JPS6370517A - Formation of electrode - Google Patents

Formation of electrode

Info

Publication number
JPS6370517A
JPS6370517A JP61213973A JP21397386A JPS6370517A JP S6370517 A JPS6370517 A JP S6370517A JP 61213973 A JP61213973 A JP 61213973A JP 21397386 A JP21397386 A JP 21397386A JP S6370517 A JPS6370517 A JP S6370517A
Authority
JP
Japan
Prior art keywords
conductive
organic
substrate
film
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213973A
Other languages
Japanese (ja)
Inventor
Kunihiro Sakai
酒井 邦裕
Toshihiko Miyazaki
俊彦 宮崎
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Yoshinori Tomita
佳紀 富田
Toshiaki Kimura
木村 稔章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61213973A priority Critical patent/JPS6370517A/en
Priority to US07/099,345 priority patent/US4929524A/en
Priority to DE3789585T priority patent/DE3789585T2/en
Priority to EP87308072A priority patent/EP0260152B1/en
Publication of JPS6370517A publication Critical patent/JPS6370517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily form a highly accurate and fine external electrode by implanting or diffusing a conductive impurity into a desired portion of the conductive layer of an electric element having organic conductive layers, and without degrading the properties of these layers. CONSTITUTION:A conductive impurity 9 is implanted or diffused into a desired region 8 of organic conductive layers or accumulated films 5 of monomolecular films of organic charge transfer complex on a substrate 2. As the conductive impurity to be used, a material having good diffusion properties is preferable, and for instance, metals such as gold, silver, copper, aluminium, chrome, nickel or conductive oxides of various metals are usefull. These conductive impurities are implanted or diffused into the organic conductive layers. As one of the suitable methods for diffusion, there is a vacuum deposition process of metals, and for instance, such metals as mentioned above are vapor-deposited with the evaporation source and the substrate being relatively near in distance. Metal atoms heated at the evaporation time reache the substrate while maintaining a high temperature, and are implanted into the interior of the organic conductive layers 5 thereby forming a conductive region or an electrode 8 in the organic conductive layeres 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気素子の電極形成方法に関し、更に詳しくは
有機導電層を有する電気素子の所望の部分に容易に外部
電極を形成できる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming electrodes of an electric element, and more particularly to a method for easily forming external electrodes on desired portions of an electric element having an organic conductive layer.

(従来の技術) 従来、種々の半導体素子等の電気素子が知られており、
これらの電気素子の機能部分の材料としては、殆どの場
合に無機物が使用されている。しかしながら、これらの
半導体素子について益々高鯖度化、高微細化、高集積化
が要求される結果、半導体素子等の機能部分の材料とし
て導電性有機物の利用が広く検討されている。
(Prior Art) Various electrical elements such as semiconductor elements have been known in the past.
In most cases, inorganic materials are used as materials for the functional parts of these electrical elements. However, as these semiconductor devices are increasingly required to have higher density, higher fineness, and higher integration, the use of conductive organic substances as materials for functional parts of semiconductor devices and the like is being widely considered.

導電性有機物の1種としては打機電荷移動錯体が知られ
ており、このような有機電荷移動錯体を任、αの基板上
に均一な膜として形成する方法としては、ラングミュア
らが提案したラングミュア・プロジェット方法(LB法
)が知られている。
A charge transfer complex is known as a type of conductive organic material, and a method for forming such an organic charge transfer complex as a uniform film on a substrate is the Langmuir method proposed by Langmuir et al.・Prodget method (LB method) is known.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機電荷移動錯体の単分子膜またはその累
積膜を基板上に容易に形成することができ、且つこのよ
うな有機物として導電性を有する有機物を使用すること
によって任意の基板上にこれら導電性有機物の単分子膜
または累積膜からなる導電性の?]膜を形成することが
できる。
According to this LB method, a monomolecular film of an organic charge transfer complex having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate, and By using organic materials that have conductivity as a conductive material, which consists of a monomolecular film or a cumulative film of these conductive organic materials on any substrate? ] A film can be formed.

このように形成された有機導電層は、電気的絶縁性の高
い疎水性部位と導電性の高い親水性部位とが平面状に多
層に重なり合っていることから、膜の水平方向では良好
な導電性を示し、且つ膜に垂直な方向では高い絶縁性を
有するという導電性の異方性という特異な性質を有する
ものである。
The organic conductive layer formed in this way has good electrical conductivity in the horizontal direction of the film because the hydrophobic regions with high electrical insulation and the hydrophilic regions with high conductivity overlap in a planar manner. It has the unique property of conductive anisotropy, which shows high insulating properties in the direction perpendicular to the film.

(発明が解決しようとしている問題点)前述の種々の電
気素子において、それぞれ必要な外部電極を形成する方
法としては、電気素子の機能部分が無機物である場合に
は、これらの無機物は多くの場合に全方向に対して導電
性を有し、すなわち等方性材料であるので、その表面に
容易に電極を形成することができるが、上記の如き有機
電荷移動錯体による単分子膜またはその累積膜が導電層
となっている電気素子の場合には、これらの導電層は垂
直方向に絶縁層と導電層とが重なり合っているため、表
面に電極用の導電領域を形成するのみでは層を形成して
いる絶縁層の存在のためにオーミックあるいはショット
キー接合の形成が困難であり、有効な外部電極は形成し
得ないものである。
(Problem to be Solved by the Invention) In the various electric devices described above, the method for forming the necessary external electrodes is that when the functional parts of the electric device are made of inorganic materials, these inorganic materials are often Since it has conductivity in all directions, that is, it is an isotropic material, electrodes can be easily formed on its surface. In the case of electrical elements in which the conductive layer is a conductive layer, an insulating layer and a conductive layer overlap vertically, so simply forming a conductive region for an electrode on the surface is not enough to form a layer. Due to the presence of the insulating layer, it is difficult to form an ohmic or Schottky junction, and an effective external electrode cannot be formed.

例えば、外部電極を形成するためには単分子膜またはそ
の累積膜の所望部分を垂直方向に破壊あるいは剥離し、
その中に導電体を充填することが必要である。このよう
な方法では層が有機物であり、且つ極めて微細構造であ
るため、単分子膜またはその累積膜を正確に破壊するこ
とは極めて困難である。従って形成される電極間距離や
電極面積という′1気的特性を大きく左右するパラメー
ターを結反よく制御することができず、均一な品質の電
気素子となし得ないという問題が生じている。特に、電
気素子が高密度、高集積度になればなる程微細加工が困
難となり、そのために有機電荷移動錯体の四分予成また
は累81膜からなる層の慢れた特性を生かすことができ
ないという問題がある。
For example, to form an external electrode, a desired portion of a monomolecular film or its cumulative film is destroyed or peeled off in the vertical direction;
It is necessary to fill it with a conductor. In such a method, since the layer is an organic material and has an extremely fine structure, it is extremely difficult to accurately destroy a monomolecular film or a cumulative film thereof. Therefore, it is not possible to effectively control the parameters such as the distance between the formed electrodes and the area of the electrodes, which greatly affect the physical properties, resulting in the problem that it is not possible to obtain an electrical element of uniform quality. In particular, the higher the density and integration of electrical elements, the more difficult it becomes to perform microfabrication, making it impossible to take advantage of the superior properties of layers consisting of quarter-preformed or stacked films of organic charge transfer complexes. There is a problem.

従って、上記の如き導電性有機物からなる機能部分を有
する電気素子に、これらの層の特性を損なうことなく高
錆度且つ微細な外部電極を容易に形成する方法が要望さ
れている。
Therefore, there is a need for a method for easily forming fine external electrodes with a high degree of rust without impairing the characteristics of these layers on electrical elements having functional parts made of conductive organic materials as described above.

(問題点を解決するための手段) 本発明者は上述の如き従来技術の要望に応えるべく鋭意
研究の結果、導電性有機物からなる導電層の蹟密性やそ
れらの特性を何ら損なうことなく容易に外部電極を形成
し得る方法を見い出した。
(Means for Solving the Problems) As a result of intensive research in response to the above-mentioned demands of the prior art, the present inventor has found that it is possible to easily solve the problem without impairing the density of a conductive layer made of a conductive organic substance or its characteristics. We have discovered a method for forming external electrodes.

すなわち、本発明は、有機導電層を有する電気素子の導
電層の所望の箇所に導電性不純物を注入あるいは拡散さ
せることを特徴とする電極形成方法である。
That is, the present invention is an electrode forming method characterized by injecting or diffusing a conductive impurity into a desired location of a conductive layer of an electric element having an organic conductive layer.

次に本発明を更に詳細に説明する。Next, the present invention will be explained in more detail.

本発明において電極を形成する電気素子は、一般的には
任意の基板上に導電性の有機層を有する電気素子であり
、特に本発明方法が効果的である電気素子は、任意の基
板上に有機電荷移動錯体の四分予成またはその累積膜を
形成して得られる電気素子である。
The electric element forming the electrode in the present invention is generally an electric element having a conductive organic layer on any substrate, and the electric element for which the method of the present invention is particularly effective can be formed on any substrate. This is an electric element obtained by forming a quarter-preformed organic charge transfer complex or a cumulative film thereof.

本発明で有機導電層の形成に使用する電荷移動錯体とは
、1分子内に親水性部位、疎水性部位および導電性部位
を有する化合物である。
The charge transfer complex used to form the organic conductive layer in the present invention is a compound having a hydrophilic site, a hydrophobic site, and a conductive site within one molecule.

このような条件を有する従来公知の電荷移動錯体はいず
れも本発明において使用できるが、本発明において好適
な化合物は、親水性部位が第4級アンモニウム基であり
、疎水性部位がアルキル基、アリール基、アルキルアリ
ール基等の疎水性炭化水素基であり、導電性部位がテト
ラシアノキノジメタン構造である電荷移動錯体である。
Any of the conventionally known charge transfer complexes having such conditions can be used in the present invention, but a compound suitable for the present invention has a hydrophilic moiety having a quaternary ammonium group and a hydrophobic moiety having an alkyl group or an aryl group. It is a charge transfer complex in which the electroconductive part is a hydrophobic hydrocarbon group such as a group or an alkylaryl group, and the conductive part is a tetracyanoquinodimethane structure.

上記電荷移動錯体として好ましい化合物は下記一般式C
I)で表わされる。
A preferable compound as the charge transfer complex is the following general formula C.
I).

[A]  [TCNQ]nX、(I) 例えば、下記の化合物が挙げられる。[A] [TCNQ]nX, (I) For example, the following compounds may be mentioned.

上記におけるRは、疎水性部位であり、アルキル基、ア
リール基またはアルキルアリール基であり、好ましいも
のは炭素数5〜30のアルキル基である。R,は、低級
アルキル基であり、nおよび9は0.1または2、mは
0または1であり、Xは臭素イオンの如きハロゲンイオ
ンや過塩素酸イオンの如き各種のアニオン基である。Y
は酸素または硫黄である。
R in the above is a hydrophobic moiety, and is an alkyl group, an aryl group, or an alkylaryl group, and preferably an alkyl group having 5 to 30 carbon atoms. R is a lower alkyl group, n and 9 are 0.1 or 2, m is 0 or 1, and X is various anion groups such as a halogen ion such as a bromine ion or a perchlorate ion. Y
is oxygen or sulfur.

以上の如き化合物は更に、アルキル基中に二重結合や三
重結合等の重合性基を有してもよく、またm素環上に1
個以上のアルキル基、アルケニル基、シアノ基、アルコ
キシ基、ハロゲン等の置換基を有し得るものである。
The above compounds may further have a polymerizable group such as a double bond or triple bond in the alkyl group, and 1 on the m ring.
It may have one or more substituents such as an alkyl group, an alkenyl group, a cyano group, an alkoxy group, or a halogen.

またTCNQは下記式で表わされる化合物で慶る。Further, TCNQ is suitable for compounds represented by the following formula.

上記式中のa Ndの位置にはアルキル基、アルケニル
基、ハロゲン原子等の任意の置換基を有し得るものであ
る。
The a Nd position in the above formula may have an arbitrary substituent such as an alkyl group, an alkenyl group, or a halogen atom.

本発明者は、以上の如き例示される化合物を包含する電
荷移動錯体について鋭意研究のところ、これらの電荷移
動錯体は公知の方法によって任意の基板上に単分子膜ま
たはその累積膜として形成することが容易であり、且つ
このような単分子膜またはその累積膜は、膜の垂直方向
に対しては高い絶縁性を有し且つ膜の水平方向に対して
は高い導電性を有し、非常に優わた導電性の異方性を示
すことを知見した。
The present inventor has conducted intensive research on charge transfer complexes including the compounds exemplified above, and has found that these charge transfer complexes can be formed as a monomolecular film or a cumulative film thereof on any substrate by a known method. In addition, such a monomolecular film or its cumulative film has high insulating properties in the vertical direction of the film and high conductivity in the horizontal direction of the film, and is extremely It was found that the material exhibits excellent anisotropy in conductivity.

本発明において、前記の電荷移動錯体を使用して、任意
の基板の表面に導電層を形成する好ましい方法は、前記
のLB法である。
In the present invention, a preferred method for forming a conductive layer on the surface of any substrate using the charge transfer complex is the LB method described above.

LB法は、例えば、前記の電荷移動錯体の如く分子内に
親水性部位と疎水性部位とを有する構造の分子において
、両者のバランス(両親媒性のバランス)が適度に保た
れている時、分子は水面上で親水性基を下に向けて単分
子の層になることを利用して単分子膜またはその累積膜
を作成する方法である。
In the LB method, for example, in a molecule having a structure having a hydrophilic site and a hydrophobic site in the molecule, such as the above-mentioned charge transfer complex, when the balance between the two (balance of amphiphilicity) is maintained appropriately, This is a method to create a monomolecular film or a cumulative film thereof by utilizing the fact that molecules form a monomolecular layer on the water surface with their hydrophilic groups facing downward.

水面上の単分子層は二次元系の特徴を有し、分子がまば
らに散開しているときは、一分子当り面積Aと表面圧π
との間に二次元理想気体の式、πA:にT が成り立ち、“気体膜”となる。ここに、Kはポルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体IISり”になる。凝縮膜はガラスや樹脂の如き種
々の材質や形状を有する任意の物体の表面へ一層ずつ移
すことができる。この方法を用いて、111記の電荷移
動錯体からiB分子膜またはその累積膜を形成し、こわ
を電気素子用の導電層として使用することができる。
A monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely dispersed, the area per molecule is A and the surface pressure π
The two-dimensional ideal gas equation, πA:, holds true between T and becomes a "gas film." Here, K is Portzmann's constant and T is absolute temperature. If A is made sufficiently small, the intermolecular interaction will become stronger, resulting in a two-dimensional solid "condensed film" (or solid IIS).A condensed film can be applied to the surface of any object with various materials and shapes, such as glass or resin. This method can be used to form iB molecular films or cumulative films thereof from the charge transfer complex described in No. 111, and the stiffness can be used as a conductive layer for electrical devices.

具体的な製法としては、例えば、以下に示す方法を挙げ
ることができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の電荷移動錯体をクロロホルム、ベンゼン、アセト
ニトリル等の溶剤に溶解させる。次に添付図面の第1図
に示す如き適当な装置を用いて、電荷移動錯体の溶液を
水相1上に展開させて電荷移動錯体を膜状に形成させる
The desired charge transfer complex is dissolved in a solvent such as chloroform, benzene, acetonitrile, etc. Next, using a suitable apparatus as shown in FIG. 1 of the accompanying drawings, a solution of the charge transfer complex is spread on the aqueous phase 1 to form a charge transfer complex in the form of a film.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)3を設け、展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧πを得る。この仕切板3を動かし、展開面積
を縮小して膜物質の集合状態を制御し、表面圧を徐々に
P昇させ、膜の製造に適する表面圧πを設定することが
できる。この表面圧を維持しながら、静かに清浄な基板
2を垂直に上昇または下降させることにより電荷移動錯
体の単分子膜が基板2上に移し取られる。このような単
分子膜は第2a図または第2b図に模式的に示す如く分
子が秩序正しく配列した膜である。
Next, a partition plate (or float) 3 is provided to prevent this spread layer from spreading freely on the water phase and spreading too much, and by limiting the spread area, the state of aggregation of the membrane material is controlled, and it is proportional to the state of aggregation. Obtain the surface pressure π. By moving the partition plate 3, the developed area is reduced to control the aggregation state of the membrane material, and the surface pressure P can be gradually increased to set the surface pressure π suitable for membrane production. A monomolecular film of the charge transfer complex is transferred onto the substrate 2 by gently raising or lowering the clean substrate 2 vertically while maintaining this surface pressure. Such a monomolecular film is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 2a or 2b.

電荷移動錯体の単分子膜は以上で製造されるが、前記の
繰作を繰り返すことにより所望の累積数の累積膜が形成
される。電荷移動錯体の単分子膜を基板上に移すには、
上述した垂直浸漬法の他、水平付着法、回転円筒法等の
方法でも可能である。
A monomolecular film of the charge transfer complex is manufactured as described above, and by repeating the above steps, a desired number of cumulative films can be formed. To transfer a monolayer of charge transfer complex onto a substrate,
In addition to the vertical dipping method described above, methods such as a horizontal adhesion method and a rotating cylinder method are also possible.

水平付着法は、基板を水面に水平に接触させて単分子膜
を移しとる方法であり、回転円筒法は円筒形の基板を水
面上を回転させて単分子膜を基板表面に移しとる方法で
ある。
The horizontal deposition method is a method in which a monomolecular film is transferred by bringing the substrate into horizontal contact with the water surface, and the rotating cylinder method is a method in which a cylindrical substrate is rotated above the water surface to transfer the monomolecular film onto the substrate surface. be.

前述した垂直浸漬法では、表面が親水性である基板を水
面を横切る方向に水中から引き上げると電荷移動錯体の
親水性基が基板側に向いた電荷移動錯体の単分子膜が基
板上に形成される(第2b図)。前述のように基板を上
下させると、各行程ごとに一枚ずつ単分子膜が積み重な
って累積膜が形成される。製膜分子の向きが引上行程と
浸漬行程で逆になるので、この方法によると単分子膜の
各層間は電荷移動錯体の疎水基と疎水基が向かいあうY
型膜が形成される(第3a図)。これに対し、水平付着
法は、電荷移動錯体の疎水性基が基板側に向いた単分子
膜が基板上に形成される(第2a図)。この方法では、
単分子膜を累積しても製膜分子の向きの交代はなく全て
の層において、疎水性基が基板側に向いたX型膜が形成
される(第3b図)。反対に全ての層において親水性基
が基板側に向いた累積膜はZ型膜と呼ばれる(第3c図
)。
In the vertical immersion method described above, when a substrate with a hydrophilic surface is lifted out of water in a direction across the water surface, a monomolecular film of the charge transfer complex is formed on the substrate with the hydrophilic groups of the charge transfer complex facing the substrate. (Figure 2b). When the substrate is moved up and down as described above, one monomolecular film is stacked on top of the other at each step, forming a cumulative film. Since the direction of the film-forming molecules is reversed during the pulling process and the dipping process, according to this method, between each layer of the monolayer, the hydrophobic groups of the charge transfer complex face each other.
A mold film is formed (FIG. 3a). In contrast, in the horizontal deposition method, a monomolecular film with the hydrophobic groups of the charge transfer complex facing the substrate is formed on the substrate (FIG. 2a). in this way,
Even when monomolecular films are accumulated, there is no change in the direction of the film-forming molecules, and an X-shaped film is formed in which the hydrophobic groups face the substrate in all layers (FIG. 3b). On the other hand, a cumulative film in which the hydrophilic groups in all layers face the substrate side is called a Z-type film (Figure 3c).

単分子膜を基板上に移す方法は、上記方法に限定される
わけではなく、大面積基板を用いる時には、ロールから
水相中に基板を押し出していく方法なども採り得る。ま
た、前述した親水性基および疎水性基の基板への向きは
原則であり、基板の表面処理等によって変えることもで
きる。
The method of transferring the monomolecular film onto the substrate is not limited to the above method, and when using a large-area substrate, a method of extruding the substrate from a roll into an aqueous phase may also be adopted. Further, the directions of the hydrophilic groups and hydrophobic groups described above toward the substrate are in principle, and can be changed by surface treatment of the substrate, etc.

以上の如くして前記電荷移動錯体の単分子膜またはその
累積膜からなる導電層が基板上に形成される。
As described above, a conductive layer consisting of a monomolecular film of the charge transfer complex or a cumulative film thereof is formed on the substrate.

本発明において、上記の如き電荷移動錯体の単分子■q
またはその累積膜からなる有機導電層を形成するための
基板は、金属、ガラス、セラミックス、プラスチック材
料等いずれの材料でもよく、更に耐熱性の著しく低い生
体材料も使用できる。
In the present invention, a single molecule of the charge transfer complex as described above
Alternatively, the substrate for forming an organic conductive layer consisting of a cumulative film thereof may be made of any material such as metal, glass, ceramics, or plastic materials, and biomaterials with extremely low heat resistance may also be used.

金属の如き導電性材料も使用できるのは、上述の通り、
単分子膜または累積膜が膜に垂直な方向では十分な絶縁
性を有していることによる。
As mentioned above, conductive materials such as metals can also be used.
This is because the monomolecular film or the cumulative film has sufficient insulating properties in the direction perpendicular to the film.

上記の如き基板は、任意の形状でよく、平板状であるの
が好ましいが、平板に何ら限定されない。すなわち本発
明においては、基板の表面がいかなる形状であってもそ
の形状通りに膜を形成し得る利点を有するからである。
The above-mentioned substrate may have any shape, preferably a flat plate, but is not limited to a flat plate at all. That is, the present invention has the advantage that a film can be formed in accordance with any shape of the surface of the substrate.

以上の如くして基板上に形成された有機導電層に電極を
形成する方法は、第4図示の如く、基板2上の有機導電
層すなわち打機電荷移動錯体の単分子膜の累積膜5の所
望の領域8中に導電性不純物9を注入または拡散させて
導電性領域8を形成する方法である。使用する導電性不
純物としては、拡散性の良好な導電性材料が好ましく、
例えば、金、銀、銅、アルミニウム、クロム、ニッケル
等の金属、各種金属の導電性酸化物等が有用であり、こ
れらの導電性不純物を有機導電層中に注人あるいは拡散
させる方法としては、種々の方法があるが、好適な方法
として金属の真空蒸着方法および金属イオン注入方法が
ある。
The method for forming an electrode on the organic conductive layer formed on the substrate as described above is as shown in FIG. This is a method of forming a conductive region 8 by injecting or diffusing a conductive impurity 9 into a desired region 8 . As the conductive impurity to be used, a conductive material with good diffusivity is preferable.
For example, metals such as gold, silver, copper, aluminum, chromium, and nickel, and conductive oxides of various metals are useful, and methods for pouring or diffusing these conductive impurities into the organic conductive layer include: Although there are various methods, preferred methods include metal vacuum deposition and metal ion implantation.

蒸着方法では、例えば、上記の如き金属を、蒸着源と基
板との距離を比較的近づけた状態で蒸着させる方法が好
ましい。かかる状況下で蒸着させることによ7て、蒸発
時に加熱された金属原子が高温を保ったまま基板に到達
し、有機導電層5の内部にまで注入されて有機導電層5
中に導電領域すなわち電極8が形成される。また別の蒸
着方法は、上記の如くして真空蒸着させた金属10を有
機導電層を損なわない条件、例えば、比較的低温で真空
下で加熱処理して金属蒸着層lOの金属を有機導電層5
中に拡散させる方法である。この方法によれば、前記方
法で蒸着源との距離を比較的近づけた状態で蒸着させた
場合の電極間の導電性は更に向上し、また距離を離して
蒸着層10を形成した場合には、電極間において殆ど導
電性が無いものが、高い導電性を示すようになる。
In the vapor deposition method, for example, a method of vapor depositing the above-mentioned metal while keeping the distance between the vapor deposition source and the substrate relatively close is preferable. By performing evaporation under such conditions, the metal atoms heated during evaporation reach the substrate while maintaining a high temperature, and are injected into the organic conductive layer 5 to form the organic conductive layer 5.
A conductive region or electrode 8 is formed therein. Another vapor deposition method is to heat-treat the metal 10 vacuum-deposited as described above under conditions that do not damage the organic conductive layer, for example, under vacuum at a relatively low temperature, so that the metal of the metal vapor-deposited layer 10 is heated to form the organic conductive layer. 5
This method is to diffuse it into the inside. According to this method, the conductivity between the electrodes is further improved when the vapor deposition layer 10 is formed at a relatively close distance to the vapor deposition source in the above method, and when the vapor deposition layer 10 is formed at a distance from the vapor deposition source, the conductivity between the electrodes is further improved. , something that had almost no conductivity between the electrodes now exhibits high conductivity.

イオン注入方法は、目的とする元素を真空中でイオン化
して、イオンを必要なエネルギーまで静電的に加速して
、ターゲット(目的物)に打ち込む方法であるが、熱拡
散方法等では注入することができない不純物をも注入す
ることができ、また微細加工にも通し・ているという特
徴を有する。
The ion implantation method involves ionizing the target element in a vacuum, electrostatically accelerating the ions to the required energy, and then implanting them into the target (target object). It has the characteristics of being able to implant impurities that cannot be implanted, and also being able to withstand microfabrication.

更にかかる方法は、半導体製造技術として充分確立され
ており、信頼性も高く装置の取扱いも容易で生産性も高
い。またプロセス自体も室温で行うことができ有機材料
に極めて好適な方法の1つと云える。
Furthermore, this method is well established as a semiconductor manufacturing technology, and has high reliability, easy handling of the device, and high productivity. Furthermore, the process itself can be carried out at room temperature, and can be said to be one of the methods extremely suitable for organic materials.

以上、例示の方法は代表的な方法であり、上記と同様な
効果を奥する方法はいずれも本発明において利用できる
ものである。
The above-mentioned methods are typical methods, and any method that achieves the same effect as the above can be used in the present invention.

また、本発明においては、使用した電荷移動錯体が重合
性基を有する場合には、上記の如く膜を形成後、電極を
形成する前あるいは形成後にこわらの膜を重合硬化させ
、膜強度を著しく向上させることもできる。
In addition, in the present invention, when the charge transfer complex used has a polymerizable group, after forming the film as described above, the stiff film is polymerized and hardened before or after forming the electrode to increase the film strength. It can also be significantly improved.

(作用・効果) 以上の如き本発明によれば、有機導電層中に電極を形成
するにあたり、特に高い温度の加熱工程を要しないため
、使用する基板は、有機物、無機物、生体等何等限定さ
れず、任意の基板を使用することができる。
(Function/Effect) According to the present invention as described above, when forming an electrode in an organic conductive layer, a heating process at a particularly high temperature is not required. However, any substrate can be used.

また、従来技術の如く、本発明方法によれば、電極の形
成にあたり、基板上の有機導電層を何ら破壊する必要が
ないので、電極を形成すべき領域以外に何ら悪影響を与
えることなく、任意の領域に容易に電極を形成すること
ができるので、高微細加工が可能であり、優れた電気的
特性を有する電気素子が再現性良く容易に提供すること
が可能となった。
Further, unlike the prior art, according to the method of the present invention, there is no need to destroy the organic conductive layer on the substrate when forming the electrode, so it is possible to freely Since electrodes can be easily formed in the region, highly fine processing is possible, and electric elements with excellent electrical properties can be easily provided with good reproducibility.

以上の点から、本発明によれば、本発明方法による電気
素子は従来の高密度電気素子としては勿論、生体を利用
するバイオエレクトロニクスの素子としても大いに期待
できるものである。
From the above points, according to the present invention, the electric device produced by the method of the present invention can be highly expected not only as a conventional high-density electric device but also as a bioelectronic device that utilizes living organisms.

次に実施例を挙げて本発明を更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 上記の電荷移動錯体をベンゼン−アセトニトリル(容量
比1:1)混合溶媒にImg/mILの濃度で溶解した
後、にlICO3でpH6,8に調整された(:dCl
、濃度4X 10−’ mol/1、水温17℃の水相
上に展開した。
Example 1 The above charge transfer complex was dissolved in a mixed solvent of benzene-acetonitrile (volume ratio 1:1) at a concentration of Img/ml, and then the pH was adjusted to 6.8 with lICO3 (:dCl
, was developed on an aqueous phase at a concentration of 4×10-' mol/1 and a water temperature of 17°C.

溶媒のアセトニトリルとベンゼンとを蒸発除去した後、
表面圧を20dyne/cImまで高め単分子膜を形成
した。表面圧を一定に保ちながら、表面を疎水処理(L
B法によりアラキシン酸カドミウムを3層累積したもの
)した清浄なガラス(30xlO關)を基板とし、水面
を横切已方向に速度15mm/1lin、で静かに基板
を2011II11程浸清した後、続いて速度10wn
/min、で静かに引き上げ2層の四分予成を累積した
。以上の累積操作を10回繰返し四分予成の累積膜を基
板上に作成した。
After removing the solvents acetonitrile and benzene by evaporation,
The surface pressure was increased to 20 dyne/cIm to form a monomolecular film. The surface is subjected to hydrophobic treatment (L) while keeping the surface pressure constant.
A clean glass (30xlO size) coated with three layers of cadmium araxinate (accumulated by method B) was used as a substrate, and the substrate was gently immersed for about 2011II11 at a speed of 15mm/1lin in the transverse direction of the water surface, and then speed 10wn
/min, to accumulate two layers of quarter preform. The above accumulation operation was repeated 10 times to produce a quarter-prepared cumulative film on the substrate.

次に、該累積膜上方より金を抵抗加熱法により真空蒸着
(膜厚200nm) L/、第5図に示す様な1対の対
向電極11(巾2mm 、長さI Omm、電極間隔1
III11)を形成した。尚、このとき蒸着源と基板と
の距離は10cmであり基板温度は室温とした。
Next, gold is vacuum evaporated from above the accumulated film using a resistance heating method (film thickness 200 nm).
III11) was formed. In addition, at this time, the distance between the vapor deposition source and the substrate was 10 cm, and the substrate temperature was set to room temperature.

以上の方法で作成した素子に対し、電極間の電流電圧特
性を測定したところ、少くともO〜±1■の範囲での直
線関係が認められオーミック性の電極が形成されたこと
がわかフた。また、このときのグラフの直線の傾きから
膜面内方向の伝導度を算出したところ0.  l 2 
S/Cotであった。
When we measured the current-voltage characteristics between the electrodes for the device created using the above method, a linear relationship was observed at least in the range of 0 to ±1■, indicating that ohmic electrodes were formed. . Also, the conductivity in the in-plane direction of the membrane was calculated from the slope of the straight line in the graph, and it was 0. l 2
It was S/Cot.

一方、上記と全く同じ方法で作成した累積膜に、今度は
蒸着源との距離を40cmとして金を抵抗加熱法により
真空蒸着(膜厚約200n*、室温)し、上記と同じく
第5図の様な素子を形成した。
On the other hand, gold was vacuum-deposited (film thickness approximately 200n*, room temperature) using the resistance heating method (film thickness approximately 200n*, room temperature) with the distance to the evaporation source set to 40cm on the cumulative film created in exactly the same manner as above. We formed various elements.

更に電極11間の電流電圧特性を測定したところ、20
V印加時でも1×1O−10A(測定系のノイズレベル
)以下の電流しか流れないことから、電極間は絶縁体と
みなされた。
Furthermore, when the current-voltage characteristics between the electrodes 11 were measured, it was found that 20
Even when V was applied, only a current of 1×1 O−10 A (noise level of the measurement system) or less flowed, so the space between the electrodes was considered to be an insulator.

先と異なる結果が得られたのは、前者の場合蒸着時ある
いは直後に金が膜中に拡散し、膜面の垂直方向に導電性
を付与することにより、膜面内の導電領域とのオーミッ
ク性外部接続電極が形成されたためと考える。
The reason why a different result was obtained is that in the former case, gold diffuses into the film during or immediately after deposition, imparting conductivity in the direction perpendicular to the film surface, and creating an ohmic relationship with the conductive region within the film surface. This is thought to be due to the formation of external connection electrodes.

尚、本実施例では蒸着時に金が拡散する場合を示したが
、勿論金に限らず拡散定数の大きいものであればいずれ
の不純物も使用できる。但し累積膜の構成分子あるいは
その構造、膜質によって適用可能材料が大きく左右され
る。
Although this embodiment shows the case where gold diffuses during vapor deposition, it is of course possible to use any impurity other than gold as long as it has a large diffusion constant. However, the applicable materials are greatly influenced by the constituent molecules of the cumulative film, its structure, and film quality.

実施例2 実施例1と全く同じ方法で基板上に作成した単分子膜の
累積股上に、実施例1と同様に金を200nmの厚みに
真空蒸着(速度5nIl/s) L/、第5図の様な素
子を形成したく素子定数等は、実施例1と同一である)
Example 2 As in Example 1, gold was vacuum-deposited to a thickness of 200 nm (rate: 5 nIl/s) on the cumulative rise of a monomolecular film formed on a substrate in exactly the same manner as in Example 1 (rate: 5 nIl/s), FIG. To form an element like this, the element constants etc. are the same as in Example 1)
.

更にこれを真空電気炉中(2x 10−3torr以下
)に設置し、50℃で24時間熱処理を行った。更に冷
却するのを待って放置後、金電極間の電流電圧特性を測
定し電導度を求めたところ0、 16  S/c+sと
、熱処理を行わない場合の0、 12 Sicraより
30%以上の性能向上がはかれた。これは熱処理により
金拡散が促進されたためと考える。
Furthermore, this was placed in a vacuum electric furnace (2×10 −3 torr or less) and heat treated at 50° C. for 24 hours. After waiting for further cooling and leaving it, the current-voltage characteristics between the gold electrodes were measured and the conductivity was determined to be 0.16 S/c+s, which is 30% more than the 0.12 Sicra without heat treatment. Improvements were made. This is thought to be because gold diffusion was promoted by heat treatment.

実施例3 実施例1と同じ電荷移動錯体をアセトニトリルとベンゼ
ンの1:1(容量比)混合溶媒にI IIIg/mlの
濃度で溶解した後、にI+(:0.でpH6,8に調整
されたCdCl2濃度4X 10−’ mol/4、水
温17℃の水相上に展開した。
Example 3 The same charge transfer complex as in Example 1 was dissolved in a 1:1 (volume ratio) mixed solvent of acetonitrile and benzene at a concentration of IIIIg/ml, and then the pH was adjusted to 6.8 with I+ (:0. The mixture was developed on an aqueous phase with a CdCl2 concentration of 4×10-' mol/4 and a water temperature of 17°C.

溶媒のアセトニトリルとベンゼンとを蒸発除去した後、
表面圧を20 dyne/ crrrまで高め単分子膜
を形成した。表面圧を一定に保ちながら、あらかじめl
Ox30mmの矩形に切り出したイントリンシックな(
i型)Siウェハを基板とし、水面を横切る方向に速度
15ml1/ff1in、で静かに基板を20 mmP
i浸漬した後、続いて速度10 ram/ min、で
静かに引き上げた。以上の操作をもう一度緑返し4層の
単分子膜を累積した。
After removing the solvents acetonitrile and benzene by evaporation,
The surface pressure was increased to 20 dyne/crrr to form a monomolecular film. l in advance while keeping the surface pressure constant.
Intrinsic (
i type) Using a Si wafer as a substrate, gently move the substrate to 20 mmP at a speed of 15ml1/ff1in in the direction across the water surface.
After being immersed for 1 hour, it was then gently pulled up at a speed of 10 ram/min. The above operation was repeated once again to accumulate a 4-layer monomolecular film.

以上のようにして作成した試料2個の内、一方の試料上
に11の間隔をあけて、2ケ所の領域(各々2×2玉の
大きさ)にわたり7X10”/crn’のクロムのイオ
ン注入(加速電圧30KeV)を行った。
Of the two samples created as described above, chromium ions were implanted at a rate of 7X10''/crn' over two areas (each 2 x 2 beads in size) with a spacing of 11 on one sample. (acceleration voltage: 30 KeV).

更に、このイオン注入された領域がそれぞれ覆わわる様
に1対の外部接続電極として該試料上にアルミニウム蒸
着(抵抗加熱法)を行フだ。もう一方の試料は、成膜後
イオン注入を施さずに、上述のアルミニウム電極形成を
行った。
Furthermore, aluminum vapor deposition (resistance heating method) is performed on the sample as a pair of external connection electrodes so as to cover each of the ion-implanted regions. For the other sample, the aluminum electrode was formed as described above without performing ion implantation after film formation.

以上のようにして得た2個の試料に対し、アルミニウム
電極間に30Vを印加したところ、イオン注入を行わな
かったものではノイズレベル(10−”A)以上の電流
は観察されなかったが、イオン注入を行ったものでは2
X10−’Aの電流が流れた。これらのことから、電導
度に大きな異方性を有する単分子累積膜中にクロムをイ
オン注入することによって、膜面と垂直方向の導電性が
得られたことが明らかとなった。
When 30V was applied between the aluminum electrodes of the two samples obtained as described above, no current exceeding the noise level (10-''A) was observed in the sample without ion implantation. 2 for those with ion implantation
A current of X10-'A flowed. From these results, it was revealed that conductivity in the direction perpendicular to the film surface was obtained by ion-implanting chromium into the monomolecular cumulative film, which has large anisotropy in electrical conductivity.

実施例4〜7 実施例3と同様にして下記第1表に示す如く数行の導電
性基板のそれぞれの表面に種々の電荷移動錯体の単分子
累積膜を作成し、且つ、不純物イオンを加速度20 K
eVでそわぞれ8 X 10 I5/am”の量で注入
した。更に係る注入領域上に抵抗加熱法により金を15
0nmの厚みに蒸着し、これを上部電極として導電性基
板との間に電圧を印加し、膜厚方向の導電性を測定した
ところ、下記第1表に示す結果(A)を得た。
Examples 4 to 7 In the same manner as in Example 3, monomolecular cumulative films of various charge transfer complexes were created on the respective surfaces of several rows of conductive substrates as shown in Table 1 below, and impurity ions were accelerated. 20K
Gold was implanted in an amount of 8 x 10 I5/am'' at eV.Furthermore, gold was implanted on the implanted area at 15 m by resistance heating.
The film was deposited to a thickness of 0 nm, a voltage was applied between it and a conductive substrate using it as an upper electrode, and the conductivity in the film thickness direction was measured, and the results (A) shown in Table 1 below were obtained.

一方、比較のためにイオン注入を行わなかった領域に関
しても同様にして導電性を求めた。その結果(B)も併
せて第1表に示す。
On the other hand, for comparison, the conductivity was determined in the same manner for the region where ion implantation was not performed. The results (B) are also shown in Table 1.

γ:、 1−=一 実施例4 工菰長力羞孫   (2) 1込」81麹   屓 五−一一一玉   Auを蒸着したポリカーボネート 阜工津−(ト)ム畦 A      5X10−” B      10−’ 実施例5 虱荏■勤聾跡   (2) 1込」81物   Ag 基−−−−丘   ITO基板 え二土−汎包畦 A       8X10−2 B       10−7 実施例6 皿且長動羞跡   (3) 江ノJ3U、肋   Au 隻−−−一玉   ITO基板 埠慮!−汎包畦 B     3xlO−2 実施例7 並仇庄因盪体   (4) 出込」84劫   I 隻−−−一玉   ITO基板 妥1」−銘へ畦 A     6X10−2 B     5X10−’ 導電率A:本発明方法(イオン注入) 導電率B:比較例(イオン注入なし) 上記電荷移動錯体は下記構造のものである。γ:, 1-=1 Example 4 The proud grandson of the factory worker (2) 1 incl. 81 koji 5-11 ball Polycarbonate with Au vapor deposited Fukotsu-(tom) ridge A 5X10-” B 10-' Example 5 Ruins of Deaf Works (2) 1 incl. 81 items Ag Base ---- Hill ITO substrate Two Earths - Pan-bao A 8X10-2 B 10-7 Example 6 Plate and long moving trace (3) Eno J3U, Rib Au Ship---One ball ITO board Take care! - Pan-covered area B 3xlO-2 Example 7 Namikushoinsha  (4) 84 kalpa I Ship---One ball ITO board 1” – inscription on the ridge A 6X10-2 B 5X10-' Conductivity A: Method of the present invention (ion implantation) Conductivity B: Comparative example (no ion implantation) The above charge transfer complex has the following structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気素子の導電層を形成する方法を図
解的に示す図である。第2図は単分子膜の模式図であり
、第3図は累積膜の模式図である。第4図は、本発明の
電気素子の製造工程を図解的に示し、第5図は実施例の
電気素子を示す。 1;水相 2:基板 3:浮子 4:単分子膜 5;累h1膜 6:親水性部位(導電性部位) 7;疎水性部位 8:導電領域 9:導電性不純物 10;蒸若層 11;電極 出 願 人  キャノン株式会社 9・凸τ 第1図 第2a図 第2b図 第3&図 第3b図
FIG. 1 is a diagram schematically showing a method of forming a conductive layer of an electric element of the present invention. FIG. 2 is a schematic diagram of a monomolecular film, and FIG. 3 is a schematic diagram of a cumulative film. FIG. 4 schematically shows the manufacturing process of the electric device of the present invention, and FIG. 5 shows the electric device of the example. 1; aqueous phase 2: substrate 3: float 4: monomolecular film 5; cumulative h1 film 6: hydrophilic site (conductive site) 7; hydrophobic site 8: conductive region 9: conductive impurity 10; young layer 11 Electrode applicant Canon Co., Ltd. 9 Convex τ Figure 1 Figure 2a Figure 2b Figure 3 & Figure 3b

Claims (5)

【特許請求の範囲】[Claims] (1)有機導電層を有する電気素子の導電層の所望の箇
所に導電性不純物を注入あるいは拡散させることを特徴
とする電極形成方法。
(1) An electrode forming method characterized by injecting or diffusing a conductive impurity into a desired location of a conductive layer of an electric element having an organic conductive layer.
(2)有機導電層が、異方性導電層である特許請求の範
囲第(1)項に記載の電極形成方法。
(2) The electrode forming method according to claim (1), wherein the organic conductive layer is an anisotropic conductive layer.
(3)有機導電層が1分子中に疎水性部位、親水性部位
および導電性部位を有する有機電荷移動錯体の単分子膜
あるいはその累積膜である特許請求の範囲第(1)項に
記載の電極形成方法。
(3) The organic conductive layer according to claim (1), wherein the organic conductive layer is a monomolecular film of an organic charge transfer complex having a hydrophobic site, a hydrophilic site, and a conductive site in one molecule or a cumulative film thereof. Electrode formation method.
(4)有機電荷移動錯体が第4級アンモニウム化合物と
テトラシアノキノジメタンとの錯体である特許請求の範
囲第(1)項に記載の電極形成方法。
(4) The method for forming an electrode according to claim (1), wherein the organic charge transfer complex is a complex of a quaternary ammonium compound and tetracyanoquinodimethane.
(5)導電性不純物が金属である特許請求の範囲第(1
)項に記載の電極形成方法。
(5) Claim No. 1 in which the conductive impurity is a metal
) The electrode forming method described in item 1.
JP61213973A 1986-09-12 1986-09-12 Formation of electrode Pending JPS6370517A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61213973A JPS6370517A (en) 1986-09-12 1986-09-12 Formation of electrode
US07/099,345 US4929524A (en) 1986-09-12 1987-09-10 Organic photo conductive medium
DE3789585T DE3789585T2 (en) 1986-09-12 1987-09-11 Leading organic structure.
EP87308072A EP0260152B1 (en) 1986-09-12 1987-09-11 Organic conductive medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213973A JPS6370517A (en) 1986-09-12 1986-09-12 Formation of electrode

Publications (1)

Publication Number Publication Date
JPS6370517A true JPS6370517A (en) 1988-03-30

Family

ID=16648129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213973A Pending JPS6370517A (en) 1986-09-12 1986-09-12 Formation of electrode

Country Status (1)

Country Link
JP (1) JPS6370517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004073081A1 (en) * 2003-02-17 2006-06-01 富士電機ホールディングス株式会社 Switching element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004073081A1 (en) * 2003-02-17 2006-06-01 富士電機ホールディングス株式会社 Switching element
JP4826254B2 (en) * 2003-02-17 2011-11-30 富士電機株式会社 Switching element

Similar Documents

Publication Publication Date Title
Fou et al. Molecular-level processing of conjugated polymers. 2. Layer-by-layer manipulation of in-situ polymerized p-type doped conducting polymers
Iwamoto et al. Spatial distribution of charges in ultrathin polyimide Langmuir–Blodgett films
Roberts et al. AC and DC conduction in fatty acid Langmuir films
Christy Electrical properties of thin polymer films. Part II. Thickness 50–150 Å
EP0260152B1 (en) Organic conductive medium
US5284779A (en) Method of forming organic charge-transfer thin films
US4994401A (en) Method of making a thin film transistor
JPS6370517A (en) Formation of electrode
US4943838A (en) Thin film transistor and method of making the same
JP3147499B2 (en) Manufacturing method of ion selective membrane
KR101741313B1 (en) Doping method of graphene based on a supporting layer with ion implantation
SU1466650A3 (en) Method of producing polymer film material
EP0334676B1 (en) Method of driving device having MIM structure
JPS6396956A (en) Switching element
RU2796048C1 (en) Reservoir computing device based on organometallic framework polymer and method for its manufacture
JPS6370543A (en) Processing for organic conductive layer
KR101721162B1 (en) Proton-based resistive switching memory and method of fabricating the same
DE10341914A1 (en) Device for producing thin layers of coating components/elements, alloys or compounds on a substrate comprises a cylindrical pot, a cylindrical tube, a substrate heater, a lid, a radiation shield, and a source for the coating components
US20220181047A1 (en) Fabrication method of conductive nanonetworks through adaptation of sacrificial layer
JPH01166555A (en) Semiconductor element
JPH0779173B2 (en) Semiconductor element
DE102020120420A1 (en) proceedings
JPH01166579A (en) Organic thin film pressure sensitive device
JPH03285371A (en) Junction using organic superconductor and manufacture thereof
JPS6373560A (en) Semiconductor element