JPS6370161A - Immersion type ultrasonic flaw detection - Google Patents

Immersion type ultrasonic flaw detection

Info

Publication number
JPS6370161A
JPS6370161A JP61214726A JP21472686A JPS6370161A JP S6370161 A JPS6370161 A JP S6370161A JP 61214726 A JP61214726 A JP 61214726A JP 21472686 A JP21472686 A JP 21472686A JP S6370161 A JPS6370161 A JP S6370161A
Authority
JP
Japan
Prior art keywords
flaw detection
probe
inspected
defect
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214726A
Other languages
Japanese (ja)
Inventor
Eiji Sugimoto
杉本 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61214726A priority Critical patent/JPS6370161A/en
Publication of JPS6370161A publication Critical patent/JPS6370161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To secure a relation S/N>=4 in an immersion type ultrasonic flaw detection, by using an ultrasonic wave with the frequency of 2-2.25MHz. CONSTITUTION:An ultrasonic wave with the frequency of 2-2.25MHz is transmitted at about 48 deg. of the flaw detection angle of refraction to the surface of an object 3 to be inspected which is conveyed while being immersed from a reciprocating probe 2. Then, reflected waves from a defect inside the object 3 being inspected are received with the probe 2 to detect the position of the defect. The ultrasonic wave with the frequency of 2-2.25MHz enables the securing of a relation S/N>=4 because the attenuation thereof underwater is very limited. This enables the detection of the position of any small defect below 2mm in the size.

Description

【発明の詳細な説明】 (1)産業上の利用分野 この発明は帯鋼など板状の被検査材を連続して自動探傷
する浸漬型超音波探傷方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application This invention relates to an immersion-type ultrasonic flaw detection method for continuously and automatically detecting flaws in plate-shaped materials to be inspected, such as steel strips.

(2)従来の技術 浸漬型超音波探傷方法においては、探傷方式として斜角
法、板波法、二重透過法、垂直法があるが、被検査材の
板厚方向の不感帯をOにできることなどの理由から斜角
法が広く採用されている。この斜角法では、一般に5−
112以上の周波数の超音波を利用し、該超音波を探触
子から水浸搬送中の被検査材の表面に向けて探傷屈折角
度48°前後で発信する。
(2) Conventional immersion-type ultrasonic flaw detection methods include the oblique angle method, plate wave method, double transmission method, and vertical method, but the dead zone in the thickness direction of the material to be inspected can be set to O. For these reasons, the oblique angle method is widely adopted. In this bevel method, generally 5-
Using ultrasonic waves with a frequency of 112 or more, the ultrasonic waves are emitted from a probe toward the surface of a material to be inspected that is being transported under water at a flaw detection refraction angle of about 48 degrees.

すると、この発信波は被検査材の内部を伝搬し、途中に
欠陥(きず)が存在すると、それに衝突して反射波を生
じることとなるため、この反射波を発信側で受(、Yす
ることにより欠陥の位置が検出される。また、この検出
とともに、欠陥の位置には自動マーカー装置でマークが
施される。
Then, this emitted wave propagates inside the material to be inspected, and if there is a defect (flaw) on the way, it collides with it and generates a reflected wave, so this reflected wave is received by the transmitting side. As a result, the position of the defect is detected.Also, along with this detection, the position of the defect is marked by an automatic marker device.

(3)発明が解決しようとする問題点 ところで、前記従来の探傷方法で用いられている超音波
は周波数が5 M)Iz以上であるため、水の中に入る
と、減衰が大きくなり、反耐波Sと、装置全体のノイズ
Nとの比S/Nが探傷に必要な最低倍率としての4 (
dB  12)以下となることが多く、欠陥中2mm以
上の欠陥の場合はよいとしても、これより小さな欠陥の
場合にはその位置の検出が困難となるという間圧点があ
った。
(3) Problems to be solved by the invention By the way, the ultrasonic waves used in the conventional flaw detection method have a frequency of 5 M)Iz or higher, so when they enter water, they are attenuated greatly, causing a reaction. The ratio S/N between the wave resistance S and the noise N of the entire device is 4 (
dB 12) or less, and although it may be fine for defects of 2 mm or more, there was a pressure point where it was difficult to detect the position of defects smaller than this.

そこで、この発明は前記のような小さい欠陥でもその位
置の検出が可能なように、SZN比をS/N≧4が確保
できるようにすることを技術的課題とする。
Therefore, the technical object of the present invention is to ensure an SZN ratio of S/N≧4 so that the position of even a small defect as described above can be detected.

(4)問題点を解決するための手段 前記問題点を解決するため、この発明は探傷水槽内を搬
送部材によって搬送される被検査材の表面に、その上方
に被検査材の搬送方向と交叉する方向に往復動可能に設
置した探触子から超音波を発信し、被検査材の内部に欠
陥が存在する場合、前記発信波がこの欠陥に衝突して反
射し、この反射波を前記探触子で受信することにより、
欠陥の位置を検出する浸漬型超音波探傷方法において、
前記超音波として、周波数が2〜2.25M)!zの超
音波を用いることを特徴とするものである。
(4) Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a means for solving the above-mentioned problems. An ultrasonic wave is emitted from a probe installed so that it can be reciprocated in the direction of the inspection. If a defect exists inside the material to be inspected, the emitted wave collides with the defect and is reflected, and this reflected wave is used as the probe for the detection. By receiving with a touch,
In the immersion ultrasonic flaw detection method for detecting the location of defects,
The frequency of the ultrasound is 2~2.25M)! This method is characterized by using ultrasonic waves of z.

(5)実施例 第1図において1は探触子2が設置された探傷水槽で、
この探傷水槽1の被検査材3の搬送方向(図中矢印Aで
示す)前後壁には被検査材3の通過孔4が穿設されてい
る。探傷水槽1の前後壁に隣接して補助水槽5,6が設
置され、この補助水槽5,6は一方の側壁が探傷水槽1
の前後壁と共通となっており、通過孔4を介して探傷水
槽1と連通されている。
(5) Example In Fig. 1, 1 is a flaw detection water tank in which a probe 2 is installed;
Passage holes 4 for the test material 3 are bored in the front and rear walls of the flaw detection water tank 1 in the direction of transport of the test material 3 (indicated by arrow A in the figure). Auxiliary water tanks 5 and 6 are installed adjacent to the front and rear walls of the flaw detection water tank 1, and one side wall of the auxiliary water tanks 5 and 6 is connected to the flaw detection water tank 1.
It is common to the front and rear walls of , and communicates with the flaw detection water tank 1 via the passage hole 4 .

通過孔4には、ここを通って搬送される被検査材3との
間をシールするシールパツキン(図示せず)が設けられ
ている。
The passage hole 4 is provided with a seal gasket (not shown) that seals between the passage hole 4 and the inspected material 3 conveyed therethrough.

補助水槽5,6はその下方に設置された貯水槽7に配管
8,9を介して接続されている。
The auxiliary water tanks 5 and 6 are connected to a water storage tank 7 installed below them via pipes 8 and 9.

10はドレン管である。一方、貯水槽7は探傷水槽1の
上方に設置された給水槽12にポンプ13を具えた配管
14を介して接続され、さらにこの給水槽12は配管1
6を介して探傷水槽1に接続されている。、18は給水
槽12から探傷水槽1内の探触子2に向けて噴流し、探
傷時に探触子2に気泡が入るのを予防するための噴流管
である。
10 is a drain pipe. On the other hand, the water tank 7 is connected to a water tank 12 installed above the flaw detection water tank 1 via a pipe 14 equipped with a pump 13.
It is connected to the flaw detection water tank 1 via 6. , 18 are jet tubes that flow water from the water supply tank 12 toward the probe 2 in the flaw detection water tank 1 to prevent air bubbles from entering the probe 2 during flaw detection.

前記のような配管構造より、探傷水槽l内の水は通過孔
4から補助水槽5,6に流出し、補助水槽5,6から配
管8,9を経て貯水槽7に流下して一旦スドックされろ
。その後。
Due to the piping structure as described above, the water in the flaw detection tank 1 flows out from the passage hole 4 into the auxiliary water tanks 5 and 6, and from the auxiliary water tanks 5 and 6 flows down to the water storage tank 7 via the pipes 8 and 9, where it is once suspended. reactor. after that.

貯水槽7からポンプ13の作動により配管14を経て給
水槽12に送られ、給水槽12から配管16(18)を
経て再び探傷水槽1に@環供給されるようになっている
。このような循環供給はポンプ13の作動を制御するこ
とにより行なわれ、これによって探傷水槽1内の水は常
に所定の水位に保持される。
The water is sent from the water tank 7 to the water tank 12 via the pipe 14 by the operation of the pump 13, and from the water tank 12 to the flaw detection water tank 1 via the pipe 16 (18). Such circulating supply is performed by controlling the operation of the pump 13, whereby the water in the flaw detection water tank 1 is always maintained at a predetermined water level.

探触子2は第2図に示すように被検査材3の搬送方向に
沿って直列に複数個並設され。
As shown in FIG. 2, a plurality of probes 2 are arranged in series along the conveyance direction of the material 3 to be inspected.

1個の探触子ブロック体に構成されている。It is composed of one probe block.

各探触子2のケーブル22は図示しない中継ボックスを
介して探傷器24.さらにここから記録計25に接続さ
れている。そして、探触子2は前記のように1個のブロ
ック体としてスキャン機構部26により、被検査材3の
搬送方向と交叉する方向(矢印Bで示す)に、第3図に
示すように被検査材3のエツジ部で反転しながら往復動
される。第2図で矢印Cは超音波の発信方向を示す。探
触子2からは周波数2〜2.25MIIzの超音波が発
信するようになっている。
The cable 22 of each probe 2 is connected to the flaw detector 24 via a relay box (not shown). Furthermore, it is connected to a recorder 25 from here. Then, as described above, the probe 2 is moved as a single block body by the scan mechanism section 26 in a direction (indicated by arrow B) that intersects the conveyance direction of the inspected material 3, as shown in FIG. The inspection material 3 is reciprocated while being reversed at the edge portion. In FIG. 2, arrow C indicates the direction of ultrasonic wave transmission. The probe 2 emits ultrasonic waves with a frequency of 2 to 2.25 MIIz.

尚、第1図で27.28は被検査材3の送りロールで、
探傷水槽1内を水浸搬送される被検査材3が上下動する
のを抑える機能を有し。
In addition, in Fig. 1, 27 and 28 are the feed rolls for the material to be inspected 3,
It has a function of suppressing vertical movement of the inspected material 3 being conveyed in water in the flaw detection water tank 1.

このうち上ロールが固定、下ロールが上ロールに対し上
下に接離可能となっている。29は探り水槽1外に設置
されたフォトセンサで、被検査材3のエツジ部から入る
反射波を消去するようになっている。
Among these, the upper roll is fixed, and the lower roll can be moved upwardly and downwardly toward and away from the upper roll. Reference numeral 29 denotes a photosensor installed outside the probe tank 1, and is designed to eliminate reflected waves entering from the edges of the material 3 to be inspected.

前記の装置において、往復動する探触子2からは水浸搬
送中の被検査材3の表面に向けて探傷屈折角度48°前
後で周波数2〜2.25MHzの超音波が発信される。
In the above-mentioned apparatus, an ultrasonic wave having a frequency of 2 to 2.25 MHz is emitted from the reciprocating probe 2 toward the surface of the inspected material 3 that is being conveyed under water at a flaw detection refraction angle of about 48 degrees.

そして、被検査材3の内部に欠陥が存在すると、この欠
陥から反射波が生じ、この反射波を探触子2で受信する
ことにより、欠陥の位置が検出される6第4.5図は被
検査材3の内部に存在する大小2つの欠陥A、B(A:
欠陥中1am、B:欠陥巾2mm)が、下記のような条
件下で探触子2からそれぞれ周波数の異なる2−25M
!Iz t 5 M)lz tloMHzの3つの超音
波を発信して検出可能かどうかを示す実験データである
If a defect exists inside the inspected material 3, a reflected wave is generated from this defect, and by receiving this reflected wave with the probe 2, the position of the defect is detected.6 Figure 4.5 shows Two large and small defects A and B (A:
1 am in the defect, B: defect width 2 mm) is 2-25 M with different frequencies from probe 2 under the following conditions.
! This is experimental data showing whether detection is possible by transmitting three ultrasonic waves of Iz t 5 M) lz tlo MHz.

記 O被検査材・・・厚さ:1.8〜5.Omm  巾: 
200〜400w0被検査材の搬送速度・・・4〜6 
m/winQ探触子と被検査材間の距離・・・30關O
探触子の右動ビーム巾・・・3+++m○探触子の往復
!FII(スキャン)巾・・・600mm0探触子の往
復動速度・・・945mm/seeこの第4,5図の実
験データかられかるように、2.25MHzではA、B
両方とも検出が可能である。 これに対し、5MHzで
は大きい方Bの検出は可能だが、小さい方のAは検出困
難であり、10MHzではA、B両方とも検出困難であ
る。尚、ここには実験データとして挙げなかったが、 
2MHzでも2.25Ml1zの場合と同様な検出結果
が得られた。
Note: Material to be inspected: Thickness: 1.8 to 5. Omm width:
200~400w0 Conveying speed of inspected material...4~6
Distance between m/winQ probe and inspected material...30 degrees
Probe right movement beam width...3+++m○ Probe back and forth! FII (scan) width: 600 mm 0 Probe reciprocating speed: 945 mm/see As can be seen from the experimental data in Figures 4 and 5, A and B at 2.25 MHz
Both can be detected. On the other hand, at 5 MHz, the larger one B can be detected, but the smaller one A is difficult to detect, and at 10 MHz both A and B are difficult to detect. Although not listed here as experimental data,
Detection results similar to those obtained at 2.25 Ml1z were obtained at 2 MHz.

また、2 、25MHz (2Mllzも同じ)の場合
は、A。
In addition, in the case of 2.25MHz (same as 2Mllz), A.

B両法とも、S/N≧4が確保され、水の中を通る減衰
が極めて小さいことがわかる。
It can be seen that in both methods B, S/N≧4 is ensured, and the attenuation through water is extremely small.

(6)発明の効果 この発明は前記のように探傷に用いる超音波として、周
波数が2〜2.25MIIzの超音波を用いるので、S
/N比をS/N≧4が確保できるようにすることが可能
となり、したがって従来の5 Ml(z以」二の周波数
の場合に検出が内壁であった2m+n以下の小さい欠陥
でもその位置の検出が可能となるなど優れた効果を有す
る。
(6) Effects of the invention As described above, this invention uses ultrasonic waves with a frequency of 2 to 2.25 MIIz as ultrasonic waves used for flaw detection.
It is now possible to ensure a S/N≧4 /N ratio, and therefore even small defects of 2m+n or less, which were detected on the inner wall in the case of the conventional 5Ml (z or less) frequency, can be detected at that location. It has excellent effects such as enabling detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す浸漬型超音波探傷装置
の概略図、第2,3図は同上の被検査材に対する探触子
の移動方向等を示す部分平面図、第4,5図は同上の被
検査材の欠陥に対する実験データを示すグラフである。
FIG. 1 is a schematic diagram of an immersion type ultrasonic flaw detection device showing an embodiment of the present invention, FIGS. The figure is a graph showing experimental data regarding defects in the same inspected material as above.

Claims (1)

【特許請求の範囲】[Claims] 1、探傷水槽内を搬送部材によって搬送される被検査材
の表面に、その上方に被検査材の搬送方向と交叉する方
向に往復動可能に設置した探触子から超音波を発信し、
被検査材の内部に欠陥が存在する場合、前記発信波がこ
の欠陥に衝突して反射し、この反射波を前記探触子で受
信することにより、欠陥の位置を検出する浸漬型超音波
探傷方法において、前記超音波として、周波数が2〜2
.25MHzの超音波を用いることを特徴とする浸漬型
超音波探傷方法。
1. Send ultrasonic waves to the surface of the material to be inspected that is being transported by a transport member in the flaw detection water tank from a probe that is installed above the surface so that it can reciprocate in a direction that intersects the direction of transport of the material to be tested;
When a defect exists inside the material to be inspected, the transmitted wave collides with the defect and is reflected, and the reflected wave is received by the probe to detect the position of the defect.Immersion type ultrasonic flaw detection In the method, the ultrasonic wave has a frequency of 2 to 2
.. An immersion type ultrasonic flaw detection method characterized by using 25 MHz ultrasonic waves.
JP61214726A 1986-09-11 1986-09-11 Immersion type ultrasonic flaw detection Pending JPS6370161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214726A JPS6370161A (en) 1986-09-11 1986-09-11 Immersion type ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214726A JPS6370161A (en) 1986-09-11 1986-09-11 Immersion type ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPS6370161A true JPS6370161A (en) 1988-03-30

Family

ID=16660600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214726A Pending JPS6370161A (en) 1986-09-11 1986-09-11 Immersion type ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS6370161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000047762A (en) * 1998-12-09 2000-07-25 에모또 간지 Method and apparatus for detecting flaws in strip, method of manufacturing cold-rolled steel sheet and pickling equipment for hot-rolled steel strip
JP2010223840A (en) * 2009-03-25 2010-10-07 Neomax Material:Kk Flaw detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000047762A (en) * 1998-12-09 2000-07-25 에모또 간지 Method and apparatus for detecting flaws in strip, method of manufacturing cold-rolled steel sheet and pickling equipment for hot-rolled steel strip
JP2010223840A (en) * 2009-03-25 2010-10-07 Neomax Material:Kk Flaw detection device

Similar Documents

Publication Publication Date Title
US6367328B1 (en) Noninvasive detection of corrosion, MIC, and foreign objects in fluid-filled containers using leaky guided ultrasonic waves
US5677490A (en) Ultrasonic testing device for weld seams in pipes, sheets and containers
KR101736641B1 (en) An apparatus and a method for detecting a crack
EP0139867B1 (en) Near surface inspection system
JPS6370161A (en) Immersion type ultrasonic flaw detection
JP2006030218A (en) Quality inspection method of welded steel pipe welded section
US3910104A (en) Apparatus and method for ultrasonic testing
JP2009150679A (en) Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel
JPH05333000A (en) Ultrasonic flaw detector
EP1096253A2 (en) Automatic ultrasonic flaw detector
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JPS6078345A (en) Method and device for on-line detection of inclusion of thin steel band
JP3610847B2 (en) Internal defect detection device
Sattar et al. Amphibious NDT robots
JP3614115B2 (en) Water immersion type ultrasonic inspection method
Hesse et al. Excitation of surface wave modes in rails and their application for defect detection
JP2002296247A (en) Method for submerged type ultrasonic flaw detection
KR102273580B1 (en) Liner plate back gap inspection device and liner plate back gap inspection method using the same
Carvalho et al. Inspection of ship hulls using automated ultrasonic inspection
JP7393560B2 (en) Ultrasonic inspection device
US20230393101A1 (en) UT Sensor Interface for Scanning Complex Environments
US20220146460A1 (en) Guided wave testing of welds in pipelines and plate structures
Badri et al. A measurement method of corrosion rate in condensate pipeline using long range ultrasonic test
JP3800133B2 (en) Ultrasonic flaw detection method and apparatus for welded steel pipe welds
JPS60186753A (en) Inspecting device for packing container