JPS6370102A - Method for measuring thickness of conductor in non-destructive manner - Google Patents

Method for measuring thickness of conductor in non-destructive manner

Info

Publication number
JPS6370102A
JPS6370102A JP21451386A JP21451386A JPS6370102A JP S6370102 A JPS6370102 A JP S6370102A JP 21451386 A JP21451386 A JP 21451386A JP 21451386 A JP21451386 A JP 21451386A JP S6370102 A JPS6370102 A JP S6370102A
Authority
JP
Japan
Prior art keywords
measured
thickness
probes
article
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21451386A
Other languages
Japanese (ja)
Inventor
Hideo Enjoji
円城寺 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP21451386A priority Critical patent/JPS6370102A/en
Publication of JPS6370102A publication Critical patent/JPS6370102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To simply measure the thickness of a conductor, by measuring electric resistance of the surface of an article to be measured by four probes and estimating the thickness of the article to be measured from the measured value, shape correction factor and the volume intrinsic resistance of the article to be measured in a non-destructive manner. CONSTITUTION:When a current I flows between two probes 2, 5 positioned outside of four probes 2, 3, 4, 5 from a power source E, a current value is measured by an ammeter A. A voltmeter V measures the voltage between two probes 3, 4 positioned inside of four probes. Then, the thickness (t) of the conductive layer 1a of an article 1 to be measured is calculated from the volume intrinsic resistance of the conductive layer 1a of the article 1 to be measured, the current value I, the potential difference measured value between the probes 3, 4 and shape correction factor. By this method, the substantial thickness of the metal wall surface of water piping or a tank can be measured in a non-destructive manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は配管、タンクの金属壁、船体、建物の鉄骨、金
属壁面等の導電体肉厚非破壊測定法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for nondestructively measuring the thickness of conductors such as piping, metal walls of tanks, ship hulls, steel frames of buildings, metal wall surfaces, etc.

〔従来の技術〕[Conventional technology]

内部に長期間流体を流したり、貯蔵している配管、タン
クの金属壁の実質的な厚みを測定することは、配管、タ
ンクの寿命、性能を予知、確認する上で極めて重要であ
る。
Measuring the actual thickness of the metal walls of piping and tanks in which fluids flow or are stored for long periods of time is extremely important in predicting and confirming the lifespan and performance of piping and tanks.

最近、水道配管の内壁腐食による水漏れ、腐食性液体の
貯蔵タンクの内壁腐食による流出等の事故が多発してお
り、特に水道配管の内壁腐食は広範囲に社会問題化して
いる。
Recently, accidents such as water leakage due to corrosion of the inner walls of water pipes and leakage of corrosive liquids due to corrosion of the inner walls of storage tanks have been occurring frequently. In particular, corrosion of the inner walls of water pipes has become a widespread social problem.

このような事故を未然に防止するため、内部状況を簡便
に検出することは極めて重要である。
In order to prevent such accidents, it is extremely important to easily detect the internal situation.

従来、かかる検査は光ファイバー等を配管、タンク内に
挿入してその内壁面を観察検査している。
Conventionally, such inspections have been carried out by inserting optical fibers or the like into piping or tanks and observing and inspecting their inner wall surfaces.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこれでは装置が高価で検査に手数を要し、また定
量的な測定は困難であった。
However, this method required expensive equipment and laborious testing, and quantitative measurements were difficult.

本発明はかかる導電体の厚みを簡便に迅速に非破壊的に
測定する方法を提供するものである。
The present invention provides a method for easily, quickly, and non-destructively measuring the thickness of such a conductor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は被測定物(試料1,1c、ld、le)の表面
で四探針2.3..−4.5法によって電気抵抗を測定
し1、その測定値、形状補正係数及び被測定物(試料1
 、 lc 、 ld 、 le)の体積固有抵抗ρか
ら測定物(試料1 、lc、Id、le)の金属又は半
導体層の厚みを非破壊的に推測することを特徴とする導
電体肉厚非破壊測定法である。
In the present invention, four probes 2.3. .. -4.5 method to measure the electrical resistance 1, the measured value, the shape correction coefficient and the object to be measured (sample 1
, lc, ld, le) non-destructively estimates the thickness of the metal or semiconductor layer of the measurement object (sample 1, lc, ld, le) from the volume resistivity ρ of the conductor thickness. It is a measurement method.

〔実施例〕〔Example〕

第1図(() (0)は本発明の原理を基本的に説明す
るため直方体の試料1に適用した実施例を示すもので、
aは試料1の縦巾、bは試料1の横巾、tは試料lの導
電層の厚み、斜線の部分は導電層1aの下の絶縁層1b
である。2,3.4.5は試料1の外面に当接した四探
針である。Eは電源、■は電流計、■は内部インピーダ
ンスの高い電圧計(又は電位差計)である。
Figure 1 (() (0) shows an example applied to a rectangular parallelepiped sample 1 in order to basically explain the principle of the present invention.
a is the vertical width of sample 1, b is the horizontal width of sample 1, t is the thickness of the conductive layer of sample I, and the shaded part is the insulating layer 1b below the conductive layer 1a.
It is. 2, 3, 4, and 5 are four probes in contact with the outer surface of sample 1. E is a power source, ■ is an ammeter, and ■ is a voltmeter (or potentiometer) with high internal impedance.

次にこの装置の動作を説明する。Next, the operation of this device will be explained.

電源Eは四探針2,3,4.5の外側の2本の探針2.
5に電流を流し、■という電流が流れるとすると、この
電流値は電流計のにより測定される。電圧計■は四探針
の内側2本の探針3,4の間の電圧を測定する。
The power source E is connected to the outer two probes 2.5 of the four probe probes 2, 3, and 4.5.
5, and a current of ■ flows, this current value is measured by an ammeter. Voltmeter ■ measures the voltage between the two inner probes 3 and 4 of the four probes.

今、外側2探針2,5間に電流■が流れる時に内側2探
針3,4の電位差の測定値をΔVとすると、試料1の体
積固有抵抗ρと厚みt、及び電流値■と電位差測定値Δ
Vの間には次の関係式がある。
Now, if the measured value of the potential difference between the two inner probes 3 and 4 is ΔV when a current ■ flows between the two outer probes 2 and 5, then the volume resistivity ρ and the thickness t of the sample 1, and the current value ■ and the potential difference Measured value Δ
There is the following relational expression between V.

Δ■ ρ=  −t−Fc  ・・・・・・・・・・・・・・
・・・・(1)■ (Fc (Correction Factor):形
状補正係数)ここで、ΔV/Iは抵抗値Rである。(抵
抗率ではない。) 形状補正係数Fcは、試料1の形状、四探針2゜3.4
.5の試料面における位置に依存する。しかし、形状が
一定で、同一位置で測定する場合には、厚みtが既知の
測定物で実測することにより形状補正係数Fcを知るこ
とができる。直方体状の試料lの場合には形状補正係数
Fcは数学的に解くこともできる。
Δ■ ρ= −t−Fc ・・・・・・・・・・・・・・・
(1) ■ (Fc (Correction Factor): Shape correction coefficient) Here, ΔV/I is the resistance value R. (It is not resistivity.) The shape correction coefficient Fc is the shape of sample 1, four probes 2° 3.4
.. 5 depending on the position on the sample surface. However, if the shape is constant and measurements are taken at the same position, the shape correction coefficient Fc can be determined by actually measuring the object with a known thickness t. In the case of a rectangular parallelepiped sample l, the shape correction coefficient Fc can also be solved mathematically.

一方、体積固有抵抗ρはすでに他の方法で正確に測定さ
れている。
On the other hand, the volume resistivity ρ has already been accurately measured using other methods.

例えば、純鉄の場合、常温で9.8 Xl0−bΩ(至
)である、銅の場合、常温で1.6 Xl0−’Ωam
である。
For example, in the case of pure iron, it is 9.8 Xl0-'Ωam at room temperature, and in the case of copper, it is 1.6 Xl0-'Ωam at room temperature.
It is.

鉄が腐食により酸化されてFeze3. Fe)Onに
なると、体積固有抵抗ρは10’Ω(至)以上になり、
鉄との比較に於いて絶縁体と見做してもよい。
Feze3. Iron is oxidized due to corrosion. When Fe) is turned on, the volume resistivity ρ becomes 10'Ω (to) or more,
In comparison with iron, it may be considered an insulator.

従って厚みtが未知の試料で且つ体積固有抵抗ρが既知
の場合、四探針法により抵抗値R(・ΔV/I)を測定
すれば、 tFc=−7−− が求まる。
Therefore, when the thickness t of the sample is unknown and the volume resistivity ρ is known, tFc=-7 can be found by measuring the resistance value R (.DELTA.V/I) using the four-probe method.

そこで、t−Fcと試料の形状及び四探針位置との関係
が把握されていれば(特に、他の条件を一定にしておき
、厚みtの関数の形にしておけば)厚みtが求まること
になる。
Therefore, if the relationship between t-Fc, the shape of the sample, and the position of the four probes is known (particularly if the other conditions are kept constant and the shape is a function of the thickness t), the thickness t can be found. It turns out.

上記厚みtとt−Fc0間には一般に第2図示のグラフ
のような関係がある。
Generally, there is a relationship between the thickness t and t-Fc0 as shown in the graph shown in the second figure.

通常の二探針法で導電体の体積固有抵抗を測定すると、
探針と試料表面との間の接触抵抗が無視できない大きさ
となり、正確な測定が困難であるが、本発明のように四
探針法で高インピーダンスの電圧計を用いると電圧計■
への流入電流の影響は微小となり接触抵抗による電圧降
下が無視でき、測定値ΔVはほぼ正確な試料表面の電位
差となり、正確な抵抗の測定が可能となるものである。
When measuring the volume resistivity of a conductor using the normal two-probe method,
The contact resistance between the probe and the sample surface becomes large enough that it cannot be ignored, making accurate measurement difficult. However, if a high-impedance voltmeter is used in the four-probe method as in the present invention, the voltmeter
The influence of the current flowing into the sample is so small that the voltage drop due to the contact resistance can be ignored, and the measured value ΔV becomes a substantially accurate potential difference on the sample surface, making it possible to accurately measure the resistance.

第3図はパイプ状の試料1cの肉厚の測定に本発明を適
用した実施例を示すものである。
FIG. 3 shows an embodiment in which the present invention is applied to the measurement of the wall thickness of a pipe-shaped sample 1c.

第4図は例えば大きなタンクの壁などの無限に近い平面
状の試料1dに本発明を適用した実施例を示すものであ
る。
FIG. 4 shows an embodiment in which the present invention is applied to a nearly infinitely planar sample 1d, such as the wall of a large tank.

上記直方体の形状の試料lの場合には前述したように、
四探針2.3,4.5のおく位置及び試料の縦、横の寸
法が決まれば、t−Fcは正確に求められる (電流の
流れるパターンを、ポアソンの式を解くことにより正確
に計算できる)。この原理は当然、t−Fcが正確に解
けなくても他の形状の試料1c 、 ldにも応用でき
るものである。試料1dの場合もt−Fcは鏡像法を用
いた計算により正確にtの関数として、数学的に解くこ
とができる。
In the case of the rectangular parallelepiped-shaped sample l, as mentioned above,
Once the positions of the four probes 2.3 and 4.5 and the vertical and horizontal dimensions of the sample are determined, t-Fc can be determined accurately (the current flow pattern can be accurately calculated by solving Poisson's equation) can). Naturally, this principle can be applied to samples 1c and ld of other shapes even if t-Fc cannot be solved accurately. In the case of sample 1d as well, t-Fc can be mathematically solved accurately as a function of t by calculation using the mirror image method.

ticの形状依存性の傾向が概略確認されていればそれ
に見合った精度で厚さtも概算できる。
If the shape dependence tendency of tic is roughly confirmed, the thickness t can also be approximately estimated with a commensurate accuracy.

実用的な目的からすれば、その程度の精度で目標を達成
することが多い。
For practical purposes, that degree of accuracy is often sufficient to achieve the goal.

通常の四探針では各探針の間隔Sは一定で等しく直線状
に並んでいるが、t−Fcとtの関係(即ちFc(!:
tとの関係)が既知であれば探針の配置にはこだわらな
いが測定対象物の形状、特に大きさによって間tQMs
を変えるのが実際的である。
In a normal four-point probe, the distance S between each probe is constant and they are arranged equally in a straight line, but the relationship between t-Fc and t (i.e., Fc(!:
If the relationship between tQMs and t is known, there is no need to worry about the placement of the probe.
It is practical to change the

この探針2.3,4.5間の距離Sは被測定物の肉厚に
応じて変えた方がよい。また第2図示のグラフの勾配が
急になるように距MSを選んだ方が、推測値は正確にな
るので好ましい。探針間の距離Sの2倍までの厚みは比
較的精度よく測定できる。
It is better to change the distance S between the probes 2.3 and 4.5 depending on the thickness of the object to be measured. Further, it is preferable to select the distance MS so that the slope of the graph shown in the second figure is steep because the estimated value will be more accurate. Thickness up to twice the distance S between the probes can be measured with relatively high accuracy.

2肱斑 第5図示のような等方性黒鉛1e (上下面が7 cn
+X 7 c+++の直方体で厚みを0.35cmから
5.65cmまで変えた8種のサンプル)について測定
を行った。測定を行う前に黒鉛1eの表面の錆を落とし
、電極との接触抵抗を少しでも下げ、接触状況が安定す
るようにする。次に第5図示のようにその中央に四探針
2.3,4.5を距10.5cmの距離でその列が辺に
平行になるように設置し、その抵抗値を測定した。
Isotropic graphite 1e (upper and lower surfaces are 7 cm) as shown in Figure 5.
Measurements were carried out on 8 types of samples (+X 7 c+++ rectangular parallelepipeds with different thicknesses from 0.35 cm to 5.65 cm). Before making measurements, remove rust from the surface of the graphite 1e to lower the contact resistance with the electrode as much as possible to stabilize the contact situation. Next, as shown in Figure 5, four probes 2.3 and 4.5 were installed in the center at a distance of 10.5 cm so that the array was parallel to the sides, and the resistance value was measured.

別の方法にてこの黒鉛材料の体積固有抵抗ρは求められ
ており、その値は9.OX 10−’Ωcmである。
The volume resistivity ρ of this graphite material has been determined by another method, and its value is 9. OX 10-'Ωcm.

一方、Re5i Ca1cにより計算したFcを用いて
pにXt−wtの関係をグラフにかくと、第6図のよう
になる。そこで各サンプル(実際の厚みt)について抵
抗実測値からρ/Rを求め、それからグラフにより求め
た厚み推測値L1を表に示し、実際の厚み実測値t2と
比較した。
On the other hand, when the relationship of Xt-wt to p is plotted on a graph using Fc calculated by Re5i Ca1c, it becomes as shown in FIG. Therefore, ρ/R was determined from the measured resistance value for each sample (actual thickness t), and the estimated thickness L1 obtained from the graph was shown in the table and compared with the actual measured thickness value t2.

表から次の知見が得られる。The following findings can be obtained from the table.

1、厚み推測値t、は実測値1zより数%程度低い傾向
にあるが、10%以下の精度で推定できること(厚み推
測の精度としては実用的には問題ないと見てよい) 2、 探針間の距離(0,50!11)の約2倍以上の
厚みになると精度は極端に落ちる。
1. Although the estimated thickness value t tends to be several percent lower than the actual value 1z, it can be estimated with an accuracy of 10% or less (it can be seen that there is no problem in practical terms with the accuracy of thickness estimation). 2. When the thickness becomes more than twice the distance between the needles (0,50!11), the accuracy drops dramatically.

3 c+n以上の厚みの場合には、グラフからは推測値
t、は読み取れない。(ρ/Rの値がFcXt〜tのカ
ーブに交わらない。) 〔発明の効果〕 以−トのようにして本発明により水道配管或いはタンク
等の金属壁面の実質肉厚(内部腐食による金属肉厚)を
非破壊的に測定することができるものである。
If the thickness is greater than 3c+n, the estimated value t cannot be read from the graph. (The value of ρ/R does not intersect with the curve of Fc thickness) can be measured non-destructively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明の原理を示す説明図、(ロ)は(
イ)の探針部分の断面図、第2図は厚みtとt・Fcと
の関係を示すグラフ、第3図は本発明をパイプの厚み測
定に適用した場合の斜視図、第4図は本発明を大きな金
属壁面の厚み測定に適用した場合の斜視図、第5図は本
発明の実験例の測定部分の斜視図、第6図はその実験例
における厚みtとtl’cの関係を示すグラフである。 1 、 lc 、 ld 、 1e・” ・−・被測定
物、2,3,4.5・・・・・・四探針、ρ・・・・・
・体積固有抵抗。 −wl目 (イ) Cロン 塩2目 箋3ρ
Figure 1 (a) is an explanatory diagram showing the principle of the present invention, and (b) is (
2 is a graph showing the relationship between thickness t and t・Fc, FIG. 3 is a perspective view when the present invention is applied to pipe thickness measurement, and FIG. A perspective view when the present invention is applied to thickness measurement of a large metal wall surface, FIG. 5 is a perspective view of a measurement part in an experimental example of the present invention, and FIG. 6 shows the relationship between thickness t and tl'c in the experimental example. This is a graph showing. 1, lc, ld, 1e・” ---Object to be measured, 2, 3, 4.5... Four probes, ρ...
・Volume resistivity. -wl eye (a) C Ron salt 2 eye note 3 rho

Claims (1)

【特許請求の範囲】[Claims] 被測定物の表面で四探針法によって電気抵抗を測定し、
その測定値、形状補正係数及び被測定物の体積固有抵抗
から測定物の金属又は半導体層の厚みを非破壊的に推測
することを特徴とする導電体肉厚非破壊測定法。
Electrical resistance is measured on the surface of the object to be measured using the four-probe method.
A method for nondestructively measuring the thickness of a conductor, characterized by nondestructively estimating the thickness of a metal or semiconductor layer of an object to be measured from the measured value, a shape correction coefficient, and a volume resistivity of the object.
JP21451386A 1986-09-10 1986-09-10 Method for measuring thickness of conductor in non-destructive manner Pending JPS6370102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21451386A JPS6370102A (en) 1986-09-10 1986-09-10 Method for measuring thickness of conductor in non-destructive manner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21451386A JPS6370102A (en) 1986-09-10 1986-09-10 Method for measuring thickness of conductor in non-destructive manner

Publications (1)

Publication Number Publication Date
JPS6370102A true JPS6370102A (en) 1988-03-30

Family

ID=16656966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21451386A Pending JPS6370102A (en) 1986-09-10 1986-09-10 Method for measuring thickness of conductor in non-destructive manner

Country Status (1)

Country Link
JP (1) JPS6370102A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ297790B6 (en) * 2000-10-09 2007-03-28 Circuitry and arrangement of electrodes for measuring thickness of wall made of electrically conducting material
JP2007108098A (en) * 2005-10-17 2007-04-26 Seiko Instruments Inc Measuring probe, measuring instrument of surface characteristics, and measuring method of surface characteristics
JP2008537781A (en) * 2005-04-11 2008-09-25 ルドルフテクノロジーズ インコーポレイテッド Dual photoacoustic and resistance measurement system
RU2495370C1 (en) * 2012-05-25 2013-10-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП НПП "Исток") Device for monitoring of thickness of conducting film of items belonging to electronic equipment
JP2014077782A (en) * 2012-09-20 2014-05-01 National Institute Of Advanced Industrial & Technology Quenching depth measuring apparatus, quenching depth measuring method, surface layer depth measuring apparatus, and surface layer depth measuring method
CN104897734A (en) * 2015-04-28 2015-09-09 石家庄铁道大学 System and method for real-time measurement of water content in soil in geotechnical structure object
CN105954591A (en) * 2016-04-29 2016-09-21 宁波国际材料基因工程研究院有限公司 Soft-magnetic film material surface resistance high flux testing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157803A (en) * 1984-08-29 1986-03-24 Hitachi Chem Co Ltd Method for detecting thickness of metallic foil stuck on insulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157803A (en) * 1984-08-29 1986-03-24 Hitachi Chem Co Ltd Method for detecting thickness of metallic foil stuck on insulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ297790B6 (en) * 2000-10-09 2007-03-28 Circuitry and arrangement of electrodes for measuring thickness of wall made of electrically conducting material
JP2008537781A (en) * 2005-04-11 2008-09-25 ルドルフテクノロジーズ インコーポレイテッド Dual photoacoustic and resistance measurement system
JP2007108098A (en) * 2005-10-17 2007-04-26 Seiko Instruments Inc Measuring probe, measuring instrument of surface characteristics, and measuring method of surface characteristics
JP4665704B2 (en) * 2005-10-17 2011-04-06 セイコーインスツル株式会社 Measuring probe, surface characteristic measuring apparatus, and surface characteristic measuring method
RU2495370C1 (en) * 2012-05-25 2013-10-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП НПП "Исток") Device for monitoring of thickness of conducting film of items belonging to electronic equipment
JP2014077782A (en) * 2012-09-20 2014-05-01 National Institute Of Advanced Industrial & Technology Quenching depth measuring apparatus, quenching depth measuring method, surface layer depth measuring apparatus, and surface layer depth measuring method
CN104897734A (en) * 2015-04-28 2015-09-09 石家庄铁道大学 System and method for real-time measurement of water content in soil in geotechnical structure object
CN105954591A (en) * 2016-04-29 2016-09-21 宁波国际材料基因工程研究院有限公司 Soft-magnetic film material surface resistance high flux testing method

Similar Documents

Publication Publication Date Title
Bowler et al. Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods
WO2005036152A1 (en) System and method for monitoring defects in structures
Brinkmann et al. Primary methods for the measurement of electrolytic conductivity
CA2510478C (en) Monitoring wall thickness
BRPI0620481A2 (en) Real-time corrosion measuring device and method
MXPA00010816A (en) Monitoring fluid condition through an aperture.
Raja et al. Influence of crack length on crack depth measurement by an alternating current potential drop technique
US3104355A (en) Corrosion measuring probe with a temperature compensating element in a wheatstone bridge and method of using same
CN109765134A (en) A kind of inner wall of the pipe erosion corrosion monitoring device and its monitoring method
JPS6370102A (en) Method for measuring thickness of conductor in non-destructive manner
CN104748643A (en) Metal surface liquid-state film layer measuring device and measuring method thereof
US2987685A (en) Corrosion test probe
US3197724A (en) Electrical resistance corrosion probe
US2987672A (en) Impedance test apparatus
US11162887B2 (en) Apparatus for tank bottom soil side corrosion monitoring
GB2347748A (en) Probe device for apparatus for monitoring corrosion of a material
CN204594386U (en) Metal surface liquid film thickness measuring device
JP2018205224A (en) Measuring device and measurement method
EP0024753A1 (en) Making and using corrosion measuring probes for fluid conveying conduits
JP2017129435A (en) Buried-object soundness assessment method
SU1732248A1 (en) Device for measuring conductivity of liquids
CN217404104U (en) Integrated test device for metal corrosion weightlessness test under alternating current-direct current interaction
CN111289574A (en) Method and device for nondestructive testing of quality of conductive material based on conductive parameters
BR202018072291U2 (en) CONSTRUCTIVE ARRANGEMENT INTRODUCED IN SENSOR / PROBE OF MEASUREMENT OF CORROSION RATE BY ELECTRIC RESISTANCE
CN115629036A (en) Method for evaluating detection area of metal soil corrosion in-situ sensor