JP4404618B2 - Manufacturing method of fiber reinforced foam composite panel - Google Patents

Manufacturing method of fiber reinforced foam composite panel Download PDF

Info

Publication number
JP4404618B2
JP4404618B2 JP2003422034A JP2003422034A JP4404618B2 JP 4404618 B2 JP4404618 B2 JP 4404618B2 JP 2003422034 A JP2003422034 A JP 2003422034A JP 2003422034 A JP2003422034 A JP 2003422034A JP 4404618 B2 JP4404618 B2 JP 4404618B2
Authority
JP
Japan
Prior art keywords
fiber
foamable
reinforced
preform
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003422034A
Other languages
Japanese (ja)
Other versions
JP2005178167A (en
Inventor
岡本浩一郎
雄次 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003422034A priority Critical patent/JP4404618B2/en
Publication of JP2005178167A publication Critical patent/JP2005178167A/en
Application granted granted Critical
Publication of JP4404618B2 publication Critical patent/JP4404618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は複合パネルの製造方法に関するものであり、更に詳しくは、繊維強化発泡プラスチックを用いた複合パネルの製造方法に関するThe present invention relates to a method for manufacturing a composite panel, and more particularly to a method for manufacturing a composite panel using a fiber-reinforced foamed plastic.

従来より、断熱性、遮音性を付与したドアや間仕切りパネル等のパネル構造として、芯材としてウレタン発泡体が用いられるのが一般的であり、これに代えて、ハニカム材を用いることもあり、一方、表面材として鋼板、木材、FRP等の樹脂板を用いて構成されていた。   Conventionally, urethane foam is generally used as a core material as a panel structure such as a door or a partition panel that has been provided with heat insulation and sound insulation, and instead of this, a honeycomb material may be used. On the other hand, it was comprised using resin plates, such as a steel plate, wood, and FRP, as a surface material.

しかるに、これら従来のドアやパネルにあっては、芯材と表面材とが全く別部材であるため、即ち、複数の性質の異なる素材からなっているため、リサイクル時の処理工数が膨大な費用が掛かっていた。又、このため、製造工程は複雑化し、かつ、相互間での接着性を考慮する必要があった。   However, in these conventional doors and panels, since the core material and the surface material are completely different members, that is, made of materials having different properties, the processing man-hours during recycling are enormous. It was hanging. For this reason, the manufacturing process is complicated, and it is necessary to consider the adhesiveness between them.

更に性状的に言えば、芯材がウレタン発泡体であるため、外力に対抗する強度にやや難点があり、かつ、水分との接触によりウレタン発泡体が劣化するため、耐久性の点で問題があることも指摘される場合があった。   In terms of properties, since the core material is urethane foam, there is a slight difficulty in strength against external forces, and the urethane foam deteriorates due to contact with moisture, so there is a problem in terms of durability. It was sometimes pointed out.

本発明は以上のような従来技術の課題を解決するものであって、リサイクル性のよい、しかも性状的により強化された、かつ、耐久性の向上した繊維強化発泡プラスチックを用いた複合パネルの製造方法を提供することを目的とするものである。 Be those present invention to solve the conventional technical problems described above, good recyclability, moreover enhanced by nature, the and the manufacture of composite panels with fiber-reinforced plastic foam having improved durability It is intended to provide a method .

本発明の要旨は、パネルの芯材として、(A)マトリックス樹脂として熱硬化性樹脂、(B)特定量の補強用繊維、及び、(C)特定量のアクリロニトリル系共重合体からなるシェルを有する加熱膨張性マイクロカプセル、からなる発泡性予備成形体を加熱硬化してなる繊維強化発泡プラスチックを調製し、パネルの表面材として、前記(A)熱硬化性樹脂と同種の樹脂による表面材を用いた繊維強化発泡複合パネルの製造方法である。かかる発泡性予備成形体である芯材と表面材との一体化は芯材を発泡成形する金型内にて行って一体とすることを要する。 The gist of the present invention is as follows: (A) a thermosetting resin as a matrix resin, (B) a specific amount of reinforcing fibers, and (C) a shell made of a specific amount of an acrylonitrile copolymer. thermal expandable microcapsules having a foamable preform heating the cured fiber-reinforced plastic foam obtained by prepared consisting, as the surface material of the panel, the surface material according to said (a) a thermosetting resin of the same kind as the resin It is a manufacturing method of the used fiber reinforced foam composite panel. The integration of the core material and the surface material, which is such a foamable preform, requires that the core material be integrated in a mold for foam molding.

そして、リサイクルの面では、表面材は好ましくは(A)熱硬化性樹脂が不飽和ポリエステル樹脂であり、(B)成分の補強用繊維が、長さ3〜100mmのガラス繊維で、その含有量は発泡性予備成形体全体に基づき、10〜70重量部であるのがよい。又、(C)成分の加熟膨張性マイクロカプセルが、低沸点液状有機化合物を内包したコアシェル型のものであり、この含有量が(A)成分100重量部に対し、0.1〜50重量部であるのがよい。尚、複合パネルの芯材としての密度が0.4〜1.5g/cm3 である。 In terms of recycling, the surface material is preferably (A) the thermosetting resin is an unsaturated polyester resin, and the reinforcing fiber of the component (B) is a glass fiber having a length of 3 to 100 mm, and its content Is preferably 10 to 70 parts by weight based on the entire foamable preform. Further, the ripening expansible microcapsule of the component (C) is a core-shell type containing a low-boiling liquid organic compound, and the content is 0.1 to 50 weights with respect to 100 parts by weight of the component (A). Good part. In addition, the density as a core material of a composite panel is 0.4-1.5 g / cm < 3 >.

本発明によれば、発泡性予備成形体による繊維強化発泡プラスチック成形体を用いた複合パネルであって、特に芯材と表面材とをマトリックスを同じくすることによりリサイクル性に富んだものとなり、しかも強度的にかつ耐久性に優れた複合パネルを提供できたものである。   According to the present invention, a composite panel using a fiber-reinforced foamed plastic molded body made of a foamable preform, which is particularly recyclable by using the same matrix for the core material and the surface material, It was possible to provide a composite panel that was strong and excellent in durability.

さて、本出願人は既に繊維強化発泡プラスチックについて新しい技術を提供している。かかる新技術は、(A)マトリックス樹脂として熱硬化性樹脂、(B)補強用繊維及び(C)加熱膨張性マイクロカプセルを含むシート状又はバルク状発泡性予備成形体であって、マトリックス樹脂である(A)熱硬化性樹脂として、熱硬化性樹脂を含有する液状体を用いたものであり、かかる液状体を加熱硬化させてなる繊維強化発泡プラスチック成形体を提供した(特許出願中)。   The applicant has already provided new technology for fiber reinforced foamed plastic. Such a new technology is a sheet-like or bulk-like foamable preform containing (A) a thermosetting resin as a matrix resin, (B) reinforcing fibers and (C) a heat-expandable microcapsule, As a certain (A) thermosetting resin, a liquid material containing a thermosetting resin was used, and a fiber-reinforced foamed plastic molded body obtained by heat-curing the liquid material was provided (patent pending).

かかる既提案による繊維強化発泡プラスチックは、軽量でかつ高強度の性質をもち、しかもその製造も比較的簡便なことから、本発明にあっては、これをパネルの芯材として用い、かつ、表面材として繊維強化プラスチック、鋼板、木材板、好ましくは表面材をかかるマトリックス樹脂と同種の樹脂を用いて複合パネルとしたものであり、従来より指摘されていた点を解決したものである。   Such a proposed fiber-reinforced foamed plastic has light weight and high strength properties, and is relatively easy to manufacture. Therefore, in the present invention, the fiber reinforced foamed plastic is used as a core material for a panel and has a surface. As a material, a fiber reinforced plastic, a steel plate, a wood plate, and preferably a surface material is formed into a composite panel using the same kind of resin as the matrix resin.

本発明の発泡性予備成形体を作製するには、先ず発泡性成形材料を調製する。即ち、(A)成分のマトリックス樹脂として、熱硬化性樹脂を含有する液状体を用い、これに前記(C)成分としてアクリロニトリル系共重合体からなるシェルを有する加熱膨張性マイクロカプセルを配合し、更に従来SMC、BMC、TMC用として慣用されている材料、例えば低収縮剤、無機充填剤、重合開始剤、硬化剤、増粘剤及び必要に応じて用いられる硬化促進剤やその他添加剤を配合することにより、調製することができる。 In order to produce the foamable preform of the present invention, a foamable molding material is first prepared. That is, a liquid material containing a thermosetting resin is used as the matrix resin of the component (A), and a heat-expandable microcapsule having a shell made of an acrylonitrile copolymer is blended as the component (C). In addition, materials conventionally used for SMC, BMC and TMC, such as low shrinkage agents, inorganic fillers, polymerization initiators, curing agents, thickeners, and curing accelerators and other additives used as necessary By doing so, it can be prepared.

前記(A)成分のマトリックス樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂等があるが、これらの中で不飽和ポリエステル樹脂が好ましく使用される。   Examples of the matrix resin of the component (A) include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, etc. Among them, unsaturated polyester resins are preferably used.

本発明において、発泡性成形材料に配合される(C)成分の加熱膨張性マイクロカプセルとしては、コアが低沸点液状有機化合物であり、これを熱可塑性樹脂からなるシェルで内包したコアシェル型の加熱膨張性マイクロカプセルが好ましい。コアの低沸点液状有機化合物としては、常温、常圧における沸点が150℃以下のものが好ましく、例えばイソブタン、ペンタン、ヘキサン等の炭化水素化合物やエーテル類等を挙げることができる。ここで、シェルを形成する熱可塑性樹脂としては、アクリルニトリル系共重合体であることを要する。この加熱膨張性マイクロカプセルの製造法は、インサイト重合法により製造されたものが好ましい。 In the present invention, as the heat-expandable microcapsule of component (C) blended in the foamable molding material, the core is a low-boiling liquid organic compound, and the core-shell type heating in which the core is encapsulated with a shell made of a thermoplastic resin Swellable microcapsules are preferred. The core low-boiling liquid organic compound preferably has a boiling point of 150 ° C. or lower at normal temperature and normal pressure, and examples thereof include hydrocarbon compounds such as isobutane, pentane, and hexane, ethers, and the like. Examples of the thermoplastic resin forming the shell requires that the A acrylic nitrile copolymer. As the method for producing the heat-expandable microcapsules, those produced by an in situ polymerization method are preferable.

この加熱膨張性マイクロカプセルは、加熱膨張前の平均粒径が0.5〜100μmの範囲にあるものが好ましく、1〜70μmの範囲にあるものがより好ましい。又、加熱膨張後の外径は熱膨張前の外径の2倍以上が好ましく、3〜10倍程度がより好ましい。膨張前の平均粒径が0.5μm未満では十分な発泡が得られにくいし、100μmを越えると均一に分散しにくく、均質な繊維強化発泡プラスチック成形体が得られない場合がある。尚、膨張開始温度は作業性の面から80℃以上であることが好ましく、より好ましくは100〜230℃である。   This heat-expandable microcapsule preferably has an average particle size before heat expansion in the range of 0.5 to 100 μm, more preferably in the range of 1 to 70 μm. Further, the outer diameter after the thermal expansion is preferably at least twice the outer diameter before the thermal expansion, and more preferably about 3 to 10 times. If the average particle size before expansion is less than 0.5 μm, it is difficult to obtain sufficient foaming, and if it exceeds 100 μm, it is difficult to uniformly disperse and a homogeneous fiber-reinforced foamed plastic molded product may not be obtained. The expansion start temperature is preferably 80 ° C. or higher, more preferably 100 to 230 ° C. from the viewpoint of workability.

本発明においては、(C)成分の加熱膨張性マイクロカプセルの配合量は、前記(A)成分のマトリックス樹脂液状体100重量部に対し、0.1〜50重量部の範囲が好ましく、より好ましくは0.5〜20重量部の範囲である。この配合量が0.5重量部未満では所望の低密度の繊維強化発泡プラスチック成形体が得られにくく、50重量部を超えると該プラスチック成形体の強度が不十分となるおそれがある。 In the present invention, the amount of heat-expandable microcapsules as the component (C), the relative (A) a matrix resin liquid material 100 parts by weight of component, 0.1 to 50 parts by weight, more preferably Is in the range of 0.5 to 20 parts by weight. If the blending amount is less than 0.5 parts by weight, it is difficult to obtain a desired low-density fiber-reinforced foamed plastic molded body, and if it exceeds 50 parts by weight, the strength of the plastic molded body may be insufficient.

本発明における発泡性成形材料に配合される低収縮剤として、ポリスチレン、ポリエチレン、ポリ酢酸ビニル、ポリメタクリル酸メチル、飽和ポリエステル、スチレンーブタジエン共重合体、スチレンーメタクリル酸共重合体、ポリカプロラクトン、ポリブタジエン等の熱可塑性樹脂が挙げられる。又、その配合量は、得られる発泡プラスチック成形体の収縮率や表面平滑性等を考慮して選定されるが、前記マトリックス樹脂と該低収縮剤との重量比が、通常90:10乃至50:50、好ましくは80:20乃至60:40の範囲で選ばれる。   As a low shrinkage agent blended in the foamable molding material in the present invention, polystyrene, polyethylene, polyvinyl acetate, polymethyl methacrylate, saturated polyester, styrene-butadiene copolymer, styrene-methacrylic acid copolymer, polycaprolactone, Examples thereof include thermoplastic resins such as polybutadiene. The blending amount is selected in consideration of the shrinkage rate, surface smoothness, etc. of the obtained foamed plastic molding, but the weight ratio of the matrix resin to the low shrinkage agent is usually 90:10 to 50. : 50, preferably in the range of 80:20 to 60:40.

又、本発明における発泡性成形材料に配合される充填剤としては、炭酸カルシウム、シリカ、タルク、水酸化アルミニウム、クレ−、マイカ、中空バルーン(ガラス、シラス、セメント)、フェライト、亜鉛華等が挙げられるが、これらの中で、炭酸カルシウムが好ましい。又、その配合量は、前記のマトリックス樹脂と低収縮剤との合計量100重量部に対し、通常50〜200重量部の範囲で選定される。   Examples of the filler to be blended in the foamable molding material in the present invention include calcium carbonate, silica, talc, aluminum hydroxide, clay, mica, hollow balloon (glass, shirasu, cement), ferrite, zinc white and the like. Among them, among them, calcium carbonate is preferable. The blending amount is usually selected in the range of 50 to 200 parts by weight with respect to 100 parts by weight of the total amount of the matrix resin and the low shrinkage agent.

本発明における発泡性成形材料が、不飽和ポリエステル樹脂系発泡性成形材料の場合、重合開始剤や硬化剤として通常有機過酸化物が用いられ、メチルエチルケトンパーオキシド、アセチルアセトンパーオキシド、t−ブチルパーオキシベンゾエート、ベンゾ−ルパーオキシド、ジクミルパーオキシド、クメンハイドロパーオキシド等が挙げられる。この重合開始剤の配合量は、前記マトリックス樹脂100重量部に対して通常0.3〜5重量部、好ましくは0.7〜3重量部の範囲で選定される。   When the foamable molding material in the present invention is an unsaturated polyester resin-based foamable molding material, an organic peroxide is usually used as a polymerization initiator or a curing agent, such as methyl ethyl ketone peroxide, acetylacetone peroxide, t-butylperoxy. Examples include benzoate, benzol peroxide, dicumyl peroxide, cumene hydroperoxide and the like. The blending amount of the polymerization initiator is usually selected in the range of 0.3 to 5 parts by weight, preferably 0.7 to 3 parts by weight with respect to 100 parts by weight of the matrix resin.

又、不飽和ポリエステル樹脂系発泡性成形材料の場合、それに配合される増粘剤の例としては、酸化マグネシウム、水酸化マグネシウム、酸化カリウム、水酸化カリウム等が挙げられる。この増粘剤の配合量は、前記マトリックス樹脂100重量部に対し、通常0.5〜5重量部、好ましくは0.7〜2重量部の範囲で選定される。   In the case of an unsaturated polyester resin-based foamable molding material, examples of the thickener blended therein include magnesium oxide, magnesium hydroxide, potassium oxide, potassium hydroxide and the like. The blending amount of the thickener is usually selected in the range of 0.5 to 5 parts by weight, preferably 0.7 to 2 parts by weight with respect to 100 parts by weight of the matrix resin.

本発明における不飽和ポリエステル樹脂系発泡性成形材料においては、前記増粘剤を添加30分後の温度25℃における粘度が、50〜300Pa・Sの範囲にあることが好ましく、この粘度が300Pa・Sを超えると補強用繊維への含浸性が不充分となってしまうからである。   In the unsaturated polyester resin-based foamable molding material in the present invention, the viscosity at a temperature of 25 ° C. 30 minutes after the addition of the thickener is preferably in the range of 50 to 300 Pa · S, and this viscosity is 300 Pa · It is because the impregnation property to the reinforcing fiber becomes insufficient when it exceeds S.

本発明における不飽和ポリエステル樹脂系発泡性成形材料においては、その他添加剤、例えば硬化促進剤、重合禁止剤、離型剤、酸化防止剤、紫外線吸収剤、着色剤等を所望により配合することができる。例えば、上記硬化促進剤としては、ナフテン酸コバルト、オクトエ酸コバルト、N,N−ジメチルアニリン、N,N一ジエチルアニリン等が挙げられる。又、重合禁止剤としては、ハイドロキノン、P−ベンゾキノン、メチルハイドロキノン、トリメチルハイドロキノン、t−ブチルハイドロキノン等が挙げられる。   In the unsaturated polyester resin-based foamable molding material in the present invention, other additives such as a curing accelerator, a polymerization inhibitor, a mold release agent, an antioxidant, an ultraviolet absorber, a colorant and the like may be blended as desired. it can. For example, examples of the curing accelerator include cobalt naphthenate, cobalt octoate, N, N-dimethylaniline, N, N-diethylaniline, and the like. Examples of the polymerization inhibitor include hydroquinone, P-benzoquinone, methylhydroquinone, trimethylhydroquinone, t-butylhydroquinone and the like.

次に、本発明の発泡性予備成形体は、前記のようにして得られた発泡性成形材料を(B)成分の補強用繊維に含浸させ、シート状(SMC、TMC)又はバルク状(BMC)に成形したものである。   Next, the foamable preform of the present invention is obtained by impregnating the foamable molding material obtained as described above into the reinforcing fiber of the component (B), to form a sheet (SMC, TMC) or bulk (BMC) ).

前記補強用繊維としては、例えばガラス繊維、炭素繊維、更にはポリエステル繊維、ナイロン繊維、アラミド繊推等の有機繊維等が挙げられるが、これらの中でガラス繊維が好適である。このガラス繊維としては、ロービングを切断した長繊維及び/又は短繊維が用いられる。長繊維は、長さが通常15〜100mm、好ましくは20〜50mmの範囲のものであり、短繊維は、長さが通常5〜15mm、好ましくは6〜13mmの範囲のものである。   Examples of the reinforcing fiber include glass fiber, carbon fiber, and organic fiber such as polyester fiber, nylon fiber, and aramid fiber, among which glass fiber is preferable. As the glass fiber, a long fiber and / or a short fiber obtained by cutting a roving is used. The long fiber has a length of usually 15 to 100 mm, preferably 20 to 50 mm, and the short fiber has a length of usually 5 to 15 mm, preferably 6 to 13 mm.

本発明の発泡性予備成形体においては、前記補強用繊維は、該予備成形体全体に基づき、通常10〜70重量%、好ましくは15〜50重量%の範囲で含有される。   In the foamable preform of the present invention, the reinforcing fiber is usually contained in the range of 10 to 70% by weight, preferably 15 to 50% by weight, based on the whole preform.

本発明の繊維強化発泡プラスチック成形体は、このようにして得られたシート状(SMC、TMC)又はバルク状(BMC)の発泡性予備成形体を、金型内にセットし、加熱硬化させることにより得ることができる。即ち、発泡性予備成形体を金型内にセットし、型締めを発泡後想定する成形品肉厚で中断し、発泡圧を利用する方法により成形すると、低圧で成形できるので成形体の製造設備や金型のコストを低減できる利点を有する。本発明の繊維強化発泡プラスチック成形体の密度は、好ましくは0.4〜1.5g/cmであり、より好ましくは0.5〜1.2g/cmである。 The fiber-reinforced foamed plastic molded body of the present invention is obtained by setting the sheet-like (SMC, TMC) or bulk-like (BMC) foamable preform so obtained in the mold and heat-curing. Can be obtained. That is, if the foamable preform is set in the mold, the mold clamping is interrupted by the thickness of the molded product that is assumed after foaming, and molding is performed by a method that uses foaming pressure, molding is possible at low pressure. It has the advantage that the cost of the metal mold can be reduced. The density of the fiber-reinforced foamed plastic molding of the present invention is preferably 0.4 to 1.5 g / cm 3 , more preferably 0.5 to 1.2 g / cm 3 .

次に、本発明の繊維強化発泡プラスチック成形体を作製する実施態様について、SMCの場合を例に挙げて説明する。
先ず、(A)成分のマトリックス樹脂、(C)成分の加熱膨張性マイクロカプセル、低収縮剤、充填剤、重合開始剤や硬化剤及び必要に応じて用いられる硬化促進剤やその他の添加剤を混練して、コンパウンドペーストを調製する。次いでこれに増粘剤を混合して得られた発泡性成形材料を、ただちにSMC含浸機に供給する。
Next, an embodiment for producing the fiber-reinforced foamed plastic molded body of the present invention will be described taking the case of SMC as an example.
First, (A) component matrix resin, (C) component heat-expandable microcapsules, low shrinkage agent, filler, polymerization initiator and curing agent, and curing accelerators and other additives used as necessary. A compound paste is prepared by kneading. Subsequently, the foamable molding material obtained by mixing this with a thickener is immediately supplied to the SMC impregnation machine.

次に、本発明の2枚のキャリヤーフイルム夫々に上記発泡性成形材料を所定量塗布したのち、下フィルムの塗布層上に、(B)補強用繊維としてガラスローピングをカッターでチョップしながらガラス繊維を降らせる。次いでその上に塗布層を有する上フィルムを該塗布層が内側になるように重ね合わせ、この重ね合わせたフィルムの上下にロールを押しつけて、サンドイッチ状になったガラス繊維に組成物を含浸させることにより、本発明のシート状発泡性予備成形体(SMC)が得られる。このようにして得られた本発明のシート状発泡性予備成形体の厚さは、成形材料のガラス繊推への浸透性等の面から通常1〜10mmがよい。 Next, a predetermined amount of the foamable molding material is applied to each of the two carrier films of the present invention, and then (B) glass fiber is chopped with a cutter as a reinforcing fiber on the coating layer of the lower film. the send down. Next, an upper film having a coating layer thereon is superposed so that the coating layer is on the inside, and rolls are pressed on the top and bottom of the superposed film to impregnate the composition into sandwiched glass fibers. Thus, the sheet-like foamable preform (SMC) of the present invention is obtained. The thickness of the thus obtained sheet-like foamable preform of the present invention is usually preferably 1 to 10 mm from the viewpoint of the permeability of the molding material to the glass fiber.

次いで、前記のようにして得られたシート状発泡性予備成形体を、通常複数枚を用い、金型内に重ねてセットし、130℃〜160℃で発泡後の厚さに合わせて型締めを中断するか、5〜10MPaで型縮めした後、約1分後に発泡後の厚さに合わせて型を上昇するという条件で、3〜5分間程度加熱加圧して、発泡させることにより、ガラス繊維強化発泡プラスチック成形体が得られる。   Next, the sheet-like foamable preforms obtained as described above are usually set in a mold by using a plurality of sheets, and clamped according to the thickness after foaming at 130 ° C to 160 ° C. Or after shrinking the mold at 5 to 10 MPa, after about 1 minute, the mold is raised in accordance with the thickness after foaming. A fiber-reinforced foamed plastic molding is obtained.

表面材としては特に限定はなく、鋼板、木材板、プラスチック板等が選択できるが、リサイクル性の面で言えば、ガラス繊維強化プラスチックが好ましく、更に言えば、発泡プラスチック成形体に採用したと同様のプラスチック板を用いるのが好ましいことは言うまでもない。本発明においては、表面材としてプラスチック板を用い、芯材としての発泡プラスチック成形体が成形される際に同じモ−ルド内に表面材のプラスチック材料を投入して一体に成形することで繊維強化発泡複合パネルを得る。 The surface material is not particularly limited, and a steel plate, wood plate, plastic plate, etc. can be selected. However, in terms of recyclability, glass fiber reinforced plastic is preferable, and more specifically, the same as that adopted for the foamed plastic molded body. Needless to say, it is preferable to use a plastic plate. In the present invention, a plastic plate is used as a surface material , and when a foamed plastic molded body as a core material is formed, the plastic material of the surface material is injected into the same mold and molded integrally, thereby reinforcing the fiber. A foam composite panel is obtained.

「プラスチック成形体・1」
(1)発泡性予備成形体の作製
マトリックス樹脂(不飽和ポリエステル樹脂、数平均分子量:3000)100重量部、低収縮剤(ポリスチレンの35%スチレンモノマー溶液)25重量部、粘度調整剤(スチレンモノマー)10重量部、硬化剤(t−ブチルパーオキシベンゾエート)1重量部、重合禁止剤(パラベンゾキノン)0.05重量部、加熱膨張性マイクロカプセル(松本油脂社製「マイクロスフェアーFlO5D」)を加え、更に、内部離型剤(ステアリン酸亜鉛)5重量部、改質剤(粉末ポリエチレン)4重量部及び充填剤(重質炭酸カルシウム)140重量部を混練してコンパウンドベーストを調製した。次いで、これに増粘剤ペーストとして、増粘剤(酸化マグネシウム)1重量部と樹脂(酸価0の不飽和ポリエステル樹脂)4重量部、の混合物を加え、発泡性成形材料を作製した。尚、上記の不飽和ポリエステル樹脂(マトリックス樹脂)は、ジカルボン酸分として、テレフタル酸とマレイン酸の組合わせを、グリコール成分として、プロピレングリコールとネオベンチルグリコールとの組合わせを用い、エステル反応させて得られたものである。
"Plastic molded body 1"
(1) Preparation of foamable preform A matrix resin (unsaturated polyester resin, number average molecular weight: 3000) 100 parts by weight, a low shrinkage agent (35% styrene monomer solution of polystyrene), 25 parts by weight, a viscosity modifier (styrene monomer) ) 10 parts by weight, 1 part by weight of a curing agent (t-butylperoxybenzoate), 0.05 part by weight of a polymerization inhibitor (parabenzoquinone), a heat-expandable microcapsule (“Microsphere FlO5D” manufactured by Matsumoto Yushi Co., Ltd.) In addition, 5 parts by weight of an internal mold release agent (zinc stearate), 4 parts by weight of a modifier (powder polyethylene) and 140 parts by weight of a filler (heavy calcium carbonate) were kneaded to prepare a compound base. Subsequently, as a thickener paste, a mixture of 1 part by weight of a thickener (magnesium oxide) and 4 parts by weight of a resin (unsaturated polyester resin having an acid value of 0) was added to produce a foamable molding material. The unsaturated polyester resin (matrix resin) is subjected to an ester reaction using a combination of terephthalic acid and maleic acid as the dicarboxylic acid component, and a combination of propylene glycol and neoventyl glycol as the glycol component. It was obtained.

次に、前記増粘剤ベースト添加約30分後に、ガラスロービングをカッターでチョップしてなる長さ約25mmのガラス繊維を、発泡性予備成形体全量に対し30重量%の割合で加え、常法に従ってシート状発泡性予備成形体(SMC)を作製した。   Next, about 30 minutes after the addition of the thickener base, glass fiber having a length of about 25 mm obtained by chopping glass roving with a cutter was added at a ratio of 30% by weight with respect to the total amount of the foamable preform. Thus, a sheet-like foamable preform (SMC) was produced.

(2)繊維強化発泡プラスチック成形体の作製
上記(1)で得られたシート状発泡性予備成形体を100×100mmにカットし、これを全量が170gになるように、200×200mm平板金型内に積層セットしたのち、4mmのスペーサを介して、圧力約5MPaでプレス成形し、繊維強化発泡プラスチック成形体を作製した。
成形条件及び得られた成形体の物性を第1表に示す。
(2) Fabrication of fiber-reinforced foamed plastic molding The sheet-like foamable preform obtained in (1) above was cut into 100 × 100 mm, and this was 200 × 200 mm flat plate mold so that the total amount was 170 g. After being laminated and set inside, it was press-molded at a pressure of about 5 MPa through a 4 mm spacer to produce a fiber-reinforced foamed plastic molded body.
Table 1 shows the molding conditions and the physical properties of the obtained molded body.

「プラスチック成形体・2」
実施例1において、繊維強化発泡プラスチック成形体の作製時に、スペ−サ厚さを6mmとした以外は、実施例1と同様にして繊維強化発泡プラスチック成形体を作製した。
成形条件及び得られた成形体の物性を第1表に示す。
"Plastic molded body 2"
In Example 1, a fiber-reinforced foamed plastic molded body was manufactured in the same manner as in Example 1 except that the spacer thickness was 6 mm when the fiber-reinforced foamed plastic molded body was manufactured.
Table 1 shows the molding conditions and the physical properties of the obtained molded body.

「プラスチック成形体・3」
(1)発泡予備成形体の作製
実施例1(1)において、硬化剤としてt−ブチルパーオキシベンゾエートの代わりにジクミルパーオキシドを用い、かつ重合禁止剤のパラベンゾキノンの量を0.1重量部に変更した以外は、実施例1(1)と同様にしてシート状発泡性予備成形体(SMC)を作製した。
"Plastic molded body 3"
(1) Preparation of foam preform In Example 1 (1), dicumyl peroxide was used instead of t-butylperoxybenzoate as a curing agent, and the amount of parabenzoquinone as a polymerization inhibitor was 0.1 weight. A sheet-like foamable preform (SMC) was produced in the same manner as in Example 1 (1) except that the part was changed to the part.

(2)繊維強化発泡プラスチック成形体の作製
上記(1)で得られたシート状発泡性予備成形体を100×100mmにカットし、これを全量が170gになるように、200×200mm平板金型内に複数層セットしたのち、8mmのスペーサを介して、圧力約5MPaでプレス成形し、繊維強化発泡プラスチック成形体を作製した。
成形条件及び得られた成形体の物性を第1表に示す。
(2) Fabrication of fiber-reinforced foamed plastic molding The sheet-like foamable preform obtained in (1) above was cut into 100 × 100 mm, and this was 200 × 200 mm flat plate mold so that the total amount was 170 g. After setting a plurality of layers inside, press molding was performed at a pressure of about 5 MPa through an 8 mm spacer to prepare a fiber-reinforced foamed plastic molded body.
Table 1 shows the molding conditions and the physical properties of the obtained molded body.

「プラスチック成形体・4」
実施例1において、繊維強化発泡プラスチック成形体の作製時に、スペ−サを用いずに、かつ型締め45秒後に型を8mm開けた以外は、実施例1と同様にして繊維強化発泡プラスチック成形体を作製した。
成形条件及び得られた成形体の物性を第1表に示す。
"Plastic molded body 4"
In Example 1, a fiber-reinforced foamed plastic molded body was prepared in the same manner as in Example 1 except that a spacer was not used and the mold was opened 8 mm after clamping for 45 seconds in the production of the fiber-reinforced foamed plastic molded body. Was made.
Table 1 shows the molding conditions and the physical properties of the obtained molded body.

Figure 0004404618
Figure 0004404618

表1中、密度の測定はJIS K7222に準拠して行った。   In Table 1, the density was measured according to JIS K7222.

「複合パネルの製造・2」
表面材としてFRP板(厚さ4mm)を用い、プラスチック発泡成形体を得る金型の表面にセットし、発泡成形を行った。接着も十分であり、満足する複合体が得られた。
"Manufacture of composite panels 2"
An FRP plate (thickness 4 mm) was used as the surface material and set on the surface of a mold for obtaining a plastic foam molded article, and foam molding was performed. Adhesion was sufficient and a satisfactory composite was obtained.

「複合パネルの製造・3」
表面材としてプラスチック発泡成形体の発泡剤を配合していない未架橋シ−ト(SMC)を用いた。即ち、金型内にプラスチック発泡性シ−ト(SMC)とこの未架橋シ−トを積層し発泡した。得られた複合体は中央が発泡体であり、その表面に約4mm程度の非発泡層のFRP表面材が積層された複合体となった。
“Manufacture of composite panels 3”
As the surface material, an uncrosslinked sheet (SMC) in which a foaming agent for a plastic foam molded article was not blended was used. That is, a plastic foamable sheet (SMC) and this uncrosslinked sheet were laminated in a mold and foamed. The resulting composite was a foam at the center, and a composite in which a non-foamed FRP surface material of about 4 mm was laminated on the surface.

リサイクルの際、全体がマトリックス樹脂と同種とすれば、両者を剥離する作業を必要としないという優れた特徴がある。   In the case of recycling, if the whole is the same type as the matrix resin, there is an excellent feature that it is not necessary to remove both.

本発明による繊維強化発泡プラスチック成形体を用いた複合パネルは、特に芯材と表面材とをマトリックスを同じくすることによりリサイクル性に富み、しかも強度的にかつ耐久性に優れた複合パネルであって、断熱性、遮音性を付与したドアや間仕切りパネル等の各種のパネル構造として広く使用可能である。

The composite panel using the fiber reinforced foamed plastic molding according to the present invention is a composite panel which is particularly excellent in recyclability, strength and durability by using the same matrix for the core material and the surface material. In addition, it can be widely used as various panel structures such as doors and partition panels provided with heat insulation and sound insulation.

Claims (9)

(A)マトリックス樹脂として熱硬化性樹脂、(B)発泡性予備成形体全体に対して10〜70重量部含まれ、長さ3〜100mmのガラス繊維からなる補強用繊維、(C)(A)成分100重量部に対し、0.1〜50重量部含まれ、アクリロニトリル系共重合体からなるシェルに低沸点液状有機化合物を内包した加熱膨張性マイクロカプセルからなる発泡性予備成形体を得た後、該発泡性予備成形体を加熱硬化して繊維強化発泡プラスチックを用いたパネルの芯材を得るパネル芯材調製工程と、該パネルの芯材と表面材とを金型内にて同時に一体化する一体化工程とを有することを特徴とする繊維強化発泡複合パネルの製造方法。 (A) Thermosetting resin as a matrix resin, (B) Reinforcing fiber comprising 10 to 70 parts by weight of glass foam having a length of 3 to 100 mm, and (C) (A ) A foamable preform formed from heat-expandable microcapsules containing 0.1 to 50 parts by weight per 100 parts by weight of the component and encapsulating a low boiling liquid organic compound in a shell made of an acrylonitrile copolymer was obtained. after a panel core material preparation step of obtaining a core material of the panels with fiber-reinforced plastic foam by heat-curing the foamable preform, at the same time the core material and the surface material of the panel in the mold method for producing a fiber reinforced foam composite panel characterized by having a integrated process for integrated with. (A)マトリックス樹脂として熱硬化性樹脂、(B)発泡性予備成形体全体に対して10〜70重量部含まれ、長さ3〜100mmのガラス繊維からなる補強用繊維、(C)(A)成分100重量部に対し、0.1〜50重量部含まれ、アクリロニトリル系共重合体からなるシェルに低沸点液状有機化合物を内包した加熱膨張性マイクロカプセルからなる発泡性予備成形体を得る発泡性予備成形体調製工程と、該発泡性予備成形体と表面材とを金型内にて加熱硬化して、繊維強化発泡プラスチックを用いたパネルの芯材の形成とパネルの芯材と表面材との一体化とを同時に行う一体化工程と、を有することを特徴とする繊維強化発泡複合パネルの製造方法。  (A) Thermosetting resin as a matrix resin, (B) Reinforcing fiber comprising 10 to 70 parts by weight of glass foam having a length of 3 to 100 mm, and (C) (A Foam to obtain a foamable preform formed of heat-expandable microcapsules containing 0.1 to 50 parts by weight of 100 parts by weight of a component and encapsulating a low-boiling liquid organic compound in a shell made of an acrylonitrile copolymer Preform forming body, heat-curing the foamable preform and surface material in a mold, forming a panel core material using fiber-reinforced foamed plastic, and panel core material and surface material And an integration step of simultaneously performing integration with the fiber reinforced foam composite panel. 前記表面材が、繊維強化プラスチック板である請求項1又は請求項2に記載の繊維強化発泡複合パネルの製造方法。 The method for manufacturing a fiber-reinforced foam composite panel according to claim 1 or 2, wherein the surface material is a fiber-reinforced plastic plate . 前記表面材が、前記(A)熱硬化性樹脂製の表面材である請求項1又は請求項2記載の繊維強化発泡複合パネルの製造方法。 The method for producing a fiber-reinforced foam composite panel according to claim 1 or 2 , wherein the surface material is a surface material made of the thermosetting resin (A) . 前記(A)熱硬化性樹脂が、不飽和ポリエステル樹脂である請求項1乃至4のいずれか1項記載の繊維強化発泡複合パネルの製造方法。 The method for producing a fiber-reinforced foam composite panel according to any one of claims 1 to 4, wherein the (A) thermosetting resin is an unsaturated polyester resin . 前記表面材が、不飽和ポリエステル樹脂である請求項1乃至5のいずれか1項記載の繊維強化発泡複合パネルの製造方法。 The method for producing a fiber-reinforced foam composite panel according to any one of claims 1 to 5 , wherein the surface material is an unsaturated polyester resin . 前記パネル芯材調製工程が、前記(A)マトリックス樹脂として熱硬化性樹脂、前記(C)加熱膨張性マイクロカプセルを含有するコンパウンドペーストを調製し、さらに、増粘剤を混合して発泡性成形材料を得る工程と、  The panel core preparation step prepares a compound paste containing (A) a thermosetting resin as the matrix resin and (C) a heat-expandable microcapsule, and further mixes a thickener to form foam. Obtaining a material;
得られた発泡性成形材料を2枚のキャリヤーフイルム上にそれぞれ塗布して発泡性成形材料塗布層を形成し、発泡性成形材料塗布層が形成された2枚のキャリヤーフイルムの少なくとも一方の発泡性成形材料塗布層上に、前記(B)補強用繊維を配置する工程と、  The foamable molding material thus obtained is applied onto two carrier films to form a foamable molding material coating layer, and at least one of the two carrier films on which the foamable molding material coating layer is formed is foamable. Placing the reinforcing fiber (B) on the molding material coating layer;
2枚のキャリヤーフイルム上の発泡性成形材料塗布層同士を対向するように重ね合わせて圧着し、2枚のキャリヤーフイルム間に(B)補強用繊維を含む発泡性成形材料塗布層を有する発泡性予備成形体を形成する工程と、  A foamable molding material coating layer comprising (B) a foamable molding material coating layer including reinforcing fibers between two carrier films, wherein the foamable molding material coating layers on the two carrier films are overlapped and pressed against each other. Forming a preform, and
得られた発泡性予備成形体を加熱加圧して、発泡性成形材料塗布層に含まれる前記(C)加熱膨張性マイクロカプセルを発泡させて繊維強化発泡プラスチックを得る工程と、  Heating and pressurizing the obtained foamable preform, and foaming the (C) heat-expandable microcapsule contained in the foamable molding material coating layer to obtain a fiber-reinforced foamed plastic;
をこの順に有する請求項1に記載の繊維強化発泡複合パネルの製造方法。  The manufacturing method of the fiber reinforced foam composite panel of Claim 1 which has these in this order.
前記パネル芯材調製工程が、前記(A)マトリックス樹脂として熱硬化性樹脂、前記(B)補強用繊維、前記(C)加熱膨張性マイクロカプセルを含有するコンパウンドペーストを調製し、さらに、増粘剤を混合して発泡性成形材料を得る工程と、    The panel core material preparation step prepares a compound paste containing (A) a thermosetting resin as the matrix resin, (B) reinforcing fibers, and (C) heat-expandable microcapsules, and further increases the viscosity. Mixing the agent to obtain a foamable molding material;
得られた発泡性成形材料を用いて、発泡性予備成形体を形成する工程と、  Using the obtained foamable molding material, forming a foamable preform,
得られた発泡性予備成形体を加熱加圧して、発泡性成形材料塗布層に含まれる前記(C)加熱膨張性マイクロカプセルを発泡させて繊維強化発泡プラスチックを得る工程と、  Heating and pressurizing the obtained foamable preform, and foaming the (C) heat-expandable microcapsule contained in the foamable molding material coating layer to obtain a fiber-reinforced foamed plastic;
をこの順に有する請求項1に記載の発明繊維強化発泡複合パネルの製造方法。  The manufacturing method of the invention fiber reinforced foaming composite panel of Claim 1 which has these in this order.
前記繊維強化発泡プラスチックを得る工程と、前記一体化工程が、前記発泡性成形材料を得る工程により得られた発泡性予備成形体とパネルの表面材とを積層した後、加熱加圧する工程である請求項2に記載の繊維強化発泡複合パネルの製造方法。  The step of obtaining the fiber reinforced foamed plastic and the integration step are steps of heating and pressing after laminating the foamable preform and the surface material of the panel obtained by the step of obtaining the foamable molding material. The manufacturing method of the fiber reinforced foam composite panel of Claim 2.
JP2003422034A 2003-12-19 2003-12-19 Manufacturing method of fiber reinforced foam composite panel Expired - Fee Related JP4404618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422034A JP4404618B2 (en) 2003-12-19 2003-12-19 Manufacturing method of fiber reinforced foam composite panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422034A JP4404618B2 (en) 2003-12-19 2003-12-19 Manufacturing method of fiber reinforced foam composite panel

Publications (2)

Publication Number Publication Date
JP2005178167A JP2005178167A (en) 2005-07-07
JP4404618B2 true JP4404618B2 (en) 2010-01-27

Family

ID=34783027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422034A Expired - Fee Related JP4404618B2 (en) 2003-12-19 2003-12-19 Manufacturing method of fiber reinforced foam composite panel

Country Status (1)

Country Link
JP (1) JP4404618B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567980B2 (en) * 2004-01-26 2010-10-27 三洋化成工業株式会社 Thermally expandable microcapsules and hollow resin particles
JP5086156B2 (en) * 2008-04-01 2012-11-28 白金化成株式会社 Laminated sheet
JP5516245B2 (en) * 2009-09-30 2014-06-11 大日本印刷株式会社 Foam decorative sheet
KR101147909B1 (en) 2010-10-19 2012-05-24 한일이화주식회사 The multi layer for interior base of automobile
PL2804996T3 (en) * 2012-01-16 2017-03-31 Manifattura Del Seveso Spa Multifunctional structure and method for its manufacture
US20190084268A1 (en) * 2016-06-03 2019-03-21 Sekisui Chemical Co., Ltd. Sheet and rod-shaped member
CN113858728B (en) * 2021-10-18 2022-11-22 长春城际轨道客车配件有限公司 3D woven composite floor and manufacturing process thereof

Also Published As

Publication number Publication date
JP2005178167A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US11590715B2 (en) Patterned composite product
US3707434A (en) Rigidified resinous laminate
CA1333240C (en) Foam composite and method of forming same
KR20160006266A (en) Method of forming composite products by pressure, related products and apparatus
GB2464541A (en) Laminate of porous material, curable material and veneer
JPWO2016010089A1 (en) COMPOSITE MOLDED ARTICLE, LAMINATE, AND METHOD FOR PRODUCING COMPOSITE MOLDED ARTICLE
EP2209629B1 (en) Process to improve the adhesion between thermosetting laminate and thermoplastic shell
JP4404618B2 (en) Manufacturing method of fiber reinforced foam composite panel
EP1463773A1 (en) Method of making a finished product
JPH05193063A (en) Laminated material and its manufacture
JP4230789B2 (en) Foamable preform, fiber-reinforced foamed plastic molding using the same, and method for producing the same
JP4505771B2 (en) Molding material, manufacturing method of fiber reinforced plastic molding and fiber reinforced plastic molding
JP3294809B2 (en) Lightweight laminate
EP0727304B1 (en) Method of making a structural element and the element so made
JP2002302914A (en) Panel
JPS5855906B2 (en) Manufacturing method of sandwich structure
JPS6221010B2 (en)
JP2002331523A (en) Fiber-reinforced resin molding and its production method
JP2002144334A (en) Sheet-like preparatory molded body, method for manufacturing molded body using that and molded body
JPH09174698A (en) Molding method for unsaturated polyester resin sheet molding compound and molding
TW202112959A (en) Eco-friendly polyester molding composition and manufacturing method of plastic board
JPH10166486A (en) Fiber reinforced resin molded product and its production
JP2001026760A (en) Woody board and binder therefor
JP2004197401A (en) Panel
US20070277462A1 (en) Composite Board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees