クリレート、テトラエチレングリコールジメタク
リレート、トリメチロールプロパントリメタクリ
レートおよびこれらのポリアクリレート均等物が
挙げられる。これらの中でも、架橋速度および得
られる架橋ゴムシートの引張強度、伸度、耐クリ
ープ性等の物理的強度の面から3官能以上のポリ
アクリレートまたはポリメタアクリレートよりは
2官能のジアクリレートまたはジメタクリレート
の方が好ましい。更に、官能基間鎖長は短い方が
よく、一般に化合物の分子量が198〜400程度のも
のが好ましい。最適なものはエチレングリコール
ジメタクリレートである。 なお、ラウリルメタクリレート等のモノメタク
リレートは架橋速度を促進する作用は有するが、
架橋中にエチレン・プロピレン系共重合体ゴムの
分解を起し、得られる架橋ゴムシートの機械的強
度を低下させるので好ましくない。 また、エチレン・プロピレン系共重合体ゴムを
有機過酸化物を用いて架橋する際に、架橋速度を
速くする目的で助剤として硫黄を配合することが
行われるが、硫黄を助剤として用いた場合のエチ
レン・プロピレン系共重合体ゴムの架橋時間は5
〜12分程度であり、本発明の実施には用いること
ができない。 これらを用いて架橋性ゴムシートを製造するに
は、エチレン・プロピレン系共重合体ゴム100重
量部に対して有機過酸化物が1〜10重量部、好ま
しくは5〜10重量部および分子内にアクリロイル
オキシ基および/またはメタクリロイルオキシ基
を少なくとも2個以上有する化合物が0.005〜0.2
モル、好ましくは0.01〜0.1モルの割合で配合さ
れた組成物、または必要によりこれらにカーボン
ブラツク、亜鉛華等の顔料、ステアリン酸等の分
散剤、プロセス油等の可塑材を更に配合した組成
物を有機過酸化物が分解しない温度で、好ましく
は30〜60℃でロールによりシート状に製造する。 これら芯材、SMCおよび架橋性ゴムシートを
用いて架橋ゴムシートとガラス繊維強化樹脂
(FRP)と芯材が一体化した本発明の多層複合構
造体を製造するには、例えば芯材の少なくとも片
面にSMCを載置積層し、このSMCの面上に架橋
性ゴムシートを載置積層した積層物を、最終製品
の形状に合せて構成した上金型とガス抜き孔を備
えた下金型よりなる140〜160℃の温度に設定され
た圧縮金型の下金型にのせ、次いで型締し、100
〜200℃、好ましくは110〜170℃、圧力5〜150
Kg/cm2、好ましくは5〜40Kg/cm2で1〜5分間、
好ましくは2〜4分間かけて圧縮成形を行なうこ
とによつてSMCを構成する不飽和ポリエステル
樹脂を硬化させるとともに、架橋性ゴムシートの
架橋を行ない、続いて型開きを行なつて成型品を
取り出し、不要のバリを除去して目的とする製品
を得る。 この圧縮成形時に加熱により粘度が低下した
SMCを構成している不飽和ポリエステル樹脂溶
液が一部芯材に侵入、含浸または芯材表面に流延
しその硬化過程で芯材とSMCが接着し、各層が
一体化する。 また、ゴムシート表面にも樹脂溶液が流延し、
該樹脂溶液の硬化物が接着剤の役目をして架橋ゴ
ムシートをFRPは一体化される。 この圧縮成形の際、型締から型開き迄の圧縮成
形時間が約3分以上と長いときは芯材に含まれて
いた水分が水蒸気に変化し、ガス抜き孔より型外
へ免散することがあるが、3〜5分の成形時間で
はこの水蒸気の一部が製品内にとじこめられたと
してもその内圧は小さく、得られる製品に変形を
及ぼすほどでない。 本発明の理解を容易とするために以下、図面を
用いて説明する。 第1図は圧縮成形後、型開きし、成型品(デツ
キボード)Aを取り出す状態を示すものであり、
図中、1は芯材、2はSMCが硬化したガラス繊
維強化樹脂、3は架橋性ゴムシートが架橋したゴ
ムシート、4aは圧縮金型の上金型、4bはその
下金型で下金型にはガス抜き孔5が設けられてい
る。 本発明の実施において各層の肉厚は、芯材層10
〜150mm、SMC層2〜10mm、架橋性ゴムシート層
0.3〜3mmが望ましい。 本発明において、架橋性ゴムシートの架橋を極
めて短時間(1〜5分間)に行うことができるの
で、製品の成形サイクルを1.5〜6分間とするこ
とができ、製品の量産が可能である。また得られ
る製品はそり、ひけのない寸法精度の高い製品で
ある。 以下実施例により本発明を更に詳細に説明す
る。なお、例中の部および%は重量基準である。 実施例 1 オートクレーブ内に、無水フタル酸60モル、フ
マル酸40モル、プロピレングリコール100モルを
加え、窒素気流下、205℃にて6時間反応させた
ところ、淡色透明の不飽和ポリエステル(酸価
26)を得た。 上記不飽和ポリエステルの70%スチレン溶液
100部に、下記の(1)〜(4)の添加剤を配合して液状
の不飽和ポリエステル樹脂組成物を調整した。 (1) 充填剤 炭酸カルシウム 150部 ガラス繊維 30部 (2) 硬化剤 t−ブチルパーベンゾエート 1部 (3) 増粘剤 MgO 1部 (4) 離型剤 ステアリン酸亜鉛 2部 剥離フイルム上に前記不飽和ポリエステル樹脂
組成物を塗布し、次いでこの面上に300g/m2
チヨツプドストランドマツトを置き、再び前記不
飽和ポリエステル樹脂組成物を塗布し、更にその
上に剥離フイルムを置いて積層物を得た。 この積層物をロールで圧縮して樹脂をマツトに
含浸させるとともに、脱泡を行い、更に巻き取つ
て40℃雰囲気中で1日養生して肉厚1.2mmの半固
体状の成形用シート(SMC)を得た。 パーテイクルボード(厚さ12mm、50mmφの4つ
の孔あり、水含量約10%)を芯材とし、この芯材
を上記SMCで囲繞し、更に上面に下記の組成物
よりなる架橋性シート(一部切欠きあり)を載置
し、下面の4箇所の部分に同じ架橋性シートを切
断したものを配置した積層物をガス抜き孔を有す
る下金型(160℃)上に装填した後、型締めし、
温度160℃、圧力10Kg/cm2で2分間圧縮成形し、
次いで冷却することなく型開きし、FRP層0.7mm、
架橋ゴム層0.5mm、芯材層12mmの成型品を得た。 架橋性ゴムシートの組成 (a) エチレン含量が57%、ムーニー粘度が38のエ
チレン・プロピレン三元共重合体ゴム(ヨー素
価19) 100部 (b) 1,1−ビス(t−ブチルパーオキシ)−3,
3,5−トリメチルシクロヘキサン 9部 (c) 顔 料 2部 (d) エチレングリコールジメタクリレート 5部。 得られた成形体をJIS−K−6301加硫ゴム物理
試験法の7の剥離試験法に準じて、表皮層の接着
性テストを行なつた結果0.5Kg/cmとなつた。 又、FRPとパーテイクルボードの接着力を確
める為に、上記成形体を幅20mm、長さ240mm、肉
厚13.9mmの短柵に作り、この短柵にてスパン拒離
190mmの三点曲げテストを行なつたところ、中央
荷重が40Kgであつても各層間の剥離は見受けられ
なかつた。 尚、成形体のJIS−K−6911による曲げ弾性率
は75000Kg/cm2であつた。また、この成型体は架
橋ゴムシート面にピンホール、ふくれもなく、
又、芯材のふくれもない優れたものであつた。 実施例 2〜5 エチレン・プロピレン系共重合体ゴムとして表
1に示すものを用い、かつ、圧縮成形時間を種々
変える他は実施例1と同様にしてポンホール、ふ
くれ、そりのない成型体を製造した。 該成型体が得られる最低圧縮成形時間を同表に
示す。
The present invention relates to a method for manufacturing a multilayer structure that has excellent waterproofness, abrasion resistance, and overall rigidity. Currently, the main material for pallets is wood,
Wooden pallets have many problems, such as corrosion, laminated bags breaking due to wood, nails, etc., increased weight due to absorption of moisture, easy breakage, and unsanitary conditions. To solve this problem, we used a plywood board as a core material, covered the front and back sides of this core material with glass fiber reinforced resin (hereinafter referred to as FRP) using an isocyanate adhesive, and used the sandwich structure as a deck board. Pallets have been proposed, but their slippery surfaces pose operational and safety problems during empty transport. On the other hand, in order to prevent this slippage, the surface of the polyethylene deck board has a concave and convex pattern, and
A pallet has been proposed in which a rubber sheet is partially pasted with an isocyanate adhesive or vinyl acetate latex on a portion of the surface of the deck board and the back surface of the deck board where the claws of a forklift come into contact to prevent slipping. However, although this plastic pallet has solved the problem of slipperiness and waterproofness, it has problems with load bearing capacity, and when a heavy load is loaded, the load may collapse due to deflection. In order to improve the shortcomings of these conventional pallets, the present applicant has developed a skin layer made of a rubber material, a core material layer made of wood, stone, metal, etc. having a predetermined rigidity, and a thermosetting material for the textile base material. A multilayer structure characterized in that a laminate is formed by placing and laminating a back-up layer made of sheet-like preformed material (SMC) impregnated with resin, and the laminate is integrally molded by heating and compression. An application was filed for the manufacturing method (Japanese Patent Application Laid-Open No. 1983-1999).
No. 110691). In this manufacturing method, a laminate formed from the above-mentioned rubber skin layer, core material layer and backup layer (SMC),
By simultaneously heating and compressing, there is no need for an adhesive, and each layer can be integrated in a single compression process, making it possible to reduce costs by shortening the process. Furthermore, the multilayer structure manufactured by this method has excellent surface waterproofness and frictional properties, and has sufficient overall rigidity, making it ideal for use as a pallet deck board. However, when using a material containing about 0.5 to 10% moisture at room temperature, such as particle board, plywood, or cardboard made of pulp paper, as the core material,
Normal SMC compression molding conditions, i.e. temperature 120~
Under conditions of 160℃ and a pressure of 15 to 150 Kg/ cm2 , the crosslinking time of the crosslinkable rubber sheet is longer than the curing time of SMC (usually 6 to 12 minutes), and the moisture in the core material is generated as water vapor, resulting in a product. They often become swollen and have a negative impact on us. It is possible to use a mold with gas vent holes to dissipate the generated water vapor, but the unsaturated polyester resin that makes up SMC flows into the gas vent holes due to the pressure applied during compression molding, and hardens there. The gas vent hole may be blocked, and the water vapor that has no place to escape will cause blisters or cracks in the core material of the molded product, resulting in a product with poor practicality. In order to improve this drawback, it is conceivable to pre-dry the water-containing core material before use in molding, but it is not economically advisable for a processing company to newly install such drying equipment. The present invention solves these drawbacks when using a water-containing core material, even if SMC's unsaturated polyester resin enters the gas vent hole of the mold during compression molding, the rubber crosslinks during the time until water vapor is generated. The problem can be solved by crosslinking the rubber and curing the SMC, or by crosslinking the rubber and curing the SMC before the internal pressure reaches enough to deform the resulting multilayer composite structure even if water vapor is generated. This objective can be achieved by using a crosslinkable rubber sheet that can be crosslinked in 1 to 5 minutes, preferably 1 to 3 minutes. That is, in the present invention, a sheet molding compound is placed and laminated on at least one side of a water-containing core material such as wood or cardboard, and a crosslinkable rubber sheet is further placed on the surface of this sheet molding compound. In a method of manufacturing a multilayer composite structure in which a crosslinked rubber sheet, a glass fiber reinforced resin, and a core material are integrated by heating and compression molding the laminated laminate, the crosslinkable rubber sheet has an ethylene content of 30 to 75% by weight. %
For 100 parts by weight of ethylene-propylene copolymer rubber having a Mooney viscosity ML 1+4 (100°C) of 10 to 150, 1 to 10 parts by weight of organic peroxide and acryloyloxy and/or methacryloyl A compound having at least two or more oxy groups
The present invention provides a method for producing a multilayer composite structure, characterized in that it is formed from a composition blended in a proportion of 0.005 to 0.2 moles. In the practice of the present invention, water-containing core materials include, to some extent, plywood, soft or hard fiberboard, particle board, asbestos slate board, gypsum board, asbestos cement board, corrugated paper, cardboard paper, etc. stiffness (specifically, the bending modulus of
* 1000 Kg/cm 2 ) or more, and porous ones that allow the thermosetting resin liquid to penetrate and impregnate to some extent through the surface, or those that have irregularities on the surface. * [Wood - Japanese Agricultural Standards (Ministry of Agriculture and Forestry Notification No. 932), Asbestos Slate - JISA1408 Bending Test Method for Architectural Boards]. Among these, wood materials with high impact resistance are preferred. And, as a sheet molding compound (SMC), “FRP - Production and Technology -
(Published by Plastics Age Co., Ltd. on December 10, 1973)
Usually commercially available as described on pages 148-153 of
SMC, Patent Application No. 54-134643, No. 54-152301,
SMC for low pressure molding disclosed in Japanese Patent No. 55-62642 and Japanese Patent No. 55-86088 can be used. In general, SMC is made by impregnating a nonwoven or woven fabric base material made of inorganic fibers (glass fibers, asbestos fibers, etc.) or organic fibers (thermoplastic polyester fibers, etc.) with a liquid unsaturated polyester resin composition having the following composition. It is a sheet-like material obtained by thickening a resin so that it can be carried and cut into any shape, and can be molded into any shape by placing it in a compression mold and applying heat and pressure. Unsaturated polyester resin composition (A) Unsaturated polyester 30 to 80 parts by weight (B) Vinyl monomer mainly composed of styrene
70-20 parts by weight (C) Polymerization initiator 0.01-5% by weight of the sum of (A) and (B) (D) Thickener 0.1-2% by weight of the sum of (A) and (B) (E) Radical-absorbing compound 0 to small amount The following may be added to the above composition as necessary. Filler: Talc, calcium carbonate, silica, diatomaceous earth, mica, aluminum hydroxide Mold release agent: Zinc stearate, stearic acid, aluminum stearate Pigment: Titanium oxide, carbon black, red iron oxide, cadmium yellow Shrinkage prevention agent: Polyacrylic acid, polystyrene,
Particles such as styrene-maleic acid copolymer. The unsaturated polyester of (A) above may be made of, for example, an unsaturated polybasic acid such as maleic anhydride, fumaric acid, itaconic acid, etc., and a polyhydric alcohol such as ethylene glycol, propylene glycol, diethylene glycol, etc., and if necessary, phthalic anhydride. By blending saturated polybasic acids such as acid, isophthalic acid, and adipic acid,
Obtained by reaction. Further, examples of vinyl monomers other than styrene include vinyltoluene, chlorostyrene, methylstyrene, methyl methacrylate, and the like. Furthermore, the polymerization initiator has a temperature of 72.5°C to 104°C to obtain a half-life of 10 hours,
The temperature at which unsaturated polyester resin containing 1 part by weight of the polymerization initiator per 100 parts by weight of the total of unsaturated polyester and vinyl monomer gels in 15 minutes is
Preferably, the temperature is 71°C to 95°C. Such a polymerization initiator (the temperature in parentheses indicates a half-life of 10 hours) is diacyl peroxide-based benzoyl peroxide (74°C) or peroxy ester-based t-butylperoxy-2-ethylhexanoate. (72.5°C), t-butyl peroxybenzoate (104°C), etc., especially benzoyl peroxide, t-butylperoxybenzoate (104°C), etc.
-Butyl peroxybenzoate is preferred. As the thickener, magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide may be used alone or in combination of two or more. Although it is extremely rare, a polymerization inhibitor may be added in an amount of 30 p.pm or less of the sum of unsaturated polyester and vinyl monomer such as styrene in order to adjust the gelation time of SMC. Examples of such polymerization inhibitors include hydroquinone, benzoquinone, mono-t-butylhydroquinone, and catechol. Furthermore, ethylene, which constitutes the crosslinkable rubber sheet,
The propylene copolymer rubber has an ethylene content of 30 to 75% by weight, a propylene content of 70 to 25% by weight, and if necessary, a copolymer of dienes such as ethylidenenorbornene and dicyclopentadiene in a proportion of 5 to 30% by weight. Ethylene/propylene copolymer rubber with an ioso value of 12 to 20.
Examples include diene terpolymer rubber. The Mooney viscosity ML 1+4 (100℃) of these rubbers is 10
-150, preferably 30-110. In addition, examples of crosslinking agents made of organic peroxides include benzoyl peroxide, t-butylperoxy-
2-Ethylhexanoate, t-butylperoxybenzoate, dicumyl peroxide, lauroyl peroxide, 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)- Examples include 3,3,5-trimethylcyclohexanone and t-butylperoxymaleic acid. In carrying out the invention,
The polymerization initiator blended into the SMC and the crosslinking agent blended into the crosslinkable rubber sheet may be the same or different, but the curing reaction of the SMC and the crosslinking reaction of the rubber may be started at the same time or one after the other. The difference in decomposition temperature is 0 to 15 to obtain a half-life of 10 hours to strengthen the bond between the crosslinked sheet and FRP.
℃, preferably 0 to 10℃ should be used. Furthermore, an acryloyloxy group and/or
Examples of compounds having at least two methacryloyloxy groups include ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and polyacrylate equivalents thereof. Among these, from the viewpoint of crosslinking speed and physical strength such as tensile strength, elongation, and creep resistance of the resulting crosslinked rubber sheet, difunctional diacrylate or dimethacrylate is preferable to trifunctional or higher functional polyacrylate or polymethacrylate. is preferable. Furthermore, the shorter the chain length between the functional groups, the better, and generally the molecular weight of the compound is preferably about 198 to 400. The most suitable one is ethylene glycol dimethacrylate. Although monomethacrylates such as lauryl methacrylate have the effect of accelerating the crosslinking rate,
This is not preferred because it causes decomposition of the ethylene-propylene copolymer rubber during crosslinking and reduces the mechanical strength of the resulting crosslinked rubber sheet. Additionally, when crosslinking ethylene-propylene copolymer rubber using an organic peroxide, sulfur is added as an auxiliary agent in order to speed up the crosslinking rate. In this case, the crosslinking time of ethylene-propylene copolymer rubber is 5
~12 minutes, and cannot be used in the practice of the present invention. In order to produce a crosslinkable rubber sheet using these, organic peroxide is added in an amount of 1 to 10 parts by weight, preferably 5 to 10 parts by weight, per 100 parts by weight of ethylene-propylene copolymer rubber. The compound having at least two acryloyloxy groups and/or methacryloyloxy groups is 0.005 to 0.2
mol, preferably 0.01 to 0.1 mol, or a composition in which, if necessary, pigments such as carbon black and zinc white, dispersants such as stearic acid, and plasticizers such as process oil are further blended. is produced into a sheet by rolls at a temperature at which the organic peroxide does not decompose, preferably from 30 to 60°C. In order to manufacture the multilayer composite structure of the present invention in which the crosslinked rubber sheet, glass fiber reinforced resin (FRP), and the core material are integrated using these core materials, SMC, and crosslinkable rubber sheets, for example, at least one side of the core material A crosslinkable rubber sheet is placed on the surface of the SMC, and the laminate is then molded into an upper mold configured to match the shape of the final product and a lower mold with gas vent holes. Place it on the lower mold of a compression mold set at a temperature of 140 to 160℃, then clamp it, and
~200℃, preferably 110~170℃, pressure 5~150℃
Kg/ cm2 , preferably 5-40Kg/ cm2 for 1-5 minutes,
Compression molding is preferably performed for 2 to 4 minutes to cure the unsaturated polyester resin constituting the SMC and to crosslink the crosslinkable rubber sheet, followed by opening the mold and removing the molded product. , remove unnecessary burrs to obtain the desired product. The viscosity decreased due to heating during compression molding.
The unsaturated polyester resin solution that makes up SMC partially penetrates into the core material, impregnates it, or casts it onto the surface of the core material, and during the curing process, the core material and SMC adhere to each other, and each layer is integrated. In addition, the resin solution is also cast on the rubber sheet surface,
The cured product of the resin solution acts as an adhesive to integrate the crosslinked rubber sheet with the FRP. During this compression molding, if the compression molding time from mold clamping to mold opening is long, about 3 minutes or more, the moisture contained in the core material changes to steam and evaporates out of the mold through the gas vent holes. However, in a molding time of 3 to 5 minutes, even if some of this water vapor is trapped within the product, the internal pressure is small and does not cause deformation of the resulting product. In order to facilitate understanding of the present invention, the present invention will be explained below using drawings. Figure 1 shows the state in which the mold is opened after compression molding and the molded product (deck board) A is taken out.
In the figure, 1 is the core material, 2 is the glass fiber reinforced resin cured with SMC, 3 is the rubber sheet crosslinked with the crosslinkable rubber sheet, 4a is the upper mold of the compression mold, and 4b is the lower mold of the lower mold. A gas vent hole 5 is provided in the mold. In the practice of the present invention, the thickness of each layer is 10
~150mm, SMC layer 2~10mm, crosslinkable rubber sheet layer
A thickness of 0.3 to 3 mm is desirable. In the present invention, since the crosslinkable rubber sheet can be crosslinked in an extremely short time (1 to 5 minutes), the molding cycle of the product can be set to 1.5 to 6 minutes, and mass production of the product is possible. Moreover, the obtained product has high dimensional accuracy without warping or sinking. The present invention will be explained in more detail with reference to Examples below. Note that parts and percentages in the examples are based on weight. Example 1 60 moles of phthalic anhydride, 40 moles of fumaric acid, and 100 moles of propylene glycol were added to an autoclave and reacted at 205°C for 6 hours under a nitrogen stream.
26). 70% styrene solution of the above unsaturated polyester
Additives (1) to (4) below were added to 100 parts to prepare a liquid unsaturated polyester resin composition. (1) Filler Calcium carbonate 150 parts Glass fiber 30 parts (2) Hardening agent t-butyl perbenzoate 1 part (3) Thickener MgO 1 part (4) Mold release agent Zinc stearate 2 parts Apply the above on the release film. An unsaturated polyester resin composition is applied, then a 300 g/m 2 chopped strand mat is placed on this surface, the unsaturated polyester resin composition is applied again, and a release film is placed on top of it. A laminate was obtained. This laminate is compressed with a roll to impregnate the resin into the mat, defoamed, and then rolled up and cured for one day in an atmosphere of 40°C to form a semi-solid molding sheet (SMC) with a wall thickness of 1.2 mm. ) was obtained. Particle board (thickness: 12 mm, with 4 holes of 50 mm diameter, water content: approximately 10%) is used as a core material, this core material is surrounded by the above SMC, and a crosslinkable sheet made of the following composition is further placed on the top surface. After loading the laminate in which cut pieces of the same crosslinkable sheet were placed on the lower surface of the lower mold (160°C) with gas vent holes, the mold was placed. Tighten,
Compression molded for 2 minutes at a temperature of 160℃ and a pressure of 10Kg/ cm2 .
Next, the mold is opened without cooling, and the FRP layer is 0.7 mm.
A molded product with a crosslinked rubber layer of 0.5 mm and a core material layer of 12 mm was obtained. Composition of the crosslinkable rubber sheet (a) 100 parts of ethylene/propylene terpolymer rubber with an ethylene content of 57% and a Mooney viscosity of 38 (iodine number 19) (b) 1,1-bis(t-butyl peroxide) Oxy)-3,
3,5-trimethylcyclohexane 9 parts (c) Pigment 2 parts (d) Ethylene glycol dimethacrylate 5 parts. The adhesion of the skin layer of the obtained molded product was tested in accordance with the peel test method 7 of JIS-K-6301 Vulcanized Rubber Physical Test Method, and the result was 0.5 kg/cm. In addition, in order to confirm the adhesive strength between FRP and particle board, the above molded body was made into a short fence with a width of 20 mm, a length of 240 mm, and a wall thickness of 13.9 mm, and this short fence was used to prevent spans.
When a 190 mm three-point bending test was performed, no peeling between the layers was observed even when the center load was 40 kg. The flexural modulus of the molded product according to JIS-K-6911 was 75000 kg/cm 2 . In addition, this molded product has no pinholes or blisters on the crosslinked rubber sheet surface.
Moreover, the core material was excellent in that it did not swell. Examples 2 to 5 Molded products without holes, blisters, or warpage were produced in the same manner as in Example 1, except that the ethylene-propylene copolymer rubber shown in Table 1 was used and the compression molding time was varied. did. The minimum compression molding time for obtaining the molded body is shown in the same table.

【表】 なお、100個生産時の不良製品はいずれも2個
以下であつた。 比較例 1 実施例1において、1,1,−ビス(t−ブチ
ルパーオキシ)−3,3,5−トリメチルシクロ
ヘキサンの代りにジクミルパーオキサイドを、エ
チレングリコールジメタクリレートの代りに硫黄
を用いる他は同様にして圧縮成形を行つた。 得た成型体はゴムシートの架橋が十分でなく、
機械的強度の低いものであつた。 また、圧縮成形時間を約7分間としたときはゴ
ムの架橋は十分行われるが、製品100個に対して
15個の割で芯材にふくれがある不良製品が見い出
された。
[Table] In addition, when 100 units were produced, the number of defective products was 2 or less. Comparative Example 1 Example 1 except that dicumyl peroxide was used instead of 1,1,-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane and sulfur was used instead of ethylene glycol dimethacrylate. Compression molding was carried out in the same manner. In the obtained molded product, the rubber sheet was not sufficiently crosslinked,
It had low mechanical strength. Furthermore, when the compression molding time is set to about 7 minutes, the crosslinking of the rubber is sufficient, but for 100 products
Out of 15 products, defective products with bulges in the core material were found.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例において、圧縮成形
後に金型を開いて多層複合構造体を取り出す状態
を示すものである。 図中、1は多層複合構造体を、1は芯材、2は
SMCが硬化したガラス繊維補強樹脂、3は架橋
したゴムシート、4a及び4bは金型である。
FIG. 1 shows a state in which the mold is opened after compression molding and the multilayer composite structure is taken out in one embodiment of the present invention. In the figure, 1 is the multilayer composite structure, 1 is the core material, and 2 is the multilayer composite structure.
SMC is a hardened glass fiber reinforced resin, 3 is a crosslinked rubber sheet, and 4a and 4b are molds.

Claims (1)

【特許請求の範囲】 1 木材、ダンボール紙等の含水性芯材の少なく
とも片面にシート・モールデイング・コンパウン
ドを載置積層し、更にこのシート・モールデイン
グ・コンパウンドの面上に架橋性ゴムシートを載
置積層した積層物を、加熱、圧縮成形して架橋ゴ
ムシートとガラス繊維強化樹脂と芯材が一体化し
た多層複合構造体を製造する方法において、上記
架橋性ゴムシートはエチレン含量が30〜75重量%
で、ムーニー粘度ML1+4(100℃)が10〜150のエ
チレン・プロピレン系共重合体ゴム100重量部に
対し、有機過酸化物が1〜10重量部、およびアク
リロイルオキシ基および/またはメタクリロイル
オキシ基を少くとも2個以上有する化合物が
0.005〜0.2モルの割合で配合されている組成物よ
り形成されたものであることを特徴とする多層複
合構造体の製造方法。 2 メタクリロイルオキシ基を有する化合物がエ
チレングリコールジメタクリレートであることを
特徴とする特許請求の範囲第1項記載の方法。
[Claims] 1. A sheet molding compound is placed and laminated on at least one side of a water-containing core material such as wood or cardboard, and a crosslinkable rubber sheet is further placed on the surface of this sheet molding compound. In a method for manufacturing a multilayer composite structure in which a crosslinked rubber sheet, a glass fiber reinforced resin, and a core material are integrated by heating and compression molding the laminated product placed and laminated, the crosslinkable rubber sheet has an ethylene content of 30 to 30%. 75% by weight
For 100 parts by weight of ethylene-propylene copolymer rubber having a Mooney viscosity ML 1+4 (100°C) of 10 to 150, 1 to 10 parts by weight of organic peroxide and acryloyloxy and/or methacryloyl A compound having at least two or more oxy groups
1. A method for producing a multilayer composite structure, characterized in that it is formed from a composition blended in a proportion of 0.005 to 0.2 mole. 2. The method according to claim 1, wherein the compound having a methacryloyloxy group is ethylene glycol dimethacrylate.
JP17857880A 1980-12-17 1980-12-17 Manufacture of multilayer composite structure Granted JPS57102344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17857880A JPS57102344A (en) 1980-12-17 1980-12-17 Manufacture of multilayer composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17857880A JPS57102344A (en) 1980-12-17 1980-12-17 Manufacture of multilayer composite structure

Publications (2)

Publication Number Publication Date
JPS57102344A JPS57102344A (en) 1982-06-25
JPS637150B2 true JPS637150B2 (en) 1988-02-15

Family

ID=16050916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17857880A Granted JPS57102344A (en) 1980-12-17 1980-12-17 Manufacture of multilayer composite structure

Country Status (1)

Country Link
JP (1) JPS57102344A (en)

Also Published As

Publication number Publication date
JPS57102344A (en) 1982-06-25

Similar Documents

Publication Publication Date Title
US3413188A (en) Glass fiber-wood laminates and methods of producing such laminates
JPH02501998A (en) How to repair damaged composite articles
US3958069A (en) Cellulose-polymer composites
EP2209629B1 (en) Process to improve the adhesion between thermosetting laminate and thermoplastic shell
JPH10511124A (en) Method for producing fiber-reinforced composite material and molded product thereof
BRPI0608808B1 (en) sheet molding compound paste formulation, sheet molding compound, article of manufacture, process for manufacturing composite molded parts of vehicles and construction, and method for manufacturing a article of manufacture
JPH03500904A (en) Method for manufacturing flat plate ballistic resistant material
US3894975A (en) Adhesive paste comprising wood fibers and complex of styrene and maleic anhydride
US20050238884A1 (en) Urethane acrylate composition structure
US3869432A (en) Styrene-maleic anhydride complex and process for making same
JPS637150B2 (en)
US20140378579A1 (en) Thermosetting resin compositions
US3620900A (en) Plastic laminate structure having elastomer particles in alternate layers
JP4404618B2 (en) Manufacturing method of fiber reinforced foam composite panel
US3900685A (en) Cellulose-polymer composites
JP3294809B2 (en) Lightweight laminate
JP3191454B2 (en) Compressed air and / or vacuum forming sheet and method for producing molded article using the same
CN114672076B (en) Modified natural rubber and preparation method thereof, and high-bearing-capacity rubber bridge damping device and preparation method thereof
JPS5940108B2 (en) Method for manufacturing multilayer structure
KR20150042213A (en) Method for improving adhesion of polyurethane adhesive to polyester based laminate without surface preparation
JP4505771B2 (en) Molding material, manufacturing method of fiber reinforced plastic molding and fiber reinforced plastic molding
JPH11130881A (en) Prepreg sheet for decoration and production of fiber-reinforced plastic molded product
CH617887A5 (en) Laminated material and its manufacturing process
JPH07164408A (en) Production of wooden decorative panel
JP3333233B2 (en) Outer panel for vehicle frame