JPS6370590A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS6370590A
JPS6370590A JP61216502A JP21650286A JPS6370590A JP S6370590 A JPS6370590 A JP S6370590A JP 61216502 A JP61216502 A JP 61216502A JP 21650286 A JP21650286 A JP 21650286A JP S6370590 A JPS6370590 A JP S6370590A
Authority
JP
Japan
Prior art keywords
approximately
doped
diffraction grating
active layer
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61216502A
Other languages
Japanese (ja)
Inventor
Yoshihiro Koizumi
善裕 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61216502A priority Critical patent/JPS6370590A/en
Publication of JPS6370590A publication Critical patent/JPS6370590A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1057Comprising an active region having a varying composition or cross-section in a specific direction varying composition along the optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form gain distribution in the axial direction in conformity with the shape of the field distribution of a dominant mode, and to improve the yield of a single axial mode operating element by changing the composition of an active layer, a diffraction grating of which is shaped in a laser resonator, in a stepped manner or continuously in the direction of the resonator. CONSTITUTION:A diffraction grating 10 having approximately 1000Angstrom depth and a period of 2000Angstrom is formed onto an n-type InP substrate 1 (SN-doped and carrier concentration of 1X10<18>cm<-3>) having a (100) face azimuth. An n-type InGaAsP guide layer 2 (approximately 0.15mum film thickness, Sn-doped and carrier concentration of 7X10<17>cm<-3>) is grown on the diffraction grating and an active layer 12 having a band- gap equivalent wavelength lambdag=1.4mum extending over 100mum of the central section of a DFB laser having 300mum cavity length, and active layers 11 and 13 having lambdag=1.33mum (non-doped and approximately 0.1mum film thickness) are grown extending over 100mum sections of both sides of the active layer 12 and a p-type InP clad layer 4 (Zn-doped, carrier concentration of 1X10<18>cm<-3> and 0.7mum film thickness) is grown. Two parallel grooves in 3mum depth and approximately 8mum width are shaped, holding a mesa stripe in approximately 1.5mum width in the (110) direction, thus forming double channel planner buried type structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバ通信システム用光源などに用いられ
る分布(?TI還型半型半導体レーザするものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a distributed half-type semiconductor laser used as a light source for an optical fiber communication system.

〔従来の技術〕[Conventional technology]

レーザ共振器内に回折格子を備えた分布帰還型半導体レ
ーザ(Distributed Feed Back 
La5erDiode;以下DFBレーザと称す)は、
単一軸モード発振可能な光源であるため、近年急速に開
発が進められ、長距離・大容量光通信用光源光計測器用
光源として実用化されつつある。
Distributed Feed Back semiconductor laser with a diffraction grating inside the laser cavity
La5erDiode (hereinafter referred to as DFB laser) is
Because it is a light source capable of single-axis mode oscillation, it has been rapidly developed in recent years and is being put into practical use as a light source for long-distance, large-capacity optical communications and for optical measuring instruments.

しかし、このDFBレーザのDFBレーザチップをウェ
ハから切り出した場合、安定に単一軸モード動作するこ
とは希で殆んどの素子は、多軸モード発振、モード飛び
を引起こしている。
However, when a DFB laser chip of this DFB laser is cut out from a wafer, stable single-axis mode operation is rare, and most of the elements cause multi-axis mode oscillation or mode skipping.

例えば、第2図(a)、(b)に示すようなりFBレー
ザにおいては、n −1nP基板1上に回折格子10が
設けられ、その上にn −1nGaAsPガイドAs上
、活性層と、p −1nP層4と、p−1nGaAsP
層5とが設けられ、素子の両端に電極6.7が設けられ
ている。このDFBレーザは、2000〜2500人の
非常に短かい周期の共振器内回折格子10が第2図(b
)のように、端面において1周期のどの位置で切るかを
特定することが不可能であり、−万端面の回折格子10
の位置により主モードと副モードの発振しきい値利得差
(ΔαthL)が異なるためである。また、主モードと
副モードの電界分布形状も、回折格子が端面においてど
の位置で切れるかによって大きく依存する。
For example, in an FB laser as shown in FIGS. 2(a) and 2(b), a diffraction grating 10 is provided on an n -1nP substrate 1, an active layer is formed on an n -1nGaAsP guide As, and a p -1nP layer 4 and p-1nGaAsP
A layer 5 is provided, and electrodes 6.7 are provided at both ends of the element. This DFB laser has 2,000 to 2,500 very short period intracavity diffraction gratings 10 as shown in Fig. 2 (b).
), it is impossible to specify at which position in one period on the end face the diffraction grating 10 of the end face is cut.
This is because the oscillation threshold gain difference (ΔαthL) between the main mode and the submode differs depending on the position. Further, the electric field distribution shapes of the main mode and the sub-mode also greatly depend on where the diffraction grating is cut at the end face.

この主モードと副モードの電界分布形状を計算した結果
の一例を、第3図及び第4図の電界強度分布図に示す。
An example of the results of calculating the electric field distribution shapes of the main mode and the submode is shown in the electric field intensity distribution diagrams of FIGS. 3 and 4.

これらは、前面(左側)に10%ARコードを施した素
子の回折格子が、前面において切れた場合(第3図)お
よび前面が端面場合(第4図)を示し、実線は主モード
の電界強度分布、破線は副モードの電界強度分布を示し
ている。これら図のように、副モード発振を生ずること
があった。
These diagrams show the case where the diffraction grating of an element with a 10% AR code on the front side (left side) is cut at the front side (Figure 3) and when the front side is an end face (Figure 4), and the solid line is the electric field of the main mode. The intensity distribution, the broken line indicates the electric field intensity distribution of the secondary mode. As shown in these figures, sub-mode oscillation may occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これら図のように従来のDFBレーザでは、軸方向の利
得分布が活性層内で一様に与えられるため、共振器内の
端面位相によっては、主モードばかりではなく、副モー
ドの電界分布に見合った利得分布が容易に与えられ、副
モード発振をうながす可能性があり、多軸モード発振を
行う素子が多く、歩留りが悪いという問題があった。
As shown in these figures, in conventional DFB lasers, the gain distribution in the axial direction is uniformly given within the active layer, so depending on the end facet phase within the resonator, the electric field distribution of not only the main mode but also the sub-mode may be adjusted. There is a problem in that the gain distribution is easily given, which may encourage sub-mode oscillation, and many elements perform multi-axis mode oscillation, resulting in poor yield.

本発明の目的は、これらの問題を解決し、共振器軸方向
に組成(バンドギャップ)の異なる活性層をつくり、主
モードの電界分布に見合った利得分布を形成することに
より、単一軸モード発振する素子の歩留りを上げたDF
Bレーザを提供することにある。
The purpose of the present invention is to solve these problems, create active layers with different compositions (band gaps) in the direction of the cavity axis, and create a gain distribution commensurate with the electric field distribution of the main mode, thereby achieving single-axis mode oscillation. DF that increases the yield of devices that
The objective is to provide a B laser.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のDFBレーザの構成は、レーザ共振器内に回折
格子を設けた活性層の組成が、その共振器方向に階段状
に、あるいは連続的に変化したように構成されることを
特徴とする。
The configuration of the DFB laser of the present invention is characterized in that the composition of the active layer in which a diffraction grating is provided in the laser cavity changes stepwise or continuously in the direction of the cavity. .

〔作用〕[Effect]

主−副モードの電界分布は、第3図、第4図に示すよう
に、回折格子10の端面の位相に大きく依存する。この
主−副モードの共振器内電界分布が似かよった時は、注
入キャリアが主モードの電界分布形成に寄与すると、副
モード発振に必要な電界分布が形成され難くなり、副モ
ード発振は抑えられやすい、一方、主−副モードの共振
器内電界分布が大きく異なる場合には、主モードの電界
分布に寄与していないキャリアが副モードの電界分布形
成に必要な利得を与える。したがって、主モードな電界
分布に見合った利得分布を与えれば、回折格子の端面位
相の切れ方によらず、安定した単一時モード発振が得ら
れる。
As shown in FIGS. 3 and 4, the electric field distribution of the main-secondary modes largely depends on the phase of the end face of the diffraction grating 10. When the electric field distributions in the resonator for the main and secondary modes are similar, when the injected carriers contribute to the formation of the electric field distribution in the main mode, it becomes difficult to form the electric field distribution necessary for secondary mode oscillation, and the secondary mode oscillation is suppressed. On the other hand, when the electric field distribution in the resonator between the main mode and the sub-mode differs greatly, carriers that do not contribute to the electric field distribution in the main mode provide the gain necessary for forming the electric field distribution in the sub-mode. Therefore, by providing a gain distribution commensurate with the main mode electric field distribution, stable single mode oscillation can be obtained regardless of how the end face phase of the diffraction grating is cut.

従来、DFBレーザの共振器内での利得分布を制御する
方法としては、電流分布を電極の分割化等により変えて
やる方法等が考えられていた。しかし、この電流密度が
変わると、利得が変わるばかりでなく、屈折率も注入キ
ャリアのプラズマ効果により変化するなめ、軸方向の光
波の伝搬定数が不均一になる。その結果、単一軸モード
選択性を悪くし、必ずしも利得分布制御の効果が期待さ
れるものではなかった。
Conventionally, as a method of controlling the gain distribution within the resonator of a DFB laser, a method of changing the current distribution by dividing electrodes or the like has been considered. However, when this current density changes, not only does the gain change, but also the refractive index changes due to the plasma effect of the injected carriers, making the propagation constant of light waves in the axial direction non-uniform. As a result, the single-axis mode selectivity deteriorated, and the effect of gain distribution control was not necessarily expected.

一方、本発明の構成によれば、注入電流密度が軸方向で
一定であるためキャリアのプラズマ効果による伝搬定数
の変化はない。
On the other hand, according to the configuration of the present invention, since the injection current density is constant in the axial direction, there is no change in the propagation constant due to the plasma effect of carriers.

また、第5図に示すように、組成の若干の違いによるバ
ンドギャップ位相波長付近の屈折率差はほとんどなく、
屈折率は軸方向で一定と考えることができる。また、相
当波長における屈折率である。バンドギャップ相当波長
より短波長の光に対しては、バンドギャップ相当波長に
おける屈折率にほぼ等しいと考えることができる。
Furthermore, as shown in Figure 5, there is almost no difference in refractive index near the bandgap phase wavelength due to slight differences in composition.
The refractive index can be considered to be constant in the axial direction. It is also the refractive index at the corresponding wavelength. For light with a wavelength shorter than the bandgap equivalent wavelength, it can be considered that the refractive index is approximately equal to the refractive index at the bandgap equivalent wavelength.

さらに、組成の変化による利得定数の変化の一例を第6
図に示す。このように組成を変えることにより、利得定
数曲線が大きく変わるため、組成の制御により利得分布
のみを制御できることがわかる。
Furthermore, an example of a change in the gain constant due to a change in composition is shown in the sixth section.
As shown in the figure. By changing the composition in this way, the gain constant curve changes significantly, so it can be seen that only the gain distribution can be controlled by controlling the composition.

〔実施例〕〔Example〕

以下図面により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例の断面図で、Ijμm帯DF
Bレーザに組成の異なる活性層を設けたものを示してい
る。本実施例は、まず(1,O。
FIG. 1 is a cross-sectional view of one embodiment of the present invention, in which the Ijμm band DF
This figure shows a B laser provided with active layers having different compositions. In this example, first, (1, O.

O)面方位のn形1nP基板1(Snドープ、キヤ!J
 T 濃度I X 1018cm−3> )上に深さ約
1000人、周期が2000人の回折格子10をHe−
Cdレーザによる干渉露光法等により形成する。このよ
うな基板1の上にn形1nGaAsPガイド層2(膜厚
的0.15μm、Soドープ、キャリア濃度7×10 
”cm−3)を液相成長法等により成長させる。
O) n-type 1nP substrate 1 with plane orientation (Sn-doped, Kya!J
He-
It is formed by an interference exposure method using a Cd laser. On such a substrate 1, an n-type 1nGaAsP guide layer 2 (film thickness 0.15 μm, So doped, carrier concentration 7×10
"cm-3)" is grown by a liquid phase growth method or the like.

次に、共振器長300μmのDFBレーザの中央部の1
00μmの長さにわたり、バンドギャップ相当波長λ、
=1.4μmの活性112を液相成長法等により選択的
に成長させる。その後、この活性112の両脇の100
μmの部分に、バンドギャップ相当波長λ□=1j3μ
mの活性層11,13を選択的に成長させる(これら活
性層は全てノンドープ、膜厚的0.1μm)。
Next, 1 in the center of the DFB laser with a cavity length of 300 μm.
Over a length of 00 μm, the bandgap equivalent wavelength λ,
= 1.4 μm active layer 112 is selectively grown by a liquid phase growth method or the like. After that, 100 on both sides of this active 112
In the μm part, the bandgap equivalent wavelength λ□=1j3μ
m active layers 11 and 13 are selectively grown (all of these active layers are non-doped and have a film thickness of 0.1 μm).

更に、p形1nPクラッド層4(Znドープ、キャリア
濃度I X 1018.−3膜厚0.7μm)を成長さ
せる0次に、(110)方向に深さ3μm幅約8μmの
2本の平行な溝を幅約1.5μmのメサストライプを挟
んで形成し、二重チャネルブレーナ埋め込み形構造を形
成してレーザ作製を完了する。
Furthermore, a p-type 1nP cladding layer 4 (Zn-doped, carrier concentration I x 1018.-3, film thickness 0.7 μm) is grown in the 0th order, and two parallel layers with a depth of 3 μm and a width of about 8 μm are grown in the (110) direction. Grooves are formed across mesa stripes approximately 1.5 μm wide to form a double channel brainer buried structure to complete the laser fabrication.

(水戸等による昭和57年度電子通信学会総合全国大会
の予稿集857参照)。
(See Proceedings of the 1985 National Conference of the Institute of Electronics and Communication Engineers by Mito et al. 857).

このように作製したレーザに、電流を注入すると、軸方
向に屈折率変化をほとんど生ずることなく利得分布を軸
方向で大きく制御することができる。
When a current is injected into the laser thus fabricated, the gain distribution can be greatly controlled in the axial direction without causing almost any change in the refractive index in the axial direction.

第6図はバンドギャップ相当波長λ、=]j3μm及び
λ、=1.4μmの4元混晶の利得定数の波長依存特性
図を示す、この場合、注入キャリア濃度は2 X 10
 l8crs−’となっている0回折格子の周期に相当
するブラッグ波長1jμmにおいて、第1図中の中央部
の活性層12(^、=1.4μrn )は利得定数が約
75cm−’であり、また両脇の活性層11.13(λ
、=lj3μm)は利得定数が約30cta−’となっ
ており、軸方向に大きな利得分布が設けられることがわ
かる。
Figure 6 shows the wavelength dependence characteristics of the gain constant of a quaternary mixed crystal with bandgap equivalent wavelengths λ, = ]j3 μm and λ, = 1.4 μm. In this case, the injected carrier concentration is 2 × 10
At a Bragg wavelength of 1 j μm, which corresponds to the period of the 0 diffraction grating, which is 18 crs-', the active layer 12 (^, = 1.4 μrn) in the center of FIG. 1 has a gain constant of about 75 cm-'. In addition, the active layers on both sides 11.13 (λ
, =lj3μm) has a gain constant of about 30cta-', and it can be seen that a large gain distribution is provided in the axial direction.

一方、InPに格子整合のとれたGa1nAsPの波長
に対する屈折率変化は、第5図に示されるバンドギャッ
プ相当波長よりも短波長側の屈折率は、図中の丸印の点
で与えられると考えてよく、それによると、第1図にお
ける中央部の活性層12(λ、=1.4.czm>の屈
折率、両脇の活性N11゜13(λ□−1,33μm)
の屈折率共に、λ=1.3μmの波長の光に対して屈折
率n;3.54であり、屈折率の軸方向の変動はほとん
ど無視できる。
On the other hand, regarding the change in refractive index with respect to wavelength of Ga1nAsP, which is lattice-matched to InP, the refractive index on the shorter wavelength side than the bandgap equivalent wavelength shown in Figure 5 is considered to be given by the circled point in the figure. According to this, the refractive index of the active layer 12 (λ, = 1.4.czm) in the center in FIG.
The refractive index n is 3.54 for light having a wavelength of λ=1.3 μm, and the fluctuation in the refractive index in the axial direction can be almost ignored.

〔発明の効果〕〔Effect of the invention〕

DFBレーザは、回折格子の端面位相の切れ方で、主−
副モードの電界分布の形状が大きく変わるが、回折格子
の端面位相が任意の個所で(ランダムに)切れたとして
もその約8割が、主モードが単峰性をもち、はぼ中央に
山のピークをもつ形状であることが計算により示されて
いる。従って、本発明の構成により、軸方向に異なる組
成の活性層をつくりつけ、軸方向の利得分布を主モード
の電界分布形状に合わせて形成できれば、単一軸モード
動作する素子の歩留りを大幅に改善することができる。
DFB lasers have main -
The shape of the electric field distribution in the secondary mode changes greatly, but even if the end face phase of the diffraction grating is cut off at an arbitrary point (randomly), the main mode will be unimodal in about 80% of cases, with a peak at the center. Calculations have shown that the shape has a peak of . Therefore, with the configuration of the present invention, if active layers with different compositions are created in the axial direction and the axial gain distribution can be formed to match the electric field distribution shape of the main mode, the yield of devices operating in a single axial mode can be greatly improved. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造を示す断面図、第2図
(a)、(b)は従来のDFBレーザの構造を示す断面
図およびその端面における回折格子の位相状態を例示し
た拡大図、第3図、第4図は前面(左側)に10%AR
コートを施した素後面がα・−一πで切れた場合の共振
器内の電界強度分布図、第5図はInPに格子整合のと
れたGa1nAsPの波長に対する屈折率変化特性図、
第6図はバンドギャップ相当波長λ、−1j3μm及び
λ、=、1.4μmの組成の4元混晶における利得定数
の波長依存特性図である。 1−−− n −1nP基板、2−n −1nGaAs
Pガイド層、11・・・バンドギャップ相当波長λ、=
1.33μmを有する組成の活性層、12・・・バンド
ギャップ相当波長λ、=1.4μmを有する組成の活性
層、13・・・バンドギャップ相当波長λg = 1j
3ノz mを有する組成の活性層、4・・・p −1n
Pクラッド層、5・・・p −1nGaAsPキャップ
層、6,7・・・電極。 笥万1r而頗             後か囁紺6ム
7ひpns才を青さ
Fig. 1 is a cross-sectional view showing the structure of an embodiment of the present invention, and Figs. 2 (a) and (b) are cross-sectional views showing the structure of a conventional DFB laser and the phase state of the diffraction grating at the end face thereof. Enlarged views, Figures 3 and 4 have 10% AR on the front (left side)
An electric field strength distribution diagram inside the resonator when the coated rear surface is cut at α·-1π, FIG. 5 is a diagram of refractive index change characteristics with respect to wavelength of Ga1nAsP that is lattice-matched to InP,
FIG. 6 is a wavelength dependence characteristic diagram of the gain constant in a quaternary mixed crystal having a composition of bandgap equivalent wavelengths λ, -1j3 μm and λ, = 1.4 μm. 1----n-1nP substrate, 2-n-1nGaAs
P guide layer, 11...Band gap equivalent wavelength λ, =
Active layer having a composition having a wavelength of 1.33 μm, 12... Active layer having a composition having a band gap equivalent wavelength λ, = 1.4 μm, 13... Band gap equivalent wavelength λg = 1j
Active layer of composition having 3 noz m, 4...p -1n
P cladding layer, 5...p-1nGaAsP cap layer, 6,7... electrode. After the first year of the year, the age of 6 years and 7 years of age is blue.

Claims (1)

【特許請求の範囲】[Claims] レーザ共振器内に回折格子を設けた活性層の組成が、そ
の共振器方向に階段状に、あるいは連続的に変化したよ
うに構成されることを特徴とする分布帰還型半導体レー
ザ。
A distributed feedback semiconductor laser characterized in that the composition of an active layer in which a diffraction grating is provided in a laser cavity changes stepwise or continuously in the direction of the cavity.
JP61216502A 1986-09-12 1986-09-12 Distributed feedback type semiconductor laser Pending JPS6370590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216502A JPS6370590A (en) 1986-09-12 1986-09-12 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216502A JPS6370590A (en) 1986-09-12 1986-09-12 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6370590A true JPS6370590A (en) 1988-03-30

Family

ID=16689431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216502A Pending JPS6370590A (en) 1986-09-12 1986-09-12 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6370590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037343A2 (en) * 1999-03-11 2000-09-20 Nec Corporation Distributed feedback semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037343A2 (en) * 1999-03-11 2000-09-20 Nec Corporation Distributed feedback semiconductor laser
EP1037343A3 (en) * 1999-03-11 2002-12-04 Nec Corporation Distributed feedback semiconductor laser

Similar Documents

Publication Publication Date Title
EP0836255B1 (en) Laser diode array and fabrication method thereof
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
JPH10308556A (en) Semiconductor optical element and its manufacture
JP2005510090A (en) Surface emitting DFB laser structure for broadband communication systems and arrangement of this structure
US20110091147A1 (en) Integrated semiconductor optical device
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP2003046190A (en) Semiconductor laser
Kaminow et al. Lateral confinement InGaAsP superluminescent diode at 1.3 µm
US5321716A (en) Distributed Feedback semiconductor laser with controlled phase shift
JPS60124887A (en) Distributed feedback type semiconductor laser
EP1168541B1 (en) High power single mode laser and method of fabrication
JP3166836B2 (en) Semiconductor laser
JP2950302B2 (en) Semiconductor laser
JP2002324948A (en) Semiconductor laser and laser module
JPS6328520B2 (en)
CN115280609A (en) Optical device
JPS62173786A (en) Distributed feedback type semiconductor laser
JPS6370590A (en) Distributed feedback type semiconductor laser
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
US6707835B2 (en) Process for producing semiconductor laser element including S-ARROW structure formed by etching through mask having pair of parallel openings
Arimoto et al. A wavelength-tunable short-cavity DBR laser with active distributed Bragg reflector
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JPS6195592A (en) Integrated distribution bragg&#39;s reflection type semiconductor laser
JPH02252284A (en) Semiconductor laser array and manufacture thereof
JP2004128372A (en) Distribution feedback semiconductor laser device