JPS6370056A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS6370056A
JPS6370056A JP21210186A JP21210186A JPS6370056A JP S6370056 A JPS6370056 A JP S6370056A JP 21210186 A JP21210186 A JP 21210186A JP 21210186 A JP21210186 A JP 21210186A JP S6370056 A JPS6370056 A JP S6370056A
Authority
JP
Japan
Prior art keywords
heat
outdoor unit
heat pipe
air conditioner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21210186A
Other languages
Japanese (ja)
Inventor
木原 孝治
片岡 憲二
均 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21210186A priority Critical patent/JPS6370056A/en
Publication of JPS6370056A publication Critical patent/JPS6370056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、冷媒回路を切換えることによって、夏期に
は室内機が蒸発器、室外機が凝縮器となり、冬期には室
内機が凝縮器、室外機が蒸発器となるヒートポンプ式の
空調装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention allows the indoor unit to function as an evaporator and the outdoor unit to function as a condenser in the summer, and the indoor unit to function as a condenser and a condenser in the winter, by switching the refrigerant circuit. The present invention relates to a heat pump type air conditioner in which the outdoor unit serves as an evaporator.

〔従来の技術〕[Conventional technology]

従来のヒートポンプ式空調装置は、例えば、特公昭59
−47209号公報等に示されているように、通常は第
18図及び第19図に示す構成となっている。
Conventional heat pump type air conditioners are, for example,
As shown in Japanese Patent No.-47209, etc., the configuration is usually shown in FIGS. 18 and 19.

即ち、第18図及び第19図において、(1)は建物、
(2)は被空調空間、つまシ暖房及び冷房すべき部屋や
室、(3)は室内機で、通常は熱交換器、送風機、及び
これらを収納するケースで構成されている。(4)は室
外機で、圧縮機(401)と、この圧縮機と送風機との
ユニツ) (4(42))と、熱交換器(408)と、
これらを収納し通風口(404A) f:有したケース
(404)とで構成されている。(5)は冷媒配管、(
6)は冷媒回路を切り換える四方弁、(7)は四方弁を
切シ換える冷・暖切換装置、(8)は大地である。冷房
時、つま〕夏期には、冷媒回路の冷媒は、点線矢印(第
19図)で示すように、圧縮機(401)で圧縮された
高温・高圧の気相冷媒は、四方弁(6)を通って室外機
(4)の熱交換器(408)に至り、この熱交換器(4
01)で大気と熱交換して冷却され凝縮されて液冷媒と
なり、次に室内機(3)にて室(2)内大気と熱交換し
、該室内大気から気化熱を奪って気化し、四方弁(6)
を経て圧縮機(401)へ戻る。暖房時、つまシ冬期に
は冷媒の流れは実線矢印(第19図)で示すように上述
の夏期とは逆サイクルとなり、圧縮機(401)から出
た高温・高圧の気相冷媒は、四方弁(6)ヲ通って室内
機(3)に至り、この室内機(3)で室内大気と熱交換
し凝縮されて液冷媒となり、次に室外機〔4)の熱交換
器(408)で大気から気化熱を奪って気化し、四方弁
(6)を経て圧縮機(401)に至る。
That is, in FIGS. 18 and 19, (1) is a building,
(2) is a space to be air-conditioned, a room or room to be heated and cooled; and (3) is an indoor unit, which usually consists of a heat exchanger, a blower, and a case that houses them. (4) is an outdoor unit, which includes a compressor (401), a unit of this compressor and a blower (4 (42)), a heat exchanger (408),
It is composed of a case (404) that houses these and has a ventilation opening (404A). (5) is the refrigerant pipe, (
6) is a four-way valve that switches the refrigerant circuit, (7) is a cooling/heating switching device that switches the four-way valve, and (8) is the ground. During cooling, during the summer, the refrigerant in the refrigerant circuit is compressed by the compressor (401), and the high-temperature, high-pressure gas phase refrigerant is passed through the four-way valve (6). The heat exchanger (408) of the outdoor unit (4) is reached through the heat exchanger (408).
At step 01), the refrigerant is cooled and condensed by exchanging heat with the atmosphere to become a liquid refrigerant, and then at the indoor unit (3), it exchanges heat with the atmosphere inside the room (2), takes vaporization heat from the indoor atmosphere, and vaporizes it. Four-way valve (6)
and then returns to the compressor (401). During heating, during the winter season, the flow of refrigerant is in the opposite cycle to the above-mentioned summer season, as shown by the solid arrow (Figure 19), and the high temperature and high pressure gas phase refrigerant coming out of the compressor (401) flows in all directions. It passes through the valve (6) and reaches the indoor unit (3), where it exchanges heat with the indoor air and is condensed into liquid refrigerant, and then in the heat exchanger (408) of the outdoor unit [4]. It takes vaporization heat from the atmosphere, vaporizes it, and reaches the compressor (401) through the four-way valve (6).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のヒートポンプ式空調装置は上述のようになされて
おり、特に冬期、には室外機(4)が蒸発器となるため
、大気の温度が可成りの低温になれば冷媒の気化が行な
われにくくなシ、その結果暖房能力が低下する。従って
、室内機に補助ヒータを取9付けて暖房能力不足をカバ
ーするケースが多いが、それでも、盆地や寒冷地、山間
部、大陸気候地帯等、冬期に大気温が著しく低くなる地
域では、暖房能力不足、ひいては暖房機能が生じない等
の問題が生じ、ヒートポンプ式空調装置は不向き、或い
は使用できない。
Conventional heat pump air conditioners operate as described above, and especially in winter, the outdoor unit (4) acts as an evaporator, so if the atmospheric temperature gets very low, it is difficult for the refrigerant to evaporate. As a result, the heating capacity will decrease. Therefore, in many cases, an auxiliary heater is installed in the indoor unit to compensate for the lack of heating capacity. Heat pump type air conditioners are unsuitable or cannot be used due to problems such as insufficient capacity and the inability to provide a heating function.

この発明はこのような実情に鑑み、室外機に工夫を施こ
すことによって、盆地や寒冷地、山間地、大陸気候地帯
等、冬期に大気温が著しく低くなる地域においても、ヒ
ートポンプ式空調装置における室外機が蒸発器として機
能するようにすることを目的としている。
In view of these circumstances, this invention is designed to improve the efficiency of heat pump air conditioners even in regions where the atmospheric temperature is extremely low in winter, such as basins, cold regions, mountainous regions, and continental climate regions, by making improvements to the outdoor unit. The purpose is to enable the outdoor unit to function as an evaporator.

〔問題点を解決する手段〕[Means to solve problems]

この発明によるヒートポンプ式空調装置は、冷媒回路を
切換えることによって夏期には室内機が蒸発器となると
共に室外機が凝縮器となり冬期には室内機が凝縮器とな
ると共に室外機が蒸発器となるヒートポンプ式空調装置
において、前記室外機内の熱交換器の吸込側に該熱交換
器に対向してヒートパイプの凝縮部を大気に露出した状
態で位置させると共に、該ヒートパイプの液溜部を地中
に埋設し、前記室外機の熱交換器に流入する大気を前記
ヒートパイプの凝縮部によって予熱するものであシ、又
、ヒートパイプの凝縮部と室外機のケースとの間に熱絶
縁物を介在させてヒートパイプの熱が室外機のケースへ
逃げるのを防止するようにしたものであシ、又、夏期に
はヒートパイプが地中に挿入されるようにヒートパイプ
を移動可能にしたものであシ、更に、その他多くの新規
で進歩性の大きな各種手段を備えている。
In the heat pump type air conditioner according to the present invention, by switching the refrigerant circuit, the indoor unit serves as an evaporator and the outdoor unit serves as a condenser in the summer, and the indoor unit serves as a condenser and the outdoor unit serves as an evaporator in the winter. In the heat pump type air conditioner, the condensing part of the heat pipe is located on the suction side of the heat exchanger in the outdoor unit, facing the heat exchanger, and exposed to the atmosphere, and the liquid reservoir part of the heat pipe is placed in the ground. The condenser section of the heat pipe preheats the air flowing into the heat exchanger of the outdoor unit, and a thermal insulator is installed between the condenser section of the heat pipe and the case of the outdoor unit. This is to prevent the heat from the heat pipe from escaping to the case of the outdoor unit, and the heat pipe is also movable so that it can be inserted underground in the summer. In addition, it includes many other new and highly inventive measures.

〔作用〕[Effect]

この発明のヒートポンプ式空調装置によれば、地中の熱
によってヒートパイプの液溜部内の液冷媒が蒸発潜熱を
大地より奪い気化して気体となり、自身の蒸気圧を利用
してヒートパイプの凝縮部に移動し大気によって冷却さ
れて凝縮潜熱を放呂して液化して前記液溜部に戻シ、一
方、前記ヒートパイプの凝縮部で前記液冷媒の液化の際
に凝縮潜熱の放出により加熱(予熱)された大気が室外
機の熱交換器に流入し、核熱交換器内の液冷媒を蒸発さ
せる。大気が相当に低温であっても、ヒートパイプの凝
縮部によって加熱された後に室外機の熱交換器に流入す
るので、室外機の熱交換器は蒸発器の機能が生じ、或い
は向上する。又、室外機の熱交換器にヒートパイプを一
体に組み込まずに該熱交換器の吸込側に対向してヒート
パイプを配設する構成である故、室外機の熱交換器自体
の構造を特別に変えることなく、単にヒートパイプを付
設することで済み、又、ヒートパイプと室外機ケースと
の間に介在した熱絶縁物によってヒートパ・rブの凝縮
部の熱が室外機ケースへ直接的に逃げるのを防止し、更
には、夏期のように、ヒートパイプの凝縮部の温度より
大気温が高かく、ヒートパイプが室外機の機能向上に寄
与しない場合には、ヒートパイプを地中に挿入してヒー
トパイプの凝縮部を室外機内熱交換器の吸入側から除去
することにより該室外機内熱交換器の吸込み空気抵抗を
小さくする。
According to the heat pump type air conditioner of the present invention, the liquid refrigerant in the liquid reservoir of the heat pipe absorbs latent heat of vaporization from the earth due to underground heat, becomes vaporized, and is condensed in the heat pipe using its own vapor pressure. The liquid refrigerant is cooled by the atmosphere, releases its latent heat of condensation, liquefies it, and returns to the liquid storage section.Meanwhile, in the condensing section of the heat pipe, it is heated by releasing the latent heat of condensation when the liquid refrigerant liquefies. The (preheated) air flows into the heat exchanger of the outdoor unit and evaporates the liquid refrigerant in the nuclear heat exchanger. Even if the atmospheric temperature is considerably low, it is heated by the condensing part of the heat pipe and then flows into the heat exchanger of the outdoor unit, so that the heat exchanger of the outdoor unit performs or improves the function of an evaporator. In addition, since the heat pipe is not integrated into the heat exchanger of the outdoor unit but is arranged opposite to the suction side of the heat exchanger, the structure of the heat exchanger of the outdoor unit itself has to be specially designed. You can simply attach a heat pipe without changing the heat pipe, and the heat insulator interposed between the heat pipe and the outdoor unit case allows the heat from the condensing part of the heat pump to be directly transferred to the outdoor unit case. Furthermore, when the air temperature is higher than the temperature of the condensing part of the heat pipe and the heat pipe does not contribute to improving the functionality of the outdoor unit, such as in the summer, the heat pipe can be inserted underground. By removing the condensing part of the heat pipe from the suction side of the outdoor heat exchanger, the suction air resistance of the outdoor heat exchanger is reduced.

〔実施例〕〔Example〕

以下この出願の多数の発明の実施例を第1図〜第17図
によって説明する。第1図〜第4図はこの発明の一実施
例を示す図で、第1図は室内機、室外機の取付状態の一
例を示す側面図、第2図は第1図の室外機部分の一部を
断面にして示す正面図、第8図は同斜視図、第4図は第
2図のものを部分的に拡大して示す正面図である。
A number of embodiments of the invention of this application will be described below with reference to FIGS. 1 to 17. Figures 1 to 4 are views showing one embodiment of the present invention. Figure 1 is a side view showing an example of how the indoor unit and outdoor unit are installed, and Figure 2 is a view of the outdoor unit in Figure 1. FIG. 8 is a perspective view of the same, and FIG. 4 is a partially enlarged front view of FIG. 2.

これら第1図〜第4図において、(1)は建物、(2)
は被空調空間、つまシ暖房及び冷房すべき部屋や室等の
空調負荷、(3)は室内機で、熱交換器、送風機、及び
これらを収納するケースで構成されている。(4)は室
外機で、圧縮機と送風機とのユニット(4(42))と
、熱交換器(408)と、前記圧縮機・送風機ユニツ)
 (4(42))と熱交換器(401)とを収納し通風
口(404A)を有したケース(404)とで構成され
ている・(5)は冷媒配管、(8)は大地、(9N9)
・・・はヒートパイプで、夫々凝縮部(901)と、液
溜部(9(42))と、前記凝縮部(901)に所定間
隔に取付けられたフィン(908) (908)・・・
とで構成されている。αOは各ヒートパイプ(9) (
9)・・・の凝縮部(901)と液溜部(9(42))
とノ間に該ヒートパイプの全周に亘って取り付けられた
熱絶縁物である。なお、図からも明らかなように、各ヒ
ートパイプ(9) (9)・・・の凝縮部(901)(
901)・・・及びフィン(903) (908)・・
・室外機(4)のケース(404)内に配設され、液溜
部(9(42))は大地(8)中に埋設されている。ま
た、各ヒートパイプ(9) (9)・・・の凝縮部(9
01) (901)・・・は室外機(4)内熱交換器(
403)の吸込側に大気中に露出した状態で位置させら
れていると共に、該熱交換器(408)の吸込側(40
131)に対し平行に、しかも該吸込側の面(4081
)の各部における通風量に差異が生起させることのない
ように、室外機の熱交換器(40111)の構造を考慮
して上記吸込側の面に対し均一な分布となるように配設
されている。前記ヒートパイプの凝縮部(901)(9
01)・・・は総て垂直に延在し、液溜部(9(42)
)(9(42))・・・は傾斜しているがはソ垂直に延
在している。更に各ヒートパイプ(9) (9)・・・
それらの液溜部(9(42))(9(42))・・・を
含む地中に埋設された部分は、地表面に近い部分間の相
対間隔L1より地表面よυ遠い部分間の相対間隔Ltを
長がくしである。なお、これら傾斜した液溜部(9(4
2)) (90’2)・・・は、第2図に一点鎖線で示
すように、大地(8)中に埋設され熱伝導性の良好な材
料で形成された共通の液溜タンク(9(42)1)に接
続し連通してもよい、前記熱絶縁物(断熱材)QOは、
水平方向に見てヒートパイプの凝縮部(901)(90
1)・・・が室外機の熱交換器(408)と重合した部
分(9011) (9011)・・・と、ヒートパイプ
の地中に埋設された液溜部(9(42)) (9(42
))・・・との間の部分の周囲に取り付けられている。
In these figures 1 to 4, (1) is a building, (2)
(3) is the indoor unit, which is composed of a heat exchanger, a blower, and a case that houses them. (4) is an outdoor unit, which includes a compressor and blower unit (4 (42)), a heat exchanger (408), and the compressor/blower unit).
(4 (42)) and a case (404) that houses a heat exchanger (401) and has a ventilation port (404A). (5) is the refrigerant pipe, (8) is the ground, ( 9N9)
... are heat pipes, each having a condensing section (901), a liquid reservoir section (9 (42)), and fins (908) (908) attached to the condensing section (901) at predetermined intervals.
It is made up of. αO is each heat pipe (9) (
9) Condensing section (901) and liquid reservoir section (9 (42))
A thermal insulator is installed around the entire circumference of the heat pipe between the heat pipe and the heat pipe. Furthermore, as is clear from the figure, the condensing section (901) (of each heat pipe (9) (9)...
901)...and fins (903) (908)...
- It is arranged inside the case (404) of the outdoor unit (4), and the liquid reservoir (9 (42)) is buried in the earth (8). In addition, the condensing section (9) of each heat pipe (9) (9)...
01) (901)... is the outdoor unit (4) internal heat exchanger (
The heat exchanger (403) is located exposed to the atmosphere on the suction side (403), and the heat exchanger (408) is located on the suction side (403).
131), and parallel to the suction side surface (4081)
) In order to prevent differences in the amount of ventilation in each part of the airflow, the airflow is arranged so that the airflow is uniformly distributed on the suction side surface, taking into consideration the structure of the heat exchanger (40111) of the outdoor unit. There is. The condensing part (901) (9) of the heat pipe
01)... all extend vertically, and the liquid reservoir section (9 (42)
)(9(42))... is inclined but extends vertically. Furthermore, each heat pipe (9) (9)...
The parts buried underground, including those liquid reservoirs (9(42)) (9(42))... The length of the relative interval Lt is a comb. Note that these inclined liquid reservoirs (9 (4)
2)) (90'2)... is a common liquid storage tank (90'2) buried in the ground (8) and made of a material with good thermal conductivity, as shown by the dashed line in Figure 2. (42) The thermal insulator (insulating material) QO, which may be connected and communicated with 1),
The condensing section (901) (90) of the heat pipe when viewed in the horizontal direction
1) The part (9011) where ... is polymerized with the heat exchanger (408) of the outdoor unit (9011) ... and the liquid reservoir part (9 (42)) buried underground of the heat pipe (9 (42
))... is attached around the part between.

またこの熱絶縁物QOQ(1・・・は、ヒートパイプ(
9) (9)・・・が地中に埋設された部分の地表面に
近い部分(大気の温度の影響を受けて大気の温度に近い
温度となる部分)まで延在させることが好ましい、ヒー
トパイプの凝縮部(901)の各フィン(908) (
90,8)・・・は、凝縮部(901)の垂直方向の軸
線(9012) (9012)と直角をなして水平方向
に延在し、室外機の熱交換器(40,3)のフィン(4
082) (4oa2)・・・間の通風路(4018)
 (4083)・・・と同方向の通風路(9081) 
(9081)・・・が各フィン(908)(908)・
・・間に形成されている。室外機の熱交換器(408)
の各フィン(4082) (40g2)は何れも所定間
隔毎に垂直方向に延在している。第1図〜第4図のヒー
トポンプ式空調装置の冷媒回路は第19図と同じであり
、従ってヒートポンプ式空調装置の基本動作は従来と同
じである。
In addition, this thermal insulator QOQ (1... is a heat pipe (
9) It is preferable for (9)... to extend to a part of the buried part close to the ground surface (a part where the temperature is close to the atmospheric temperature due to the influence of atmospheric temperature). Each fin (908) of the condensing part (901) of the pipe (
90,8)... extend horizontally at right angles to the vertical axis (9012) (9012) of the condensing section (901), and are connected to the fins of the heat exchanger (40,3) of the outdoor unit. (4
082) (4oa2)...Ventilation path between (4018)
(4083)...Ventilation passage in the same direction as (9081)
(9081)... is each fin (908) (908)
...is formed between. Outdoor unit heat exchanger (408)
The fins (4082) (40g2) extend vertically at predetermined intervals. The refrigerant circuit of the heat pump air conditioner shown in FIGS. 1 to 4 is the same as that shown in FIG. 19, and therefore the basic operation of the heat pump air conditioner is the same as the conventional one.

冬期、つ″!シ室外機(4)が蒸発器として作用してい
る場合には、各ヒートパイプ(9) (9)・・・の液
溜部(9(42)) (9(42))・・・、液溜タン
ク(9(42)1)内の液冷媒は地熱によって蒸発し、
温度の高い気相冷媒となってヒートパイプ(9) (9
)・・・内を上昇し、凝縮部(901)(901)・・
・に至る。一方、室外機の送風機ユニット(4(42)
)によって、室外機の熱交換器(403)には、ヒート
パイプの凝縮部(901) (901)・・・側から大
気が流入している。従って、室外機の熱交換器(408
)に流入する前記大気は、ヒートパイプの各凝縮部(9
01) (901)・・・を介して該凝縮部(901)
 (901) −°′内の温度の高い冷媒と熱交換して
予熱され、この予熱されて温度が上昇した大気が室外機
の熱交換器(408)に流入し、該熱交換器(408)
は蒸発器としての機能を充分に発揮する。なお、第4図
から理解できるように、ヒートパイプ(9) (9)・
・・の室外機の熱交換器(408)との重合部(901
1) (9011)以外の部分は、熱交換器(4011
)に流入する大気の予熱には殆んど寄与しない故、その
部分での熱放教を防ぐことが重要である。特に、ヒート
パイプ(9) (9)・・・が地表に露出して熱交換器
(408)に至るまでの間の部分、及び地表面に近い地
中に埋設されている部分では、ヒートパイプ(9) (
9)・・・の温度が大気や地表面より温度が高いので、
該部分でヒートパイプ(9) (9)・・・内気相冷媒
の熱エネルギーが大気や地表部分に逸散するが、該部分
には熱絶縁物M QO・・・が施こされているので、か
\る好ましくない熱エネルギーの逸散は防止される。又
、ヒートパイプの液溜部(9(42)) (9(42)
)・・・はそれらの外周面で地中の熱エネルギーを吸収
するので、各液溜部(9(42))(9(42))・・
・間の距RLtが短かければ、空調装置の長時間運転に
よって液溜部(9(42)) (9(42))・・・周
囲の地中温度が早く低下する傾向が生じるので、各ヒー
トパイプ(9) (0)・・・の地表面に近い部分間の
距離L1よυ地中先端部間の距RLtを大きくして、ヒ
ートパイプ液溜部(9(42))の近傍の地中温度が低
下しにくいように工夫しである。更に1ヒートパイプ(
9) (9)・・・を付加することによって室外機の熱
交換器(408)への大気流入に対する通風抵抗が実質
的に増加するのはできるだけ防ぐことが必要であシ、従
って第4図に示すように、室外機内熱交換器(408)
の各通風路(4088) (4088)・・・の通風方
向(水平方向)に見た中心(40a8A) (4088
A)・・・とヒートパイプのフィン間通風路(9081
) (9081)・・・の通風方向(水平方向)に見た
中心(9081A) (9081A)・・・とを水平方
向に見て一致させることによって、上記室外機内熱交換
器(408)への大気流入に対する1通風抵抗を極力押
さえである。
In winter, when the outdoor unit (4) acts as an evaporator, the liquid reservoirs (9 (42)) of each heat pipe (9) (9)... (9 (42) )..., the liquid refrigerant in the liquid storage tank (9 (42) 1) is evaporated by geothermal heat,
It becomes a high-temperature gas phase refrigerant and flows into a heat pipe (9) (9
)... rises inside, condensing section (901) (901)...
・Achieving. On the other hand, the blower unit of the outdoor unit (4 (42)
), the air flows into the heat exchanger (403) of the outdoor unit from the condensing section (901) (901)... side of the heat pipe. Therefore, the outdoor unit heat exchanger (408
), the air flows into each condensing section (9) of the heat pipe.
01) (901)... via the condensing section (901)
(901) The air is preheated by heat exchange with the high temperature refrigerant in -°', and the preheated air whose temperature has increased flows into the heat exchanger (408) of the outdoor unit,
fully performs its function as an evaporator. In addition, as can be understood from Fig. 4, the heat pipe (9) (9)
The overlapping part (901) with the heat exchanger (408) of the outdoor unit of...
1) Parts other than (9011) are heat exchangers (4011
), it is important to prevent heat release in that area. In particular, in the part between the heat pipe (9) (9)... exposed on the ground and reaching the heat exchanger (408), and in the part buried underground near the ground surface, the heat pipe (9) (
9) Because the temperature of ... is higher than the atmosphere and the ground surface,
In this part, heat pipe (9) (9)...Thermal energy of the internal gas phase refrigerant is dissipated to the atmosphere and the ground surface, but since this part is provided with a thermal insulator MQO... ,\ such undesirable thermal energy dissipation is prevented. In addition, the liquid reservoir part of the heat pipe (9 (42)) (9 (42)
)... absorb underground thermal energy on their outer peripheral surfaces, so each liquid reservoir (9(42)) (9(42))...
・If the distance RLt between them is short, the underground temperature around the liquid reservoir (9 (42)) (9 (42)) will tend to drop quickly due to long-term operation of the air conditioner. The distance RLt between the tips of the heat pipes (9) (0)... near the ground surface is increased by the distance RLt between the tips of the heat pipes (9) (0)... near the ground surface (9 (42)). It is designed to prevent the underground temperature from dropping. 1 more heat pipe (
9) It is necessary to prevent the addition of (9)... from substantially increasing the ventilation resistance to the air flowing into the heat exchanger (408) of the outdoor unit, and therefore, as shown in Fig. 4. As shown in the outdoor unit heat exchanger (408)
The center (40a8A) (4088) as seen in the ventilation direction (horizontal direction) of each ventilation passage (4088) (4088)...
A) ... and the ventilation path between the fins of the heat pipe (9081
) (9081)... as seen in the ventilation direction (horizontal direction) (9081A)... By matching the center (9081A)... (9081A)... to the outdoor unit heat exchanger (408) when viewed in the horizontal direction. The ventilation resistance against air inflow is suppressed as much as possible.

!!た、そのために、各ヒートパイプ(9) (9)・
・・の軸線(9012) (9012)・・・と室外機
内熱交換器(401)の各フィン(4082) (40
82)・・・とを通風方向(水平方向)に見て一致させ
である。
! ! For that purpose, each heat pipe (9) (9)
... axis (9012) (9012) ... and each fin (4082) (40) of the outdoor unit internal heat exchanger (401)
82)... are matched when viewed in the ventilation direction (horizontal direction).

なお、夏期、つまシ室外機(4)が凝縮器として作用し
ている場合には、通常は、室外機内熱交換器(403)
に流入する大気の方がヒートパイプの凝縮部(901)
 (901)・・・より温度が高い、従って、各ヒート
パイプの凝縮部(901) (901)・・・が大気に
よって加熱されて(大気の熱を吸収し)得た熱エネルギ
ーはヒートパイプ(9) (9)・・・をその液溜部(
9(42))(9(42))・・・へ向けて伝導し、そ
の過程で温度の低い大地と熱交換する。つまシ、該作用
によって室外機の熱交換器(408)に流入する大気は
若干温度が下がるので、該熱交換器(408)の凝縮機
能は若干良くなる。但し、ヒートパイプ(9) (9)
・・・内の冷媒による熱移動は、液冷媒が地中の液溜部
(9(42)) (9(42))・・・内に在ることも
あって、殆んど期待できないので、前記ヒートパイプを
介した熱伝導による大気から地中への熱移動量はヒート
パイプ(9) (9)・・・のパイプ自体、フィン(9
0g) (90B)・・・の材料、形状、構造、大きさ
、体積等に依存し、一方、上記室外機内熱交換器(40
8)への大気の流入に対する通風抵抗は、上記ヒートパ
イプ(9) (9)・・・のパイプ外径、パイプ間隔、
フィン(908) (908)・・・の形状、大きさ、
フィンtIIJ隔、及び室外機内熱交換器(408)と
の相対距離、相対位置関係に依存するので、必要に応じ
てヒートパイプ(9)(9)・・・は夏期には取り除く
が或いは凝縮部(901) (901)・・・をも大地
(8)中に挿入(後述の第10図〜第12図参照)すれ
ばよい。
In addition, in the summer, when the outdoor unit (4) acts as a condenser, the outdoor unit heat exchanger (403)
The air flowing into the condensing part (901) of the heat pipe
(901)...The temperature is higher than that of the heat pipe. Therefore, the thermal energy obtained when the condensing section (901) (901)... of each heat pipe is heated by the atmosphere (absorbs heat from the atmosphere) is transferred to the heat pipe ( 9) (9) ... into its liquid reservoir (
9(42)) (9(42))..., and in the process exchanges heat with the earth, which has a lower temperature. As a result of this action, the temperature of the air flowing into the heat exchanger (408) of the outdoor unit is slightly lowered, so that the condensing function of the heat exchanger (408) is slightly improved. However, heat pipe (9) (9)
Heat transfer by the refrigerant inside ... can hardly be expected because the liquid refrigerant is present in the underground liquid reservoir (9 (42)) (9 (42)) ... , the amount of heat transferred from the atmosphere to the ground due to heat conduction through the heat pipe is determined by the heat pipe (9) (9)... pipe itself, fin (9)...
0g) (90B) ... depends on the material, shape, structure, size, volume, etc.;
8) The ventilation resistance against the inflow of air into the heat pipe (9) is determined by the pipe outer diameter of the heat pipe (9), the pipe spacing,
The shape and size of the fin (908) (908)...
The heat pipes (9) (9)... may be removed in the summer if necessary, or the condensing section may be (901) (901)... may also be inserted into the ground (8) (see Figures 10 to 12 described later).

室外機内熱交換器(408)とヒートパイプ(9) (
9)・・・とけ必ずしも接触させる必要はないが、接触
させた方がヒートパイプ(9) (9)・・・から室外
機内熱交換器(40111)に熱伝導による熱移動も行
なわれるので好ましい、第5図はヒートパイプ(9) 
(9)・・・と室外機内熱交換器(408)とを接触さ
せた例を示す要部の平面図で、ヒートパイプの凝縮部(
901) (901)・・・の軸心(9012) (9
012) ”・と、室外機内熱交換器(40B)のフィ
ン間通風路(4088) (4081)の通風方向に見
た中心(40!8A) (4088A)とを通風方向に
見て一致させ、室外機内熱交換器(4o8)の各一対の
フィン(4082) (40192)、(4082) 
(4082) 、川の吸入側端部に一つのヒートパイプ
(9)の外周面を補液した例を示す、なお第4図に示す
ように、ヒートパイプの凝縮部(901) (901)
・・・の軸心(9012) (9012)・・・と室外
機内熱交換器(408) (408)・・・のフィン(
4082)(4082)・・・とを通風方向に見て一致
させた状態で、ヒートパイプの凝縮部(901) (9
01) °゛と室外機内熱交換器(408) (40B
)・・・のフィン(4082) (4082)・・・と
を接触させてもよい、tた、ヒートパイプの凝縮部(9
01) (901)・・・の外周には、第1図〜第4図
に示すようなフィン(908) (908)・・・は必
ずしも設けなくてもよく、更に、ヒートパイプの凝縮部
(901) (901)・・・の通風方向に見た幅寸法
が同方向に見た室外機内熱交換器(408)のフィン(
4082)(4082)・・・ピッチより小さい場合に
は、該熱交換器(408)の冷媒管(4084)にヒー
トパイプの各凝縮部(901) (フィン(90B) 
(908)・・・の有無に拘らず)を補液してもよい。
Outdoor unit internal heat exchanger (408) and heat pipe (9) (
9)...Although it is not necessarily necessary to make contact, it is preferable to make contact because heat transfer from the heat pipe (9) (9)... to the outdoor unit heat exchanger (40111) by thermal conduction is also carried out. , Figure 5 shows the heat pipe (9)
(9)... is a plan view of the main part showing an example in which the outdoor unit heat exchanger (408) is in contact with the condensing part of the heat pipe (
Axis center of (901) (901)... (9012) (9
012) ” and the center (40!8A) (4088A) of the inter-fin ventilation passages (4088) (4081) of the outdoor unit heat exchanger (40B) as seen in the ventilation direction, when viewed in the ventilation direction, Each pair of fins (4082) (40192), (4082) of the outdoor unit heat exchanger (4o8)
(4082) shows an example in which fluid is replenished on the outer circumferential surface of one heat pipe (9) at the suction side end of the river.As shown in Fig. 4, the condensing part (901) of the heat pipe
...'s axis (9012) (9012)... and the fins of the outdoor unit internal heat exchanger (408) (408)...
4082) (4082)... when viewed in the ventilation direction, the condensing part (901) (9
01) °゛ and outdoor unit internal heat exchanger (408) (40B
)...'s fins (4082) (4082)... may be brought into contact with the condensing part (9) of the heat pipe.
It is not necessary to provide fins (908) (908)... as shown in FIGS. 1 to 4 on the outer periphery of the heat pipe ( 901) (901)... The width dimension as seen in the ventilation direction is the fin of the outdoor unit internal heat exchanger (408) when viewed in the same direction
4082) (4082)...If the pitch is smaller than the pitch, each condensing section (901) (fin (90B)) of the heat pipe is attached to the refrigerant pipe (4084) of the heat exchanger (408).
(908)...) may be replaced.

ヒートパイプの凝縮部(901) (901)・・・の
温度は、熱源が地熱の場合は大気温度より高く、室外機
内熱交換器(408)以外へ逸散するのを極力防止する
のが好ましい、第6図及び第7図は何れも、ヒートパイ
プの凝縮部(901) (901)の熱が室外機内熱交
換器(408)以外へ逸散するのを防止するそれぞれ異
なる例を示す平面図で、第6図において、ヒートパイプ
の各凝縮部(901) (901)・・・の室外機ケー
ス(4o、i) 1IllHの面には熱絶縁物(断熱材
)aη@川が装着されており、この熱絶縁物α01)・
・・にょって、冬期には、ヒートパイプの各凝縮部(9
01) (901)・・・から室外機ケース(404)
への熱伝導、輻射による熱の逸散を防止し、夏期には、
室外機ケース(404)からヒートパイプ凝縮部(90
1) (901)・・・への熱移動を防止している。又
、前記各熱絶縁物(ロ)(ロ)・・・は室外機ケース(
404)の通風口(404A)(404A)・・・を塞
ぐことのないように該通風口(404A) (404A
)・・・を避けて配置されている。″また該熱的絶縁物
0υQη・・・は、ヒートパイプ凝縮部(901) (
901)・°・へ通風口(404A) (404A)・
・・から矢印方向に流入する大気との接触面積があシ小
さくならないように、大気流入方向(矢印方向)から見
た左右方向の長さり、をヒートパイプ凝縮部(901)
 (901)・・・の左右方向の長さL4より短かくす
るのが好ましい、第7図においては、熱的絶縁物o〃が
左右方向に−続きに延在してヒートパイプ(9) (9
)・・・の各凝縮部(901)(901)・パに対し共
通の熱的絶縁物となされている。この熱的絶縁物Ql)
は、室外機ケース(404)の各左右方向°上下方向に
多数並設の各通風口(404A) (404A)・・・
を塞がないようにするのが好しく、そのために細い帯状
の熱的絶縁物をヒートパイプの各凝縮部(901) (
901)・・・に跨って左右方向に延在するように且つ
上下方向(図の紙面に対し直角方向)に並設されるよう
に、該各凝縮部(901) (901)・・・に取り付
けるか、或いは好ましくは室外機ケース(404)内側
面に取り付けてもよい、但し、後者の方が熱的絶縁物a
υの取付は作業を行ない易い、又、通風方向下流側にも
、図示のようにヒートパイプ(9) (9)・・・及び
熱的絶縁物αυを上述の通風方向上流側の場合と同様に
設けてもよく、その場合、冬期には熱伝導によるヒート
パイプ(9) (9)・・・から室外機内熱交換器(4
0B)への熱移動は行なわれるが、該ヒートパイプ(9
) (9)・・・によって加熱された大気から室外機内
熱交換器(408)への熱移動は殆んど行なわれない、
従って、該下流lAjにおいては、第7図に示すように
取付作業性を考慮した共通の熱的絶縁物αυとするのも
よいが、第6図に示すようにヒートパイプの各凝縮部(
901) (901)・・・に個別に熱的絶縁物0υを
取り付け、しかも第6図よ)ヒートパイプ凝縮部(90
1) (901)の外周面にその周方向に浴って更に延
在させ、該ヒートパイプ凝縮部(901)(901)が
大気に露出する面積を極力小さくするか皆無として、該
ヒートパイプ凝縮部(901) (901)・・・から
下流側大気への熱移動を防止することも重要である。更
には、該下流側のヒートパイプ凝縮部(901)(90
1)・・・の通風方向に見た左右の福を、室外機内熱交
換器(408)の各フィン(4082) (4082)
・・・のピッチ(上記左右方向のフィン間隔)よυ小さ
く或いは等しくして、該ヒートパイプ凝縮部(901)
(901)・・・を該室外機内熱交換器(408)の各
フィン(4082)(4082)・・・間に挿入し且つ
該熱交換器(408)の冷媒管(4082)−゛2上記
各フィン(4082) (4082)に接触させれば更
に熱伝導によるヒートパイプ(9) (9)・・・から
室外機内熱交換器(408)への熱移動量は多くなる。
When the heat source is geothermal, the temperature of the condensing part (901) (901) of the heat pipe is higher than the atmospheric temperature, and it is preferable to prevent it from dissipating to other than the outdoor unit heat exchanger (408) as much as possible. , FIG. 6, and FIG. 7 are both plan views showing different examples of preventing the heat of the condensing section (901) (901) of the heat pipe from dissipating to other than the outdoor unit heat exchanger (408). In Fig. 6, thermal insulators (insulating materials) aη@kawa are attached to the surfaces of the outdoor unit cases (4o, i) 1IllH of each condensing section (901) (901)... of the heat pipe. This heat insulator α01)
...In winter, each condensing section of the heat pipe (9
01) (901)... to outdoor unit case (404)
Prevents heat conduction and heat dissipation due to radiation, and in the summer,
From the outdoor unit case (404) to the heat pipe condensing section (90
1) Prevents heat transfer to (901)... In addition, each of the above thermal insulators (B) (B)... is attached to the outdoor unit case (
404) so as not to block the ventilation holes (404A) (404A)...
)... are arranged to avoid. ``Also, the thermal insulator 0υQη... is the heat pipe condensing part (901) (
901)・°・Ventilation port (404A) (404A)・
In order to prevent the area of contact with the air flowing in the direction of the arrow from becoming small, the length in the left and right direction as seen from the air inflow direction (arrow direction) is the heat pipe condensing section (901).
It is preferable to make the length L4 in the left-right direction shorter than the length L4 of the heat pipe (901). In FIG. 9
)... is used as a common thermal insulator for each of the condensing parts (901) (901) and PA. This thermal insulator Ql)
(404A) (404A)...
It is preferable to avoid blocking the heat pipe, and for this purpose a thin strip of thermal insulation is placed in each condensing section (901) of the heat pipe (
901)... so as to extend in the left-right direction and to be arranged in parallel in the vertical direction (direction perpendicular to the paper surface of the figure). or preferably to the inner surface of the outdoor unit case (404), provided that the latter is preferable to the thermal insulator a.
Installation of υ is easy, and on the downstream side in the ventilation direction, as shown in the figure, heat pipes (9) (9)... and thermal insulators αυ are installed in the same way as on the upstream side in the ventilation direction. In that case, in winter, the heat exchanger (4) inside the outdoor unit can be connected from the heat pipe (9) (9)... by heat conduction.
Heat transfer to the heat pipe (9B) takes place;
) (9) There is almost no heat transfer from the atmosphere heated by... to the outdoor unit internal heat exchanger (408).
Therefore, in the downstream lAj, it is preferable to use a common thermal insulator αυ in consideration of installation workability as shown in FIG. 7, but as shown in FIG.
901) A thermal insulator 0υ is individually attached to (901)..., and the heat pipe condensing section (90
1) The heat pipe condensation section (901) is further extended in the circumferential direction on the outer peripheral surface of the heat pipe condensation section (901), and the area where the heat pipe condensation section (901) is exposed to the atmosphere is minimized or completely eliminated. It is also important to prevent heat transfer from the parts (901) (901)... to the downstream atmosphere. Furthermore, the downstream heat pipe condensing section (901) (90
1) Look at the left and right sides in the ventilation direction of each fin (4082) (4082) of the outdoor unit internal heat exchanger (408).
The pitch of the heat pipe condensing section (901) is smaller than or equal to the pitch of
(901)... is inserted between each fin (4082) (4082)... of the outdoor unit internal heat exchanger (408), and the refrigerant pipe (4082) of the heat exchanger (408) - 2 above If the fins (4082) (4082) are brought into contact with each other, the amount of heat transferred from the heat pipes (9) (9) . . . to the outdoor unit heat exchanger (408) due to thermal conduction will further increase.

なお、上記熱的絶縁物Ql)を弾性を有するものとし、
第6図及び第7図の取付は完了状態において該弾性熱的
絶縁物αηが室外機ケースr404>とヒートパイプ(
9) (9)・・・とで加圧された状態下にあるように
すれば、ヒートパイプの各凝縮部(901) (901
)・・・と室外機内熱交換器(408)の各フィン(4
082)(4082)・・・、或いは冷媒管(40J3
4)とを当接させるための特別な手段、例えば溶接、を
施こさなくても該当接が上記弾性熱的絶縁物αυの弾性
にょシ充分行なえ、更には室外機内振動源例えば送風機
モータ、圧縮機モータ、に依拠する上記各フィン(4o
a2) (4082)・・・トヒートハイプ凝縮部(4
0g)とのビビリ音ノ発生も防止できる。
Note that the thermal insulator Ql) has elasticity,
6 and 7, the elastic thermal insulator αη is connected to the outdoor unit case r404> and the heat pipe (
9) (9)..., each condensing section (901) (901
)...and each fin (4) of the outdoor unit heat exchanger (408)
082) (4082)... or refrigerant pipe (40J3
4) The elasticity of the elastic thermal insulator αυ can be sufficiently maintained without special means such as welding, and the vibration source inside the outdoor unit, such as the blower motor, compression Each of the above fins (4o
a2) (4082)...Tohitohype condensation part (4
0g) can also be prevented from occurring.

ヒートパイプ(9) (9)・・・にょって地熱を室外
機の熱交換器(408)により多く移動させるには、ヒ
ートパイプ(9) (9)・・・の液溜部(9(42)
) (9(42))・・・と大地(8)との接触面積を
大きくすることも大事である。第8図及び第9図はヒー
トパイプ(9) (9)・・・の液溜部(9(42))
(9(42))・・・と大地(8)との接触面積を大き
くする構造例を示す図で、第8図は一部を断面で示す要
部の正面図、第9図は第8図における集熱部材の平面図
であって、これらの図において、@は集熱部材で、それ
ぞれ一枚の板材をプレス等による折曲加工によって形成
された良熱伝導性の一対の粗汁(121) (121)
を組み合わせることによって形成されている。上記一対
の粗汁(121) (121)の何れにも、所定間隔毎
に位置し垂直方向に延在する手内状湾曲部(122A)
 (122A)・・・と、これら湾曲部(122A) 
(122A)・・・間に位置するフィン状折曲部(12
3A)(128A)・・・とが形成されており、上記一
対の粗汁(121) (121)の組み合わせによりそ
れぞれ垂直に延在する多数の管状把持部(122) (
122)・・・と集熱フィン(128) (128)・
・・とが形成される。そして上記ヒートパイプの各液溜
部(9(42)) (9(42))・・・は上記把持部
(122) (122)・・・によって把持され、つ″
!シ相対向する一対の湾曲部(122A) (122A
)によって挾持され、該缶液溜部(9(42)) (9
(42))・・・と集熱部材(2)とは熱的に接続され
る。従って、ヒートパイプの各液溜部(9(42)) 
(9(42))・・・は集熱部材(2)の全表面から地
熱を吸収することになり、その結果、各ヒートパイプ+
9) (9)・・・はより多くの地中熱エネルギーを室
外機内熱交換器(40B)に移動させることができる。
Heat pipe (9) (9)...In order to transfer more geothermal heat to the heat exchanger (408) of the outdoor unit, use the liquid reservoir part (9(9) of heat pipe (9) (9)... 42)
) It is also important to increase the contact area between (9 (42))... and the earth (8). Figures 8 and 9 show the liquid reservoir section (9 (42)) of the heat pipe (9) (9)...
(9(42))... and the earth (8). Figure 8 is a front view of the main part, partially shown in cross section, and Figure 9 is the 2 is a plan view of the heat collecting member in the figures, and in these figures, @ is the heat collecting member, and each of them is a pair of rough juices with good thermal conductivity ( 121) (121)
It is formed by combining. In each of the pair of rough juices (121) (121), there are curved portions (122A) located at predetermined intervals and extending in the vertical direction.
(122A)...and these curved parts (122A)
(122A)...Fin-shaped bent portion located between (12
3A) (128A)... are formed, and a large number of tubular gripping parts (122) (
122)... and heat collecting fins (128) (128)...
... is formed. Each liquid reservoir part (9(42)) (9(42))... of the heat pipe is held by the grip part (122) (122)...
! A pair of curved parts (122A) facing each other (122A
), and the can liquid reservoir part (9 (42)) (9
(42))... and the heat collecting member (2) are thermally connected. Therefore, each liquid reservoir part (9 (42)) of the heat pipe
(9(42)) ... absorbs geothermal heat from the entire surface of the heat collecting member (2), and as a result, each heat pipe +
9) (9)... allows more geothermal energy to be transferred to the outdoor unit internal heat exchanger (40B).

なお円管状の熱的絶縁物α110・・・は第8図に断面
で示すように、その地中に埋設された部分の上端面は上
記円管状把持部(122)(122)・・・の上端面に
補装しており、集熱部材(2)から室外機内熱交換器(
40,9)近傍に至る比較的温度の低い部分でヒートパ
イプ(9) (9)外周面から不用な熱放散が行なわれ
るのを防止するようにしである。
As shown in cross section in FIG. 8, the circular tubular thermal insulators α110... It is attached to the upper end surface, and connects the heat collecting member (2) to the outdoor unit internal heat exchanger (
This is to prevent unnecessary heat dissipation from the outer peripheral surface of the heat pipe (9) (9) in a relatively low temperature area near the heat pipe (9).

第1図〜第4図の実施例の説明で記述したように、場合
によって室外機内熱交換器(408)への大気流入に対
する通風抵抗が、ヒートパイプの凝縮部(eol) (
901)・・・の存在によって、夏期(該熱交換器(4
08)が凝縮器として作用している場合)には問題とな
る場合があシ、その場合は該ヒートパイプの各凝縮部(
901) (901)・・・を室外機内熱交換器(40
8)に対向しないようにする必要がある。第10図〜第
12図は、夏期には(室外機の熱交換器(408)が凝
縮器として作用している場合)、ヒートパイプの各凝縮
部(901) (901)・・・を室外機の熱交換器(
408)に対向しない位置へ移動できる構造例を示す図
で、第10図は一部つ′!9室外機ケース及び大地を断
面で示す正面図、第11図は第10図における要部の平
面図、第12図は第10図における要部の側面図であっ
て、集熱部材に)の欄或は上述の第8図及び第9図に示
す集熱部材四とはソ同じであるが、第8図及び第9図の
場合とは異なり、管状把持部(122) (122)の
内径及び外径とも大きく形成して、その内部を各ヒート
パイプ(9) (9)・・・が移動できるように構成さ
れてお〃、そのために、集熱フィン(第8図及び第9図
の(128) (128)・・・)は寸法上の制約から
設けておらず、また、集熱部材(ハ)の垂直方向の長さ
も、ヒートパイプ(9) (9)・・・の移動のガイド
となるべく長くしであると共に、一点鎖線(至)よυ上
の部分には上述の不用な熱放散が生じないようにその全
表面に熱的絶縁被覆Q4を施しである。なお、円管状把
持部(122) (122)・・・の内周部とヒートパ
イプの液溜部(9(42)) (9(42))の外周面
との間の微小隙間(ト)には良熱伝導性グリースなどを
充填して集熱部材(6)とヒートパイプの液溜部(0(
42)) (9(42))との熱的接続を密にしである
。(16)は室外機の熱交換器(408)に流入する大
気の通風方向から見て水平方向左右に延在する細長い板
状の連結部材で、ヒートパイプの各凝縮部(901)(
901)・・・の上端部が機械的に′接続されており、
この連結部材(16)が上下方向に移動すれば全凝縮部
(901)(901)・・・が上下に移動するようにし
である。α力は温度に応動する一対の形状記憶部材で、
大気の温度に応動して冬期には(室外機の熱交換器(4
08)が蒸発器として作用している場合)図示実線の形
状をなし、夏期には(室外機の熱交換器(403)が凝
縮器として作用している場合)図示一点鎖線で示す形状
となる。上記一対の各形状記憶部材Q″りの下端部(1
71)は何れも上記集熱部材つまりヒートパイプ(9)
 (9)・・・のガイド部材@の上端部に固定され、U
字状をなす上端部(127)の先端(171)は上記連
結部材αQの両端部上面に接続されている。一対の形状
記憶部材αηαηは何れも、室外機(4)が設置されて
いる部分の大気の温度に応動して、上述の冬期には図示
実線の状態であるので、連結部材αG、ヒートパイプ(
9) (9)・・・も実線の状態にあり、大地(8)中
の熱エネルギーはヒートパイプ(9) (9)・・・の
作用によって室外機(4)の熱交換器(408)へと熱
移動して該熱交換器(408)はその温度が上昇してそ
の蒸発器としての機能が向上或いは生じる。上述の夏期
には、形状記憶部材(17)α力は大気の品温に応動し
て一点鎖線で示すように変形してそのU字状部先端で連
結部材a・を一点鎖線で示す位置まで押し下げるので、
該連結部材onの実線の位置から一点鎖線の位置までの
移動に追従して各ヒートパイプ(9) (9)・・・モ
実線の位置から一点鎖線の位置まで移動し、ヒートパイ
プの凝縮部(901) (901)・・・は室外機内熱
交換器(408)に対向していた位置から対向しない位
置、つまシガイド部材(集熱部材)(2)の各管状艦(
122)(122)・・・内の孔つまシガイド孔(12
2B) (122B)・・・内に自動的に挿入される。
As described in the explanation of the embodiment in FIGS. 1 to 4, in some cases, the ventilation resistance to the air flowing into the outdoor unit heat exchanger (408) may be caused by the condensation part (eol) of the heat pipe (
901) ..., the heat exchanger (4
08) is acting as a condenser), this may cause a problem, in which case each condensing section (
901) (901) ... to the outdoor unit internal heat exchanger (40
It is necessary to avoid facing 8). Figures 10 to 12 show that in summer (when the heat exchanger (408) of the outdoor unit acts as a condenser), each condensing section (901) (901) of the heat pipe is machine heat exchanger (
Figure 10 is a diagram showing an example of a structure that can be moved to a position that does not face the 408). 9 A front view showing the outdoor unit case and the ground in cross section, FIG. 11 is a plan view of the main part in FIG. 10, and FIG. 12 is a side view of the main part in FIG. The column or the heat collecting member 4 shown in FIGS. 8 and 9 above is the same, but unlike the case of FIGS. 8 and 9, the inner diameter of the tubular gripping part (122) (122) Both heat pipes (9) and (9) are made large in diameter so that each heat pipe (9) (9)... can move inside the heat pipe (9). (128) (128)...) are not provided due to dimensional constraints, and the vertical length of the heat collecting member (c) is also limited by the movement of the heat pipes (9) (9)... In addition to being as long as possible to serve as a guide, the entire surface of the portion above the dashed line υ is coated with a thermal insulation coating Q4 to prevent the above-mentioned unnecessary heat dissipation. In addition, there is a minute gap (T) between the inner circumferential part of the circular tubular gripping part (122) (122)... and the outer circumferential surface of the liquid reservoir part (9(42)) (9(42)) of the heat pipe. is filled with good thermal conductive grease etc. to connect the heat collecting member (6) and the heat pipe liquid reservoir (0(
42)) (9(42)). (16) is an elongated plate-shaped connecting member extending left and right in the horizontal direction when viewed from the ventilation direction of the air flowing into the heat exchanger (408) of the outdoor unit, and each condensing part (901) of the heat pipe
901)... are mechanically connected to each other,
When this connecting member (16) moves in the vertical direction, all the condensing parts (901) (901)... move vertically. α force is a pair of shape memory members that respond to temperature.
In response to the atmospheric temperature, in winter (outdoor unit heat exchanger (4)
08) acts as an evaporator), it takes the shape shown by the solid line in the figure, and in the summer (when the outdoor unit heat exchanger (403) acts as a condenser) it takes the shape shown by the dashed line in the figure. . The lower end (1
71) are all the above heat collecting members, that is, heat pipes (9)
(9) It is fixed to the upper end of the guide member @ of the U
The tip (171) of the upper end (127) having a letter shape is connected to the upper surface of both ends of the connecting member αQ. Both of the pair of shape memory members αηαη respond to the temperature of the atmosphere in the area where the outdoor unit (4) is installed and are in the state shown by the solid lines in the above-mentioned winter season, so the connecting member αG, the heat pipe (
9) (9)... is also in the solid line state, and the thermal energy in the earth (8) is transferred to the heat exchanger (408) of the outdoor unit (4) by the action of the heat pipe (9) (9)... As the heat is transferred to the heat exchanger (408), its temperature increases and its function as an evaporator improves or occurs. In the above-mentioned summer season, the α force of the shape memory member (17) deforms as shown by the dashed line in response to the temperature of the atmosphere, and the connecting member a at the tip of the U-shaped portion reaches the position shown by the dashed dot line. Because it pushes down
Following the movement of the connecting member on from the position of the solid line to the position of the dashed-dotted line, each heat pipe (9) (9)...moves from the position of the solid line to the position of the dashed-dotted line, and the condensing part of the heat pipe (901) (901) ... indicates the position from the position facing the outdoor unit internal heat exchanger (408) to the position not facing the outdoor unit heat exchanger (408), and each tubular vessel (
122) (122)... Inner hole guide hole (12
2B) (122B) ... is automatically inserted.

従って上述の夏期にはヒートパイプの各凝縮部(901
) (901)・・・は室外機内熱交換器(408)に
流入する大気に対する通風抵抗となることはない、勿論
乍ら、上述の夏期から再び上述の冬期となれば、上記形
状記憶部材αηα力は一点鎖線の状態から実線の状態と
なるので、連結部材αQを介してヒートパイプ(9) 
(9)・・・も実線で示す状態となる。なお、上述の各
ヒートパイプ(9) (9)、・・、連結部材QC1,
形状記憶部材αカαηは何れも室外機(4)のケース(
404)内の大気吸込側に配設してもよいが、後述の室
外機(404)外の大気吸込側に設けたカバーによって
それらの上部及び両側から通風路を残して覆うように構
成してもよい、又、上述のヒートパイプ(9) (9)
・・・、連結部材αQ、形状記憶部材αηaη、及びガ
イド部材(集熱部材)@は、空調装置の室外機(4)と
は別個のユニットとして、既設の室外機に対しても付加
して設置でき、また、室外機に流入する大気を予熱する
必要のない比較的温暖な地域ではヒートパイプ(9) 
(9)を付設しなくてすむように、摘用土の融通性を持
たせた方がよい、なお、温度に応動する形状記憶部材α
ηαカを使用する代りに、第19図における冷・暖切換
装置(7・)の冷・暖切換え操作に応動して作動するモ
ータや電磁石等の力によって上記連結部材a0を上下方
向に移動させて上述のヒートパイプ(9) (9)・・
・のガイド孔(122B)内外への移動を行なうように
してもよい。
Therefore, in the summer mentioned above, each condensing section (901
) (901)... will not act as ventilation resistance to the air flowing into the outdoor unit internal heat exchanger (408).Of course, if the above-mentioned summer changes to the above-mentioned winter again, the above-mentioned shape memory member αηα Since the force changes from the state shown by the dashed line to the state shown by the solid line, the heat pipe (9)
(9)... is also in the state shown by the solid line. In addition, each of the above-mentioned heat pipes (9) (9),..., connection member QC1,
Both shape memory members α and αη are attached to the case of the outdoor unit (4) (
404), but a cover provided on the air suction side outside the outdoor unit (404), which will be described later, may cover the air passages from the top and both sides of the outdoor unit (404). Also, the above heat pipe (9) (9)
..., the connecting member αQ, the shape memory member αηaη, and the guide member (heat collecting member) @ can be added to the existing outdoor unit as a separate unit from the outdoor unit (4) of the air conditioner. In relatively warm regions where there is no need to preheat the air flowing into the outdoor unit, heat pipes (9) can be installed.
(9) It is better to make the soil flexible so that it is not necessary to add a shape memory member α that responds to temperature.
Instead of using the ηα force, the connecting member a0 is moved in the vertical direction by the force of a motor or electromagnet that operates in response to the cold/warm switching operation of the cold/warm switching device (7) in FIG. 19. The above heat pipe (9) (9)...
* may be moved in and out of the guide hole (122B).

ヒートパイプの凝縮部(901) (901)・・・、
形状記憶部材Q7)aηζ連結部材a・等は雨・雪に晒
らされるとそれらの機能が低下する。つまシ、ヒートパ
イプの凝縮部(901) (901)・・・の熱エネル
ギーが雨・雪に奪われたシ、大気が該凝縮部(901)
 (901)・・・の表面に直接触れなくなったシ、凍
結によって該凝縮部(901) (901)・・・部の
通風路が塞がれたシ形状記憶部材Qηαカの変形が不能
になったυする。これらの不都合を解消するために、上
述の第1図〜第12図の実施例ではヒートパイプの凝縮
部(901)(901)・・・、連結部材αQ、形状記
憶部材(+7)Qηは室外機ケース(404)内に配設
されているが、他の手段として第18図及び第14図に
示す構成としてもよい。
Condensing part of heat pipe (901) (901)...
When the shape memory member Q7) aηζ connecting member a, etc. is exposed to rain or snow, their functions deteriorate. The heat energy of the condensing part (901) of the heat pipe (901) is taken away by the rain and snow, and the atmosphere is absorbed by the condensing part (901).
(901)... is no longer in direct contact with the surface of the condensation part (901), and the ventilation passage of the condensation part (901) is blocked due to freezing. To do so. In order to eliminate these inconveniences, in the embodiments shown in Figs. Although it is disposed within the machine case (404), it may alternatively be configured as shown in FIGS. 18 and 14.

第18図は要部を一部断面で示す側面図、第14図は正
面図で、室外機ケース(404)の外側に通風方向(正
面)から見た形状が門型をなすカバー(財)を設け、こ
のカバー(ト)で、室外機ケース(404)外に配設さ
れたヒートパイプの各凝縮部(901) (901)・
・・毎に各凝縮部(901) (901)・・・の上側
、通風方向から見てその両側から通風路(180)を残
して覆っている。  (181)は室外機ケース(40
4)の上記カバー(至)によって囲まれた部分の上記カ
バー(至)側に通風口(404A)を残して施こされた
熱的絶縁被覆で、ヒートパイプの凝縮部(901) (
901)によって加熱(予熱)され通風口(404A)
を通って室外機ケース(404)内熱交換器(408)
に流入する(矢印参照)大気の熱エネルギーが室外機ケ
ース(404)に逸散するのを防止する。この熱的絶縁
被覆(181)は図示のように通風口(404A)の周
面にも施こされている。なお、第10図〜第12図に示
す連結部材00.形状記憶部材Q7)Qカは第18図及
び第14図に示してないが、カバー(ト)を第1a図及
び第14図に示すような各ヒートパイプ凝縮部(901
) (901)・・・毎に個別に設ける構造にせずに、
各ヒートパイプ凝縮部(901)(901)・・・全体
を単一の共通カバーで覆う構造にすれば、上記連結部材
α・、形状記憶部材αηα力をも、室外機ケース(40
4)の外側の共通カバーで覆うことができる。なお、上
記連結部材α0を設けずに、各ヒートパイプ(9) (
9)・・・のそれぞれに形状記憶部材αηを取り付けれ
ば、該個別の形状記憶部材は第18図及び第14図に示
したような個別のカバー(至)で覆うことができる。ま
た、上述の第10図〜第12図において説明した理由と
同じ理由で、上記第18図及び第14図におけるヒート
パイプ(9) (9)・・・、カバー■°゛、等は室外
機(4)とは個別のユニットとする方が好ましい、iた
、ヒートパイプの凝縮部(901) ハ通風方向に見た
場合には室外機内熱交換器(40g)と重合しているの
であるが、第18図及び第14図に示す実施例では該凝
縮部(901)は室外機ケーヌ(404)の外側に位置
しているので、上記熱交換器(408)との重合は空間
を介した重合となっている・第1図〜第14図の実施例
では何れもヒートパイプの凝縮部(901) (901
)・・・が垂直方向に延在している場合、つまシ該凝縮
部(901) (901)・・・と室外機内熱交換器(
40B)の冷媒管(4084) (第5図、第7図、第
18図参照)とが直交している場合を例示したが、場合
によっては通風抵抗を小さくしたシ、大気流を整流して
大気との熱交換−効率を上げるために、ヒートパイプの
各凝縮部(901) (901)・・・を上記室外機内
熱交換器(40g)の冷媒管(40114)と平行にし
かも該冷媒管(4084)の配管パターンと一致させる
ように考慮することも必要であシ、このような考慮をし
た実施例を第15図及び第16図に示しである。第15
図はヒートパイプの凝縮部(901) (901)・・
・を水平に延在させた例を一部断面にして示す正面図、
第16図は第15図”AM−Xv1線における断面を矢
印方向に見た縦断側面図である。これら第15図及び第
16図に示すように、室外機内熱交換器(408)の冷
媒管(4084)は水平方向に延在すると共にIj1面
から見た配列パターンは千鳥状になっている。一方、ヒ
ートパイプの各凝縮部(901) (901)・・・も
その軸線(9012) (9012)・・・が上記室外
機内熱交換器(408)の冷媒管(4084)と平行を
なすように水平に延在し、しかも上記冷媒管(4084
)の側面から見た配列パターンに合致するように配列さ
れている。
Figure 18 is a side view showing a partial cross section of the main part, and Figure 14 is a front view.A cover (foundation) that has a gate-shaped shape when viewed from the ventilation direction (front) on the outside of the outdoor unit case (404). This cover (G) covers each condensing section (901) (901) of the heat pipe arranged outside the outdoor unit case (404).
. . , each condensing section (901) (901) . (181) is the outdoor unit case (40
The condensing part (901) of the heat pipe is a thermally insulating coating that is applied leaving a ventilation hole (404A) on the cover (to) side of the part surrounded by the cover (to) in 4).
901) and is heated (preheated) by the ventilation hole (404A).
Through the outdoor unit case (404) and internal heat exchanger (408)
This prevents the thermal energy of the atmosphere flowing into (see arrow) from dissipating into the outdoor unit case (404). This thermal insulation coating (181) is also applied to the circumferential surface of the ventilation hole (404A) as shown. Note that the connecting member 00. shown in FIGS. 10 to 12. Although the shape memory member Q7) is not shown in FIGS. 18 and 14, the cover (G) is attached to each heat pipe condensing section (901) as shown in FIGS. 1a and 14.
) (901)... Instead of creating a structure that is provided individually for each
If each heat pipe condensing section (901) (901)...is constructed so as to be covered with a single common cover, the force of the connecting member α and the shape memory member αηα can also be absorbed by the outdoor unit case (40
4) Can be covered with the outer common cover. Note that each heat pipe (9) (
9) If a shape memory member αη is attached to each of the shapes, the individual shape memory members can be covered with individual covers as shown in FIGS. 18 and 14. Also, for the same reason as explained in Figs. 10 to 12 above, the heat pipes (9) (9)..., cover ■°゛, etc. in Figs. (4) It is preferable to make it a separate unit, i.e., the condensing part of the heat pipe (901), and c. When viewed in the ventilation direction, it is polymerized with the outdoor unit internal heat exchanger (40 g). In the embodiments shown in FIGS. 18 and 14, the condensing section (901) is located outside the outdoor unit Cane (404), so the polymerization with the heat exchanger (408) occurs through the space.・In the embodiments shown in FIGS. 1 to 14, the condensing section (901) of the heat pipe (901
)... extend in the vertical direction, the condensing section (901) (901)... and the outdoor unit heat exchanger (
40B) are orthogonal to the refrigerant pipe (4084) (see Figures 5, 7, and 18), but in some cases, it may be possible to reduce the ventilation resistance or rectify the atmospheric flow. In order to increase the efficiency of heat exchange with the atmosphere, each condensing section (901) (901) of the heat pipe is arranged parallel to the refrigerant pipe (40114) of the outdoor unit internal heat exchanger (40 g), and the refrigerant pipe is It is also necessary to consider matching the piping pattern of (4084), and an embodiment that takes such consideration is shown in FIGS. 15 and 16. 15th
The figure shows the condensing part of the heat pipe (901) (901)...
・A front view showing a partially cross-sectional example of a horizontally extending example;
FIG. 16 is a vertical sectional side view of the cross section taken along line AM-Xv1 in FIG. 15, viewed in the direction of the arrow. (4084) extends in the horizontal direction, and the arrangement pattern seen from the Ij1 plane is staggered.On the other hand, each condensing part (901) (901)... of the heat pipe also has its axis (9012) ( 9012) extend horizontally so as to be parallel to the refrigerant pipes (4084) of the outdoor unit heat exchanger (408), and furthermore, the refrigerant pipes (4084)
) are arranged to match the arrangement pattern seen from the side.

また、ヒートパイプの各凝縮部(901) (901)
・・・を水平に延在させるために、各ヒートパイプ(9
) (9)・・・は第15図に示すようにはy直角に屈
曲されている。
In addition, each condensing part (901) of the heat pipe (901)
In order to extend horizontally, each heat pipe (9
) (9)... are bent at right angles to y as shown in FIG.

更に、ヒートパイプの各凝縮部(901) (9(42
))の各フィン(908) (908)・・・は室外機
内熱交換器(408)のフィン(40a2)と通風方向
(正面)から見て重合するように配設されていると共に
該室外機内熱交換器(40g)のフィン(4082)に
上記重合部で接触しておシ上記各フィン(908) (
903)・・・から上記フィン(4082)への熱伝導
が良好に行なわれるように工夫しである。また、ヒート
パイプ凝縮部(901)(901)のフィン(908)
 (908)は垂直方向に所定間隔り、離間させ、各凝
縮部(901) (901)・・・の垂直方向への位置
調整ができるように、該凝縮部(901) (901)
のフィン(soa) (9os)の垂直方向の寸法を設
定しである。上述のように、ヒートパイプの各凝縮部(
901) (901)をその各軸線(9012) (9
012)・・・が室外機内熱交換器(408)の冷媒管
(4084)及び吸込面(4081)と平行となるよう
にし、しかも該冷媒管(4084)の側面から見た配列
パターンに合致するように配設しであるので、室外機内
熱交換器(40B)に流入する大気に対する抵抗(通風
抵抗)は小さくできると共に実線矢印に示すように、室
外機内熱交換器(408)内を流れる大気の流れが、ヒ
ートパイプ(9) (9)・・・を吸込側に設けること
によって乱されることもなく従って該熱交換器(40g
)の熱交換効率が低下することもない、なお、一般家庭
用の室外機(4)は通常は横長であ)背丈が低いので、
ヒートパイプ凝縮部(901) (901)・・・を水
平に配設すれば、垂直に配設した場合に比べてヒートパ
イプ(9) (9)・・・の本数が少なくなり、その液
溜部(9(42))(9(42))・・・の本数も少な
くなって、該本数の少ない分だけ大地(8)中の熱エネ
ルギー吸収量も少なくなるので、第8図、第10図に示
すような集熱板@をヒートパイプの各液溜部(9(42
)) (9(42))に取り付けてもよい。
Furthermore, each condensing section (901) (9 (42
)) Each fin (908) (908)... is arranged so as to overlap with the fin (40a2) of the outdoor unit heat exchanger (408) when viewed from the ventilation direction (front). Contact the fins (4082) of the heat exchanger (40g) at the polymerization part, and then press each fin (908) (
903)... to the fins (4082) in a good manner. Also, the fins (908) of the heat pipe condensing section (901) (901)
(908) are spaced apart from each other by a predetermined distance in the vertical direction, and the condensing parts (901) (901)...
Set the vertical dimension of the fin (soa) (9os). As mentioned above, each condensing section of the heat pipe (
901) (901) and its respective axes (9012) (9
012)... is parallel to the refrigerant pipes (4084) and suction surface (4081) of the outdoor unit heat exchanger (408), and matches the arrangement pattern seen from the side of the refrigerant pipes (4084). Since the arrangement is as shown in FIG. The flow of heat pipes (9) (9)... is not disturbed by providing them on the suction side.
) does not reduce the heat exchange efficiency of the unit (4).In addition, since the outdoor unit (4) for general household use is usually horizontally long and short in height,
If the heat pipe condensing parts (901) (901)... are arranged horizontally, the number of heat pipes (9) (9)... will be smaller than if they are arranged vertically, and the liquid reservoir will be The number of parts (9 (42)) (9 (42))... will also decrease, and the amount of heat energy absorbed in the earth (8) will also decrease as the number decreases. A heat collecting plate @ as shown in the figure is attached to each liquid reservoir part of the heat pipe (9 (42
)) May be attached to (9(42)).

大地や例えば建屋の基礎等(8)内で、室外機(4)か
ら少し或いは可成シ離れた個所に地熱よυ高い産業用水
、例えば原子力発電における冷却水、温泉や銭湯の排湯
、等が流れる流体路が在る場合には、かかる地熱より温
度の高い流体の熱エネルギーをヒートパイプによって室
外機の熱交換器に移送させたい場合がある。第17図は
このような地熱より温度の高い流体が流れている流体路
が大地あるいは基礎等に埋設されている場合に、上記地
熱より温度の高い流体の熱エネルギーを室外機の熱交換
器にヒートパイプによって移送させる例を一部を断面で
示す正面図で、上述の第10図〜第12図のものに更に
新たな機能部品を付加したものである。
On the ground or within the foundation of a building (8), at a location a little or a fair distance from the outdoor unit (4), there is high-energy industrial water such as cooling water in nuclear power generation, hot springs and public baths, etc. If there is a fluid path through which the geothermal heat flows, there are cases where it is desired to transfer the thermal energy of the fluid whose temperature is higher than that of the geothermal heat to the heat exchanger of the outdoor unit using the heat pipe. Figure 17 shows how, when a fluid path through which a fluid with a temperature higher than that of geothermal heat flows is buried in the ground or foundation, the thermal energy of the fluid with a temperature higher than that of the geothermal heat is transferred to the heat exchanger of the outdoor unit. This is a partially cross-sectional front view of an example in which heat pipes are used to transport the heat pipe, and new functional parts have been added to those shown in FIGS. 10 to 12 described above.

第17図において、(2)は良熱伝導性の材料で形成さ
れた熱的接続器で、第10図〜第12図で説明した集熱
部材(ガイド部材)(6)と同じ構造であるが、熱的絶
縁被覆α荀は第10図〜第12図とは違って熱的接読器
に)の全外表面に施こされている。0S)Ql−・・は
第2のヒートパイプで、その凝縮部(19り (191
)・・・は熱的接続器(2)の管伏把持部(122) 
(12z)・・・内に挿入されると共に該把持部(12
2) (122)・・・によって把持され、液溜部(1
92) (192)・・・は第10図〜第12図の集熱
部材(イ)と同構造の良熱伝導性の熱的接続部(201
)の管伏把持部(2011) (2011)・・・内に
挿入されると共に該把持部(2011) (2011)
・・・によって把持されている。  (2(42))は
側面から見た形状が半円弧状をなす、つtb全体構造が
半円筒状をなす良熱伝導性の集熱部で、上記熱的接続部
(201)と一体をなして集熱器(ホ)を構成している
。Qツは内部に地熱より温度の高い流体、例えば原子力
発電における冷却水、製鉄所等で利用される冷却水、温
泉地域での湯・排湯、銭湯の排湯、各種工作機械や回転
機の冷却水、等々の産業用水が流れるパイプ状の熱源流
体路で、その外周面には上記集熱部(2(42))の内
周面が面接触している。(イ)は締付バンドで、上記集
熱部(2(42))を上記熱源流体路(2)に締め付け
て固定すると共に、上記熱源流体路(2)と集熱部(2
(42))との面接触を密にするものである。
In Fig. 17, (2) is a thermal connector made of a material with good thermal conductivity, and has the same structure as the heat collecting member (guide member) (6) explained in Figs. 10 to 12. However, unlike in FIGS. 10-12, the thermally insulating coating is applied to the entire outer surface of the thermal transducer. 0S) Ql-... is the second heat pipe, and its condensing part (19ri (191
)... is the tube gripping part (122) of the thermal connector (2)
(12z)... is inserted into the gripping portion (12z)...
2) (122)... is gripped by the liquid reservoir (1
92) (192) ... is a thermal connection part (201
) is inserted into the pipe gripping part (2011) (2011)... and the gripping part (2011) (2011)
It is held by... (2 (42)) is a heat collecting part with good thermal conductivity, which has a semicircular arc shape when viewed from the side, and whose overall structure is a semicylindrical shape, and is integrated with the thermal connection part (201). This constitutes a heat collector (e). Q-tsu contains fluids with a higher temperature than geothermal heat, such as cooling water in nuclear power generation, cooling water used in steel plants, hot water and waste water in hot spring areas, waste water in public baths, various machine tools and rotating machines. This is a pipe-shaped heat source fluid path through which industrial water such as cooling water flows, and its outer peripheral surface is in surface contact with the inner peripheral surface of the heat collecting section (2 (42)). (A) is a tightening band that tightens and fixes the heat collecting part (2 (42)) to the heat source fluid path (2), and also tightens and fixes the heat collecting part (2 (42)) to the heat source fluid path (2) and the heat collecting part (2
(42)).

(ホ)は上記集熱器(1)の全外表面に施こされた熱的
絶縁被覆、(ハ)は上記熱的接続器@と上記集熱器(1
)との間において上記舎弟2のヒートパイプ01 C1
l・・・が地中あるいは基礎中に露出するのを防止する
ために該部分の舎弟2のヒートパイプα’JOI・・・
の外周面に施こされた熱的絶縁被覆である。上記熱的接
続器(2)は舎弟1のヒートパイプ(9) (9)・・
・と舎弟2のヒートパイプα呻a嗜・・・とを熱的に接
続するものであシ、上記集熱器翰は熱源流体路QD内の
熱源流体の熱エネルギーを吸収すると共に該吸収した熱
エネルギーを舎弟2のヒートパイプa呻an−・・に移
送させるものである。なお、上記各熱的絶縁被覆α4@
(ハ)を設けであるので、上記熱的接続器@、第2のヒ
ートパイプ0呻0呻・・・、集熱器−、及び熱源流体路
(ハ)の総てが大地あるいは基礎(8)中に埋設されて
なくとも十分機能する。この第17図において、熱源流
体路(財)内の比較的高温の流体の熱は、熱源流体路(
ハ)を介して集熱部(2(42))に伝熱され、更に熱
的接続部(201)へ伝熱される。これら集熱部(2(
42)) 、熱的接続部(201)に伝った熱は舎弟2
のヒートパイプ0呻0呻・・・の各液溜部(192) 
(192)・・・内の液冷媒(作動液とも呼称される)
を加熱し、該液冷媒は蒸発し比較的高温の気相冷媒(蒸
気)は各凝縮部(191)(191)−°°に至る。各
凝縮部(191) (191)・・・内の気相冷媒の熱
は熱的接続器(6)に伝わシ第1のヒートパイプ(9)
 (9)・・・の各液溜部(9(42)) (9(42
))・・・に至り、該液溜部(9(42)) (9(4
2))内の液冷媒が蒸発して比較的高温の気相冷媒(蒸
気)となり、凝縮部(901)(901)・・・に至シ
、室外機内熱交換器(40B)に流入する冷たい大気を
予熱しく凝縮部(901) (901°)・・・熱交換
器(408)に物理的に接触している場合には熱伝導【
よって凝縮部(901) (901)・・・から熱交換
器(408)に直接熱が伝導される)、室外機の熱交換
器(401)の蒸発器としての機能を向上あるいは生じ
させる。形状記憶部材α力αηの動作は第10図〜第1
2図の場合と同じKつき説明は省略する。なお、熱的絶
縁被覆011は、上記集熱部(2(42))から第1の
ヒートパイプ(9) (9)・・・の各凝縮部(901
) (901)・・・へと熱移送される途中で、大地(
8)中へ不必要な熱放散が行なわれるのを防止する。ま
た、上記集熱器(至)、熱的接続器曲は、第1及び第2
のヒートパイプ(9) (9)・・・、(II(IL・
・に共通のものとなっているが、必要に応じて各ヒート
パイプ毎に個別に設けてもよい・また、上述の実施例は
何れも家庭用のヒートポンプ式空調装置の室外機に対し
てヒートパイプを適用した場合について例示したが、事
務所用、その他業務用のヒートポンプ式空調装置におけ
る室外機、例えば縦軸形ファン及びその軸線を囲むよう
に例えば平面形状コ字彫の熱交換器を有した室外機に対
しても本発明は適用でき、上述の実施例と同様の効果を
奏する。
(E) is a thermal insulation coating applied to the entire outer surface of the heat collector (1), and (C) is the thermal connector @ and the heat collector (1).
) between the heat pipe 01 C1 of the above-mentioned subordinate 2
In order to prevent l... from being exposed underground or in the foundation, heat pipe α'JOI...
A thermally insulating coating applied to the outer circumferential surface of the The above thermal connector (2) is the heat pipe (9) of the subordinate 1 (9)...
It is a device that thermally connects the heat pipe α of the heat pipe 2 and the heat pipe α of the heat source 2, and the heat collector wire absorbs the thermal energy of the heat source fluid in the heat source fluid path QD and Thermal energy is transferred to the heat pipe a of the heat pipe 2. In addition, each of the above thermal insulation coatings α4@
Since (c) is provided, all of the above-mentioned thermal connector @, second heat pipe, heat collector, and heat source fluid path (c) are connected to the ground or foundation (8). ) It functions well even if it is not buried inside. In FIG. 17, the heat of the relatively high temperature fluid in the heat source fluid path
The heat is transferred to the heat collecting part (2 (42)) via c), and further to the thermal connection part (201). These heat collecting parts (2(
42)), the heat transmitted to the thermal connection part (201) is
Each liquid reservoir part of the heat pipe 0 moan 0 groan... (192)
(192) Liquid refrigerant (also called working fluid) in...
is heated, the liquid refrigerant evaporates, and the relatively high temperature gas phase refrigerant (steam) reaches each condensing section (191) (191)-°°. The heat of the gas phase refrigerant in each condensing section (191) (191)... is transferred to the thermal connector (6) and the first heat pipe (9).
(9) Each liquid reservoir part (9(42)) (9(42)
))..., and the liquid reservoir part (9(42)) (9(4
2)) The liquid refrigerant inside evaporates and becomes a relatively high-temperature gas phase refrigerant (steam), which flows into the condensing section (901) (901)... and then into the outdoor unit heat exchanger (40B). Condensing section (901) to preheat the atmosphere (901°)...If it is in physical contact with the heat exchanger (408), heat conduction [
Therefore, heat is directly conducted from the condensing section (901) (901)... to the heat exchanger (408)), and the function of the outdoor unit's heat exchanger (401) as an evaporator is improved or brought about. The operation of the shape memory member α force αη is shown in Figures 10 to 1.
The same explanation with K as in the case of FIG. 2 will be omitted. The thermal insulating coating 011 covers each condensing section (901) from the heat collecting section (2 (42)) to the first heat pipe (9) (9)...
) (901)..., while the heat is being transferred to the earth (
8) Preventing unnecessary heat dissipation into the interior. In addition, the heat collector (to) and the thermal connector curve are connected to the first and second
heat pipe (9) (9)..., (II(IL・
・Although it is common to each heat pipe, it may be provided individually for each heat pipe if necessary. Although we have given an example of a case where a pipe is applied, it is also possible to use an outdoor unit in a heat pump type air conditioner for office or other commercial use, such as a vertical shaft fan and a heat exchanger with a U-shaped planar shape surrounding the axis of the fan. The present invention can also be applied to such an outdoor unit, and the same effects as those of the above-mentioned embodiments can be achieved.

〔発明の効果〕。〔Effect of the invention〕.

この発明は上述のように、冷媒回路を切換えることによ
って夏期には室内機が蒸発器となると共に室外機が凝縮
器となり冬期には室内機が凝縮器となると共に室外機が
蒸発器となるヒートポンプ式空調装置において、前記室
外機のケース内に、或いは該ケース外に設けたカバー内
にヒートパイプを配設すると共に、該ヒートパイプの液
溜部を地中ニ埋設し、該ヒートパイプの凝縮部を前記室
外機内熱交換器の吸込側に大気に露出した状、蝮で位置
させ、前記室外機の前記熱交換器に流入する大気を前記
ヒートパイプの凝縮部によって予熱する構成としたので
、ヒートポンプ式の空調装置であっても、盆地、山間地
、大陸気候地帯等、冬期に外気が相当低下する地域で使
用しても、地中の熱によって、蒸発器として作用中の室
外機内熱交換器に流入する大気を予熱するので、熱交換
器に流入する大気の温度が上昇して該熱交換器の蒸発器
としての機能が向上あるいは生じ、しかもヒートパイプ
は熱交換器の下流側に該熱交換器と接触して設けること
も可能であるがその場合に比べて地中の熱を該熱交換器
に充分に移送でき、また、ヒートパイプを熱交換器に挿
入することも可能であるがその場合に比べて熱交換器の
構造を変える必要もなくヒートパイプを在来の熱交換器
に対応して付設するだけで容易に安価に実施でき、更に
、ヒートパイプを室外機ケース内に設けたので、ト、1
水や雪によってヒートパイプ自体が覆われることもなく
ヒートパイプの凝縮部の熱を、室外機内熱交換器に流入
する大気に充分供給できる。
As described above, this invention is a heat pump in which, by switching the refrigerant circuit, the indoor unit becomes the evaporator and the outdoor unit becomes the condenser in the summer, and the indoor unit becomes the condenser and the outdoor unit becomes the evaporator in the winter. In the type air conditioner, a heat pipe is disposed within the case of the outdoor unit or within a cover provided outside the case, and a liquid reservoir portion of the heat pipe is buried underground to prevent condensation of the heat pipe. The heat exchanger is located on the suction side of the outdoor unit so as to be exposed to the atmosphere, and the air flowing into the heat exchanger of the outdoor unit is preheated by the condensing part of the heat pipe. Even if a heat pump type air conditioner is used in areas where the outside air temperature drops significantly in the winter, such as in basins, mountainous areas, and continental climate regions, heat exchange inside the outdoor unit while acting as an evaporator uses underground heat. Since the air flowing into the heat exchanger is preheated, the temperature of the air flowing into the heat exchanger increases and the heat exchanger functions as an evaporator. Although it is possible to install the heat pipe in contact with the heat exchanger, it is possible to transfer underground heat to the heat exchanger more effectively than in that case, and it is also possible to insert a heat pipe into the heat exchanger. However, compared to that case, there is no need to change the structure of the heat exchanger, and it can be implemented easily and inexpensively by simply attaching the heat pipe to the existing heat exchanger.Furthermore, it is possible to install the heat pipe inside the outdoor unit case. Since I set it up, 1.
The heat pipe itself is not covered by water or snow, and the heat from the condensing part of the heat pipe can be sufficiently supplied to the atmosphere flowing into the outdoor unit heat exchanger.

また、ヒートパイプの凝縮部を室外機の熱交換器に水平
方向に見て重合させ、このヒートパイプの重合部と該ヒ
ートパイプの地中に埋設された部分との間の部分の周囲
を熱絶縁物で取り囲んだので、該部分においてヒートパ
イプ内の高温蒸気の熱が放熱逸散せず、地中の熱を室外
機内熱交換器に効率よく移送できる。
In addition, the condensing part of the heat pipe is superposed horizontally on the heat exchanger of the outdoor unit, and the area between the overlapping part of the heat pipe and the part of the heat pipe buried underground is heated. Since it is surrounded by an insulating material, the heat of the high-temperature steam inside the heat pipe is not dissipated in this part, and the heat underground can be efficiently transferred to the heat exchanger in the outdoor unit.

また複数個のヒートパイプを地中に埋設し、該埋設した
部分を、地表面に近い部分のヒートパイプ液溜部間間隔
より地表面から遠い部分の核ヒートパイプ液溜部間隔を
長くしたので、地中の温度の低下が生じにくい。
In addition, multiple heat pipes were buried underground, and the distance between the core heat pipe liquid reservoirs in the part far from the ground surface was longer than the distance between the heat pipe liquid reservoir parts in the part near the ground surface. , a drop in underground temperature is less likely to occur.

また、ヒートパイプを複数個設け、これら複数個のヒー
トパイプを、地中に埋設した集熱部材に地中で熱的に接
続したので、地中の熱をより多く室外機内熱交換器tζ
移送できる。
In addition, by installing multiple heat pipes and thermally connecting these multiple heat pipes to a heat collecting member buried underground, more heat from the ground can be transferred to the outdoor unit heat exchanger tζ.
Can be transported.

また、ヒートパイプの凝縮部にはその軸線と直角をなし
室外機内熱交換器のフィン間通風路と同方向の通風路を
形成する多数のフィンを設けたので、室外機内熱交換器
に流入する大気に対する通風抵抗が小さくしかもヒート
パイプの凝縮部の熱を、室外機内熱交換器に流入する大
気に充分供給できる。
In addition, the condensing part of the heat pipe has a large number of fins that are perpendicular to its axis and form a ventilation path in the same direction as the inter-fin ventilation path of the outdoor unit heat exchanger, so that the heat pipe does not flow into the outdoor unit heat exchanger. The ventilation resistance to the atmosphere is small, and the heat from the condensing section of the heat pipe can be sufficiently supplied to the atmosphere flowing into the outdoor unit heat exchanger.

また、室外機内熱交換器の多数のフィンのうちの複数個
に複数個のヒートパイプの各凝縮部を接触させたので、
ヒートパイプの各凝縮部の熱が、大気を経由して室外機
内熱交換器に供給されるのみでなく、各凝縮部から熱伝
導によっても室外器内熱交換器に供給されるので、複数
個の各凝縮部の熱が室外機内熱交換器に更に充分に供給
される。
In addition, since each condensing part of a plurality of heat pipes was brought into contact with a plurality of fins of a large number of fins in the outdoor unit heat exchanger,
Heat from each condensing section of the heat pipe is not only supplied to the outdoor unit heat exchanger via the atmosphere, but also from each condensing section to the outdoor unit heat exchanger by heat conduction. The heat of each condensing section is further sufficiently supplied to the heat exchanger in the outdoor unit.

また、ヒートパイプの凝縮部と室外機のケースとの間に
、通風路を残して、熱的絶縁物を介在させたので、該凝
縮部に予熱された大気の熱が室外機ケースに逸散して逃
げるのを防止でき、予熱された大気の熱を有効に室外機
内熱交換器に供給できる。
In addition, a ventilation path is left between the condensing part of the heat pipe and the case of the outdoor unit, and a thermal insulator is interposed between the condensing part of the heat pipe and the case of the outdoor unit. Preheated atmospheric heat can be effectively supplied to the heat exchanger in the outdoor unit.

また、ヒートパイプを地中に再移動に埋設し、室外機内
熱交換器が凝縮器として作用している夏期には、該ヒー
トパップの凝縮部を室外機内熱交換器の吸込側から大地
内に移動させるので、地中の熱をヒートパイプを介して
室外機内熱交換器に移送させる必要がなく寧ろ室外機内
熱交換器を冷却するために少しでも大くの通風を必要と
する夏期においては該室外機内熱交換器の吸込側からヒ
ートパイプが無くなるので、該室外機内熱交換器に流入
する大気の量が増え、従って、夏期には室外機内熱交換
器の凝縮器としての機能が向上する。
In addition, the heat pipe is re-buried underground, and during the summer when the outdoor unit's internal heat exchanger acts as a condenser, the condensing part of the heat pipe is moved from the suction side of the outdoor unit's internal heat exchanger into the ground. Therefore, there is no need to transfer underground heat to the heat exchanger inside the outdoor unit via a heat pipe, and in the summer when as much ventilation as possible is needed to cool the heat exchanger inside the outdoor unit, the heat exchanger inside the outdoor unit is Since there is no heat pipe from the suction side of the indoor heat exchanger, the amount of air flowing into the outdoor heat exchanger increases, and therefore the function of the outdoor heat exchanger as a condenser improves in the summer.

また、温度に応動する形状記憶部材の一部をヒートパイ
プに接続すると共に他部を固定し、該形状記憶部材によ
って、冬期にはヒートパイプの凝縮部を室外機内熱交換
器の吸込側1に対向させ、夏期にはヒ・−ドパイブの凝
縮部を室外機内熱交換器の吸込側から大地内へ移動させ
るので、温度に応じて自動的に、室外機内熱交換器は冬
期にはヒートパイプによって蒸発器としての機能が向上
し或いは生じ、夏期にはヒートパイプによる通風抵抗が
除去され凝縮器としての機能が向上する。
In addition, a part of the shape memory member that responds to temperature is connected to the heat pipe, and the other part is fixed, and the shape memory member allows the condensing part of the heat pipe to be connected to the suction side 1 of the heat exchanger in the outdoor unit during the winter. In the summer, the condensing part of the heat pipe is moved from the suction side of the heat exchanger in the outdoor unit to the ground, so the heat exchanger in the outdoor unit is moved automatically according to the temperature, and in the winter, the heat exchanger in the outdoor unit is moved by the heat pipe. The function as an evaporator is improved or generated, and in the summer, the ventilation resistance caused by the heat pipe is removed, and the function as a condenser is improved.

また、室外機の熱交換器の吸込1llIlに位置して第
1のヒートパイプの凝縮部を配設し、大地や基礎内に配
設された大気より高温の熱源に集熱器を取り付け、該集
熱器に第2のヒートパイプの液溜部を熱的に接続し、第
1のヒートパイプの液溜部を第2のヒートパイプの凝縮
部に熱的に接続し、室外機内熱交換器に流入する大気を
第1のヒートパイプの凝縮部によって予熱するので、冬
期においても、室外機内熱交換器の蒸発器としての機能
が向上し、しかも熱源と室外機とが距離的に離れていて
も、該熱源の熱を室外機内熱交換器に供給できる
In addition, the condensing part of the first heat pipe is located at the suction 1llIl of the heat exchanger of the outdoor unit, and a heat collector is attached to a heat source located in the ground or in the foundation that is higher than the atmospheric temperature. The liquid reservoir part of the second heat pipe is thermally connected to the heat collector, the liquid reservoir part of the first heat pipe is thermally connected to the condensing part of the second heat pipe, and the outdoor unit heat exchanger is connected. Since the air flowing into the heat pipe is preheated by the condensing part of the first heat pipe, the function of the heat exchanger in the outdoor unit as an evaporator is improved even in winter, and the heat source and the outdoor unit are far apart. can also supply heat from the heat source to the heat exchanger inside the outdoor unit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第17図はこの出願の各種発明の種々の実施例
を示す図で、第1図は室外機、室外機の取付状態の一例
を示す側面図、第2図は第1図の室外機部分の一部を断
面にして示す一部断面正面図、第8図は同斜視図、第4
図は第2図の要部の一部を拡大して示す正面図、第5図
はヒートパイプと室外内熱交換器とを接触させた例を示
す要部の平面図、第6図及び第7図はヒートパイプの凝
縮部の熱が室外器内熱交換器以外に逸散するのを防止す
るそれぞれ異なる例を示す平面図、第8図はヒートパイ
プの液溜部と大地との接触面積を大きくする構造例を示
す正面図、第9図は第8図の集熱部材の平面図、第10
図〜第12図は夏期にはヒートパイプの各凝縮部を室外
機内熱交換器に対向しない位置へ移動できる構造例を示
す図であシ、第10図は正面図、第11図は第10図の
要部の平面図、第12図は第10図の要部の側面図、第
18図はヒートパイプの上部及び側部を覆うカバーを室
外機ケース外に設けた例の要部を示す正面図、第14図
は第13図のものの正面図、第15図及び第16図は室
外機内熱交換器の冷媒管の配管パターンを考慮してヒー
トパイプを配設した例の要部を示す正面図、第16図は
第15図の要部を部分的に示す側面図、第17図は大地
中に地熱より高い温度の熱源が在る場合の例を示す正面
図、第18図は従来装置の概略構成を示す側面図、第1
9図はヒートポンプ式空調装置の冷媒サイクルの原理を
示す冷媒回路図である。 図において、(3)は室内機、(4)は室外機、(40
8)は室外機の熱交換器、(404)は室外機ケース、
(8)は大地、(9)はヒートパイプ、(901)はヒ
ートパイプの凝縮部、(9(42))はヒートパイプの
液溜部、(至)はカバー、(180)は通に路、(90
11)はヒートパイプの重合部、00は絶縁物、(2)
は集熱部材、(4082)は室外機内熱交換器のフィン
、(908)はヒートパイプ凝縮部のフィン、(181
)はヒートパイプ凝縮部と室外機ケートとの間に介在し
た熱的絶縁物、ahは形状記憶部材、31)は流体路、
(9)は第1のヒートパイプ(第17図)、(1)は集
熱器、QIは第2のヒートパイプ、(191)は第2の
ヒートパイプの凝縮部、(192)は第2のヒートパイ
プの液溜部である。 なお図中同一符号は同−又は相当部分を示す。
1 to 17 are diagrams showing various embodiments of the various inventions of this application, in which FIG. 1 is a side view showing an example of an outdoor unit and how the outdoor unit is installed, and FIG. A partially sectional front view showing a part of the outdoor unit section, FIG. 8 is a perspective view of the same, and FIG.
The figure is an enlarged front view of a part of the main part of Fig. 2, Fig. 5 is a plan view of the main part showing an example in which the heat pipe and the outdoor/indoor heat exchanger are brought into contact, and Figs. Figure 7 is a plan view showing different examples of preventing the heat in the condensing part of the heat pipe from dissipating to areas other than the heat exchanger in the outdoor unit, and Figure 8 shows the contact area between the liquid reservoir part of the heat pipe and the ground. FIG. 9 is a plan view of the heat collecting member shown in FIG. 8, and FIG.
Figures 1 to 12 are diagrams showing an example of a structure in which each condensing part of the heat pipe can be moved to a position not facing the heat exchanger in the outdoor unit during summer. Figure 12 is a plan view of the main parts shown in Figure 10, Figure 18 is a side view of the main parts shown in Figure 10, and Figure 18 shows the main parts of an example in which a cover is provided outside the outdoor unit case to cover the top and sides of the heat pipe. The front view, Figure 14 is the front view of the one in Figure 13, and Figures 15 and 16 show the main parts of an example in which heat pipes are arranged in consideration of the piping pattern of the refrigerant pipes of the outdoor unit heat exchanger. The front view, Figure 16 is a side view partially showing the main part of Figure 15, Figure 17 is a front view showing an example where there is a heat source with a temperature higher than geothermal heat in the earth, and Figure 18 is a conventional Side view showing the schematic configuration of the device, 1st
FIG. 9 is a refrigerant circuit diagram showing the principle of the refrigerant cycle of a heat pump type air conditioner. In the figure, (3) is an indoor unit, (4) is an outdoor unit, and (40) is an outdoor unit.
8) is the outdoor unit heat exchanger, (404) is the outdoor unit case,
(8) is the ground, (9) is the heat pipe, (901) is the condensing part of the heat pipe, (9 (42)) is the liquid reservoir part of the heat pipe, (to) is the cover, (180) is the path to the , (90
11) is the overlapping part of the heat pipe, 00 is the insulator, (2)
is the heat collecting member, (4082) is the fin of the outdoor unit heat exchanger, (908) is the fin of the heat pipe condensing part, (181)
) is a thermal insulator interposed between the heat pipe condensing part and the outdoor unit case, ah is a shape memory member, 31) is a fluid path,
(9) is the first heat pipe (Fig. 17), (1) is the heat collector, QI is the second heat pipe, (191) is the condensing part of the second heat pipe, (192) is the second This is the liquid reservoir part of the heat pipe. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (49)

【特許請求の範囲】[Claims] (1)冷媒回路を切換えることによつて夏期には室内機
が蒸発器となると共に室外機が凝縮器となり冬期には室
内機が凝縮器となると共に室外機が蒸発器となるヒート
ポンプ式空調装置において、前記室外機のケース内にヒ
ートパイプを配設すると共に、該ヒートパイプの液溜部
を地中に埋設し、該ヒートパイプの凝縮部を前記室外機
内熱交換器の吸込側に大気に露出した状態で位置させ、
前記室外機の前記熱交換器に流入する大気を前記ヒート
パイプの凝縮部によつて予熱することを特徴とするヒー
トポンプ式空調装置。
(1) A heat pump air conditioner in which the indoor unit acts as an evaporator and the outdoor unit acts as a condenser in the summer, and the indoor unit acts as a condenser and the outdoor unit acts as an evaporator in the winter by switching the refrigerant circuit. In this method, a heat pipe is arranged in the case of the outdoor unit, a liquid reservoir part of the heat pipe is buried underground, and a condensing part of the heat pipe is exposed to the atmosphere on the suction side of the heat exchanger in the outdoor unit. Position it exposed,
A heat pump type air conditioner characterized in that atmospheric air flowing into the heat exchanger of the outdoor unit is preheated by a condensing section of the heat pipe.
(2)ヒートパイプを複数個設け、各ヒートパイプの凝
縮部を、室外機内熱交換器の吸込側の面に対しほゞ均一
な分布となるように配設したことを特徴とする特許請求
の範囲第1項記載のヒートポンプ式空調装置。
(2) A patent claim characterized in that a plurality of heat pipes are provided, and the condensing portion of each heat pipe is arranged so as to have a substantially uniform distribution with respect to the suction side surface of the outdoor unit heat exchanger. A heat pump air conditioner according to Scope 1.
(3)ヒートパイプはその液溜部及び凝縮部が共にほゞ
垂直に配設されていることを特徴とする特許請求の範囲
第1項又は第2項記載のヒートポンプ式空調装置。
(3) The heat pump type air conditioner according to claim 1 or 2, wherein the heat pipe has a liquid reservoir section and a condensing section arranged substantially vertically.
(4)冷媒回路を切換えることによつて夏期には室内機
が蒸発器となると共に室外機が凝縮器となり冬期には室
内機が凝縮機となると共に室外機が蒸発器となるヒート
ポンプ式空気調和装置において、前記室外機のケース外
にヒートパイプを配設すると共に、該ヒートパイプの液
溜部を地中に埋設し、該ヒートパイプの凝縮部を前記室
外機内熱交換器の吸込側に大気に露出した状態で位置さ
せ、前記室外機内熱交換器の吸込空気流に沿つた通風路
を有したカバーで前記ヒートパイプの凝縮部をその上部
及び両側から覆い、前記カバーの通風路を通つて前記室
外機の熱交換器に流入する大気を前記ヒートパイプの凝
縮部によつて予熱することを特徴とするヒートポンプ式
空調装置。
(4) By switching the refrigerant circuit, the indoor unit becomes the evaporator and the outdoor unit becomes the condenser in the summer, and in the winter the indoor unit becomes the condenser and the outdoor unit becomes the evaporator. In the device, a heat pipe is arranged outside the case of the outdoor unit, a liquid reservoir part of the heat pipe is buried underground, and a condensing part of the heat pipe is connected to the air on the suction side of the heat exchanger inside the outdoor unit. The condensing part of the heat pipe is covered from the top and both sides with a cover having a ventilation passage along the intake air flow of the outdoor unit internal heat exchanger, and the condensing part of the heat pipe is placed in an exposed state from the top and both sides, and the heat pipe is placed in an exposed state. A heat pump type air conditioner characterized in that air flowing into a heat exchanger of the outdoor unit is preheated by a condensing section of the heat pipe.
(5)ヒートパイプを複数個設け、各ヒートパイプの凝
縮部を、室外機内熱交換器の吸込側の面に対しほゞ均一
な分布となるように配設し、前記各ヒートパイプをそれ
ぞれ個別にカバーで覆つたことを特徴とする特許請求の
範囲第4項記載のヒートポンプ式空調装置。
(5) A plurality of heat pipes are provided, the condensing part of each heat pipe is arranged so as to have a substantially uniform distribution on the suction side surface of the heat exchanger in the outdoor unit, and each of the heat pipes is individually connected. 5. The heat pump air conditioner according to claim 4, wherein the heat pump type air conditioner is covered with a cover.
(6)ヒートパイプを複数個設け、各ヒートパイプの凝
縮部を、室外機内熱交換器の吸込側の面に対しほゞ均一
な分布となるように配設し、前記各ヒートパイプを共通
のカバーで覆つたことを特徴とする特許請求の範囲第4
項記載のヒートポンプ式空調装置。
(6) A plurality of heat pipes are provided, and the condensing part of each heat pipe is arranged so as to have a substantially uniform distribution with respect to the suction side surface of the heat exchanger in the outdoor unit, and each of the heat pipes is connected to a common heat pipe. Claim 4 characterized in that it is covered with a cover.
The heat pump type air conditioner described in Section 1.
(7)ヒートパイプとカバーとはヒートパイプユニット
としてユニット化され、このヒートパイプユニットは室
外機とは別個のユニットとされていることを特徴とする
特許請求の範囲第5項又は第6項記載のヒートポンプ式
空調装置。
(7) The heat pipe and the cover are unitized as a heat pipe unit, and this heat pipe unit is a separate unit from the outdoor unit, according to claim 5 or 6. heat pump type air conditioner.
(8)冷媒回路を切換えることによつて夏期には室内機
が蒸発器となると共に室外機が凝縮器となり冬期には室
内機が凝縮機となると共に室外機が蒸発器となるヒート
ポンプ式空調装置において、前記室外機の熱交換器の吸
込側に位置してヒートパイプを配設し、該ヒートパイプ
の液溜部を地中に埋設すると共に、該ヒートパイプの凝
縮部を前記室外機の熱交換器に水平方向に見て重合させ
、このヒートパイプの重合部と前記ヒートパイプの地中
に埋設された部分との間の部分の周囲を熱絶縁物で取り
囲み、前記ヒートパイプの前記熱絶縁物より大気側の部
分で予熱された大気を前記室外機の熱交換器に流入させ
ることを特徴とするヒートポンプ式空調装置。
(8) Heat pump air conditioner in which the indoor unit becomes the evaporator and the outdoor unit becomes the condenser in the summer, and the indoor unit becomes the condenser and the outdoor unit becomes the evaporator in the winter by switching the refrigerant circuit. A heat pipe is disposed on the suction side of the heat exchanger of the outdoor unit, a liquid reservoir part of the heat pipe is buried underground, and a condensing part of the heat pipe is connected to the heat exchanger of the outdoor unit. The exchanger is overlapped when viewed in a horizontal direction, and a thermal insulating material surrounds a portion between the overlapping portion of the heat pipe and a portion buried underground of the heat pipe, and the thermal insulation of the heat pipe is A heat pump type air conditioner characterized in that atmospheric air preheated in a portion closer to the atmosphere than the object flows into a heat exchanger of the outdoor unit.
(9)ヒートパイプの重合部と室外機の熱交換器とが接
触していることを特徴とする特許請求の範囲第8項記載
のヒートポンプ式空調装置。
(9) The heat pump type air conditioner according to claim 8, wherein the overlapping portion of the heat pipe and the heat exchanger of the outdoor unit are in contact with each other.
(10)ヒートパイプの重合部と室外機の熱交換器とが
空間を介して重合していることを特徴とする特許請求の
範囲第8項記載のヒートポンプ式空調装置。
(10) The heat pump type air conditioner according to claim 8, wherein the overlapping portion of the heat pipe and the heat exchanger of the outdoor unit are overlapping with each other through a space.
(11)熱絶縁物が、ヒートパイプが地中に埋設された
部分の地表面に近い部分まで延在して該部分の周囲を取
り囲んでいることを特徴とする特許請求の範囲第9項及
び第10項の何れか一に記載のヒートポンプ式空調装置
(11) The thermal insulator extends to a portion near the ground surface of the portion where the heat pipe is buried underground and surrounds the portion. The heat pump air conditioner according to any one of Item 10.
(12)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、前記室外機の熱交換器の
吸込側に位置してヒートパイプを複数本配設し、各ヒー
トパイプの液溜部を地中に埋設すると共に、各ヒートパ
イプの凝縮部を前記室外機の熱交換器に対向させ、しか
も前記各ヒートパイプの地中に埋設された部分は地表面
に近い部分間の相対間隔より地表面から遠い部分間の相
対間隔を長がくし、前記室外機の熱交換器に流入する大
気を前記ヒートパイプの凝縮部によつて予熱することを
特徴とするヒートポンプ式空調装置。
(12) Heat pump air conditioner in which the indoor unit acts as an evaporator and the outdoor unit as a condenser in the summer, and the indoor unit acts as a condenser and the outdoor unit acts as an evaporator in the winter by switching the refrigerant circuit. , a plurality of heat pipes are arranged on the suction side of the heat exchanger of the outdoor unit, the liquid reservoir part of each heat pipe is buried underground, and the condensing part of each heat pipe is located on the suction side of the heat exchanger of the outdoor unit. The buried portions of each heat pipe are arranged so that the relative distance between the portions far from the ground surface is longer than the relative distance between the portions near the ground surface, and the heat pipes of the outdoor unit are placed opposite to the heat exchanger. A heat pump type air conditioner characterized in that air flowing into an exchanger is preheated by a condensing section of the heat pipe.
(13)各ヒートパイプの地中に埋設された部分は、地
中に埋設された共通の液溜に連通されていることを特徴
とする特許請求の範囲第12項記載のヒートポンプ式空
調装置。
(13) The heat pump type air conditioner according to claim 12, wherein the underground portion of each heat pipe is communicated with a common liquid reservoir buried underground.
(14)共通の液溜が熱伝導性の良好な部材で形成され
ていることを特徴とする特許請求の範囲第13項記載の
ヒートポンプ式空調装置。
(14) The heat pump type air conditioner according to claim 13, wherein the common liquid reservoir is formed of a material having good thermal conductivity.
(15)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、各ヒートパイプの液溜部
を地中埋設の集熱部材に地中で熱的に接続し、前記ヒー
トパイプの凝縮部を前記室外機内熱交換器の吸込側に大
気に露出した状態で位置させ、前記室外機の熱交換器に
流入する大気を前記ヒートパイプの凝縮部によつて予熱
することを特徴とするヒートポンプ式空調装置。
(15) By switching the refrigerant circuit, the indoor unit becomes the evaporator and the outdoor unit becomes the condenser in the summer, and in the winter the indoor unit becomes the condenser and the outdoor unit becomes the evaporator. The liquid reservoir part of each heat pipe is thermally connected underground to a heat collecting member buried underground, and the condensing part of the heat pipe is exposed to the atmosphere on the suction side of the outdoor unit internal heat exchanger. A heat pump type air conditioner, characterized in that the air conditioner is placed in the heat pipe, and the air flowing into the heat exchanger of the outdoor unit is preheated by the condensing part of the heat pipe.
(16)集熱部材は2枚の板材で形成され、これら2枚
の板材でヒートパイプの液溜部を挾持していることを特
徴とする特許請求の範囲第15項記載のヒートポンプ式
空調装置。
(16) The heat pump type air conditioner according to claim 15, wherein the heat collecting member is formed of two plate materials, and these two plate materials sandwich the liquid reservoir portion of the heat pipe. .
(17)ヒートパイプが複数本互いに水平方向に見て互
いに離間して配設されており、各ヒートパイプの液溜部
が集熱部材によつて挾持されていることを特徴とするヒ
ートポンプ式空調装置。
(17) A heat pump air conditioner characterized in that a plurality of heat pipes are arranged spaced apart from each other when viewed in the horizontal direction, and the liquid reservoir of each heat pipe is held between heat collecting members. Device.
(18)各板材は所定間隔毎に相対向するほゞ垂直に延
在する複数の湾曲部でヒートパイプの液溜部を挾持し、
各湾曲部間にはほゞ垂直に延在する集熱フィン部を有し
ていることを特徴とする特許請求の範囲第17項記載の
ヒートポンプ式空調装置。
(18) Each plate material holds the liquid reservoir portion of the heat pipe with a plurality of curved portions extending substantially vertically and facing each other at predetermined intervals;
18. The heat pump air conditioner according to claim 17, further comprising a heat collecting fin section extending substantially vertically between each curved section.
(19)湾曲部及び集熱フィン部は一枚板を折り曲げ、
加工することによつて形成されていることを特徴とする
特許請求の範囲第18項記載のヒートポンプ式空調装置
(19) The curved part and heat collecting fin part are made by bending a single plate.
19. The heat pump air conditioner according to claim 18, which is formed by processing.
(20)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、前記室外機の熱交換器の
吸込側に位置して該熱交換器の吸込面に並行をなして複
数本のヒートパイプの凝縮部を対向させ、該ヒートパイ
プの液溜部を地中に埋設すると共に、前記ヒートパイプ
の凝縮部にはその軸線と直角をなし前記室外機内熱交換
器のフィン間通風路と同方向の通風路を形成する多数の
フィンを設け、前記室外機の熱交換器に流入する大気を
前記ヒートパイプの凝縮部によつて予熱することを特徴
とするヒートポンプ式空調装置。
(20) Heat pump air conditioner in which the indoor unit acts as an evaporator and the outdoor unit as a condenser in the summer, and the indoor unit acts as a condenser and the outdoor unit acts as an evaporator in the winter by switching the refrigerant circuit. , the condensing parts of a plurality of heat pipes are located on the suction side of the heat exchanger of the outdoor unit and parallel to the suction surface of the heat exchanger, and the condensing parts of the heat pipes are placed underground. In addition, the condensing part of the heat pipe is provided with a large number of fins that are perpendicular to the axis of the heat pipe and form a ventilation passage in the same direction as the inter-fin ventilation passage of the heat exchanger in the outdoor unit. A heat pump type air conditioner characterized in that air flowing into an exchanger is preheated by a condensing section of the heat pipe.
(21)室外機の熱交換器の各フィン及びヒートパイプ
の凝縮部の軸線の何れも垂直方向に延在し、前記ヒート
パイプの凝縮部の各フィンが水平方向に延在しているこ
とを特徴とする特許請求の範囲第20項記載のヒートポ
ンプ式空調装置。
(21) Each fin of the heat exchanger of the outdoor unit and the axis of the condensing part of the heat pipe extend in the vertical direction, and each fin of the condensing part of the heat pipe extends in the horizontal direction. A heat pump air conditioner according to claim 20.
(22)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、前記室外機の熱交換器の
吸込側に位置してヒートパイプを複数本配設し、各ヒー
トパイプの液溜部を地中に埋設すると共に、各ヒートパ
イプの凝縮部を前記室外機の熱交換器に対向させ、しか
も前記室外機の熱交換器の多数のフィンの複数個に前記
各ヒートパイプの各凝縮部を接触させ、前記室外機の熱
交換器に流入する大気を前記ヒートパイプの凝縮部によ
つて予熱することを特徴とするヒートポンプ式空調装置
(22) Heat pump air conditioner in which by switching the refrigerant circuit, the indoor unit becomes the evaporator and the outdoor unit becomes the condenser in the summer, and the indoor unit becomes the condenser and the outdoor unit becomes the evaporator in the winter. , a plurality of heat pipes are arranged on the suction side of the heat exchanger of the outdoor unit, the liquid reservoir part of each heat pipe is buried underground, and the condensing part of each heat pipe is located on the suction side of the heat exchanger of the outdoor unit. The condensing portions of the heat pipes are placed opposite to the heat exchanger of the outdoor unit, and the condensing portions of the heat pipes are brought into contact with a plurality of fins of the heat exchanger of the outdoor unit, so that the air flowing into the heat exchanger of the outdoor unit is heated. A heat pump type air conditioner characterized by preheating using a condensing section of a pipe.
(23)室外機の熱交換器の各フィン及びヒートパイプ
の凝縮部の軸線の何れも垂直方向に延在していることを
特徴とする特許請求の範囲第22項記載のヒートポンプ
式空調装置。
(23) The heat pump type air conditioner according to claim 22, wherein each of the fins of the heat exchanger of the outdoor unit and the axis of the condensing part of the heat pipe extend in the vertical direction.
(24)室外機の熱交換器の各フィンが垂直方向に延在
し、ヒートパイプの凝縮部の軸線は前記室外機の熱交換
器の吸込面と平行をなして水平に延在していることを特
徴とする特許請求の範囲第22項記載のヒートポンプ式
空調装置。
(24) Each fin of the heat exchanger of the outdoor unit extends in a vertical direction, and the axis of the condensing part of the heat pipe extends horizontally in parallel with the suction surface of the heat exchanger of the outdoor unit. 23. A heat pump air conditioner according to claim 22.
(25)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、前記室外機の熱交換器の
吸込側に位置してヒートパイプを配設し、このヒートパ
イプの液溜部を地中に埋設すると共に、各ヒートパイプ
の凝縮部を前記室外機の熱交換器の吸込面にほゞ平行に
延在させ、前記ヒートパイプの凝縮部と前記室外機のケ
ースとの間に通風路を残して熱的絶縁物を介在し、前記
室外機の熱交換器に流入する大気を前記ヒートパイプの
凝縮部によつて予熱することを特徴とするヒートポンプ
式空調装置。
(25) A heat pump air conditioner in which the indoor unit acts as an evaporator and the outdoor unit as a condenser in the summer, and the indoor unit acts as a condenser and the outdoor unit acts as an evaporator in the winter by switching the refrigerant circuit. In this method, a heat pipe is arranged on the suction side of the heat exchanger of the outdoor unit, the liquid reservoir part of this heat pipe is buried underground, and the condensing part of each heat pipe is connected to the heat of the outdoor unit. The heat exchanger extends substantially parallel to the suction surface of the heat exchanger, leaving a ventilation passage between the condensing part of the heat pipe and the case of the outdoor unit, and interposing a thermal insulator therebetween. A heat pump type air conditioner characterized in that air flowing into the air is preheated by a condensing section of the heat pipe.
(26)ヒートパイプの凝縮部が室外機のケースの内側
に配設され、熱的絶縁物が前記室外機のケースの内側に
施こされていることを特徴とする特許請求の範囲第26
項記載のヒートポンプ式空調装置。
(26) Claim 26, characterized in that the condensing part of the heat pipe is disposed inside the case of the outdoor unit, and a thermal insulator is provided inside the case of the outdoor unit.
The heat pump type air conditioner described in Section 1.
(27)ヒートパイプの凝縮部が、室外機ケース内の熱
的絶縁物及び前記室外機ケース内の熱交換器の双方に当
接していることを特徴とする特許請求の範囲第26項記
載のヒートポンプ式空調装置。
(27) The condensing portion of the heat pipe is in contact with both a thermal insulator in the outdoor unit case and a heat exchanger in the outdoor unit case. Heat pump type air conditioner.
(28)複数本のヒートパイプが間隔を隔てて配設され
ており、熱的絶縁物が各ヒートパイプに跨つて延在して
各ヒートパイプに共用の熱的絶縁物となつていることを
特徴とする特許請求の範囲第27項記載のヒートポンプ
式空調装置。
(28) A plurality of heat pipes are arranged at intervals, and a thermal insulator extends across each heat pipe to provide a common thermal insulator for each heat pipe. A heat pump air conditioner according to claim 27.
(29)熱的絶縁物が弾性体であることを特徴とする特
許請求の範囲第26項又は第28項に記載のヒートポン
プ式空調装置。
(29) The heat pump air conditioner according to claim 26 or 28, wherein the thermal insulator is an elastic body.
(30)ヒートパイプの凝縮部が室外機のケースの外側
に配設され、熱的絶縁被覆が前記室外機のケースの外側
に施こされていることを特徴とする特許請求の範囲第2
5項記載のヒートポンプ式空調装置。
(30) Claim 2, characterized in that the condensing part of the heat pipe is disposed on the outside of the case of the outdoor unit, and a thermal insulation coating is applied on the outside of the case of the outdoor unit.
The heat pump air conditioner according to item 5.
(31)室外機のケースの外側に別個に設けられたカバ
ーによつて、ヒートパイプの凝縮部がその上側及び両側
を覆われていることを特徴とする特許請求の範囲第30
項記載のヒートポンプ式空調装置。
(31) Claim 30, characterized in that the condensing part of the heat pipe is covered on its upper side and both sides by a cover provided separately on the outside of the case of the outdoor unit.
The heat pump type air conditioner described in Section 1.
(32)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮機となり冬期には
室内機が凝縮器になると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、ヒートパイプを地中に可
移動に埋設し、冬期には前記ヒートパイプの凝縮部を前
室外機の熱交換器の吸込側に対向させて前記室外機の熱
交換器に流入する大気を前記ヒートパイプの凝縮部によ
つて予熱し、夏期には前記ヒートパイプの凝縮部を前記
室外機の熱交換器の吸込側から大地内へ移動させること
を特徴とするヒートポンプ式空調装置。
(32) A heat pump air conditioner in which the indoor unit becomes the evaporator and the outdoor unit becomes the condenser in the summer, and the indoor unit becomes the condenser and the outdoor unit becomes the evaporator in the winter by switching the refrigerant circuit. In this method, a heat pipe is movably buried in the ground, and in winter, the condensing part of the heat pipe is opposed to the suction side of the heat exchanger of the front outdoor unit to prevent the air from flowing into the heat exchanger of the outdoor unit. A heat pump type air conditioner characterized in that preheating is performed by a condensing section of the heat pipe, and the condensing section of the heat pipe is moved into the ground from the suction side of a heat exchanger of the outdoor unit in summer.
(33)ガイド孔を有したガイド部材が地中に埋設され
ており、ヒートパイプが前記ガイド孔に可移動に挿入さ
れていることを特徴とする特許請求の範囲第32項記載
のヒートポンプ式空調装置。
(33) A heat pump type air conditioner according to claim 32, characterized in that a guide member having a guide hole is buried underground, and a heat pipe is movably inserted into the guide hole. Device.
(34)ガイド部材が熱伝導性の良い材料で形成されて
おり集熱の機能を有していることを特徴とする特許請求
の範囲第33項記載のヒートポンプ式空調装置。
(34) The heat pump air conditioner according to claim 33, wherein the guide member is made of a material with good thermal conductivity and has a heat collecting function.
(35)冷房と暖房との切換操作に応して、冷房時には
ヒートパイプの凝縮部が室外機の熱交換器の吸込側から
大地内ガイド部材のガイド孔内へ移動装置によつて自動
的に移動することを特徴とする特許請求の範囲第32項
〜第34項の何れか一に記載のヒートポンプ式空調装置
(35) In response to the switching operation between cooling and heating, the condensing part of the heat pipe is automatically moved from the suction side of the heat exchanger of the outdoor unit into the guide hole of the in-ground guide member during cooling. The heat pump air conditioner according to any one of claims 32 to 34, which is movable.
(36)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、ヒートパイプを地中に可
移動に埋設し、温度に応動する形状記憶部材の一部を前
記ヒートパイプに接続すると共に他部を固定し、前記形
状記憶部材によつて、冬期には前記ヒートパイプの凝縮
部を前記室外機の熱交換器の吸込側に対向させて前記室
外機の熱交換器に流入する大気を前記ヒートパイプの凝
縮部によつて予熱し、夏期には前記ヒートパイプの凝縮
部を前記室外機の熱交換器の吸込側から大地内へ移動さ
せることを特徴とするヒートポンプ式空調装置。
(36) Heat pump air conditioner in which the indoor unit functions as an evaporator and the outdoor unit functions as a condenser in the summer, and the indoor unit functions as a condenser and the outdoor unit functions as an evaporator in the winter by switching the refrigerant circuit. A heat pipe is movably buried in the ground, a part of a shape memory member that responds to temperature is connected to the heat pipe, and the other part is fixed, and the shape memory member allows the shape memory member to The condensing part of the heat pipe is arranged to face the suction side of the heat exchanger of the outdoor unit, and the air flowing into the heat exchanger of the outdoor unit is preheated by the condensing part of the heat pipe. A heat pump air conditioner characterized in that a condensing part of the outdoor unit is moved from the suction side of the heat exchanger of the outdoor unit into the ground.
(37)ガイド孔を有したガイド部材が地中に埋設され
ており、ヒートパイプが前記ガイド孔に可移動に挿入さ
れていることを特徴とする特許請求の範囲第36項記載
のヒートポンプ式空調装置。
(37) A heat pump type air conditioner according to claim 36, characterized in that a guide member having a guide hole is buried underground, and a heat pipe is movably inserted into the guide hole. Device.
(38)ガイド部材が熱伝導性の良い材料で形成されて
おり集熱の機能を有していることを特徴とする特許請求
の範囲第37項記載のヒートポンプ式空調装置。
(38) The heat pump air conditioner according to claim 37, wherein the guide member is made of a material with good thermal conductivity and has a heat collecting function.
(39)複数本のヒートパイプを間隔を隔てて配設する
と共に各ヒートパイプをそれらの凝縮部において連結部
材で連結し、形状記憶部材の一部を前記連結部材に接続
すると共に他部を固定することを特徴とする特許請求の
範囲第36項〜第38項の何れか一に記載のヒートポン
プ式空調装置。
(39) Arranging a plurality of heat pipes at intervals, connecting each heat pipe with a connecting member at their condensing parts, and connecting a part of the shape memory member to the connecting member while fixing the other part. The heat pump air conditioner according to any one of claims 36 to 38.
(40)室外機のケースの外側にカバーを配設し、この
カバーによってヒートパイプ及び形状記憶部材をそらの
上部及び両側から通風路を残して覆い、前記ヒートパイ
プと前記形状記憶部材とを前記室外機とは別個のユニッ
トとしたことを特徴とする特許請求の範囲第39項記載
のヒートポンプ式空調装置。
(40) A cover is disposed on the outside of the case of the outdoor unit, and the cover covers the heat pipe and the shape memory member from the top and both sides leaving a ventilation passage, and the heat pipe and the shape memory member are The heat pump air conditioner according to claim 39, characterized in that it is a separate unit from the outdoor unit.
(41)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、前記室外機の熱交換器の
吸込側に位置してヒートパイプの凝縮部を配設し、内部
に大気より温度の高い流体が流れ大地や基礎内に配設さ
れた流体路を介して前記温度の高い流体と熱的に前記ヒ
ートパイプの液溜部を接続し、前記室外機の熱交換器に
流入する大気を前記ヒートパイプの凝縮部によつて予熱
することを特徴とするヒートポンプ式空調装置。
(41) A heat pump air conditioner in which the indoor unit acts as an evaporator and the outdoor unit as a condenser in the summer, and the indoor unit acts as a condenser and the outdoor unit acts as an evaporator in the winter by switching the refrigerant circuit. In this method, a condensing part of a heat pipe is arranged on the suction side of the heat exchanger of the outdoor unit, and a fluid having a temperature higher than that of the atmosphere flows inside through a fluid passage arranged in the ground or in the foundation. A heat pump type, characterized in that the high-temperature fluid is thermally connected to the liquid reservoir section of the heat pipe, and the air flowing into the heat exchanger of the outdoor unit is preheated by the condensing section of the heat pipe. Air conditioner.
(42)大気より温度の高い流体が産業用水であること
を特徴とする特許請求の範囲第41項記載のヒートポン
プ式空調装置。
(42) The heat pump type air conditioner according to claim 41, wherein the fluid whose temperature is higher than that of the atmosphere is industrial water.
(43)工業用水が原子力発電における冷却水であるこ
とを特許請求の範囲第42項記載のヒートポンプ式空調
装置。
(43) A heat pump air conditioner according to claim 42, wherein the industrial water is cooling water for nuclear power generation.
(44)大気より温度の高い流体が温泉地帯の湯である
ことを特徴とする特許請求の範囲第41項記載のヒート
ポンプ式空調装置。
(44) The heat pump type air conditioner according to claim 41, wherein the fluid whose temperature is higher than that of the atmosphere is hot water from a hot spring area.
(45)大気より温度の高い流体が銭湯の排湯であるこ
とを特徴とする特許請求の範囲第41項記載のヒートポ
ンプ式空調装置。
(45) The heat pump type air conditioner according to claim 41, wherein the fluid whose temperature is higher than that of the atmosphere is waste water from a public bath.
(46)冷媒回路を切換えることによつて夏期には室内
機が蒸発器となると共に室外機が凝縮器となり冬期には
室内機が凝縮器となると共に室外機が蒸発器となるヒー
トポンプ式空調装置において、前記室外機の熱交換器の
吸込側に位置して第1のヒートパイプの凝縮部を配設し
、大地や基礎内に配設され大気より温度の高い熱源に集
熱器を取り付け、該集熱器に第2のヒートパイプの液溜
部を熱的に接続し、前記第1のヒートパイプの液溜部を
前記第2のヒートパイプの凝縮部に熱的に接続し、前記
室外機の熱交換器に流入する大気を前記第1のヒートパ
イプの凝縮部によつて予熱することを特徴とするヒート
ポンプ式空調装置。
(46) A heat pump air conditioner in which the indoor unit functions as an evaporator and the outdoor unit as a condenser in the summer, and the indoor unit functions as a condenser and the outdoor unit functions as an evaporator in the winter by switching the refrigerant circuit. , a condensing part of the first heat pipe is disposed on the suction side of the heat exchanger of the outdoor unit, and a heat collector is attached to a heat source that is disposed in the ground or in the foundation and has a higher temperature than the atmosphere, A liquid reservoir section of a second heat pipe is thermally connected to the heat collector, a liquid reservoir section of the first heat pipe is thermally connected to a condensing section of the second heat pipe, and the outdoor A heat pump type air conditioner characterized in that air flowing into a heat exchanger of a heat pump is preheated by a condensing section of the first heat pipe.
(47)第1のヒートパイプの液溜部と第2のヒートパ
イプの凝縮部とが熱的接続器によつて熱的に接続されて
いることを特徴とする特許請求の範囲第46項記載のヒ
ートポンプ式空調装置。
(47) Claim 46, characterized in that the liquid reservoir section of the first heat pipe and the condensation section of the second heat pipe are thermally connected by a thermal connector. heat pump type air conditioner.
(48)第1のヒートパイプ及び第2のヒートパイプの
何れも複数本配設されており、各第2のヒートパイプが
共通の集熱器に熱的に接続され、前記第1及び第2のヒ
ートパイプの各々が共通の熱的接続器に熱的に接続され
ていることを特徴とする特許請求の範囲第47項記載の
ヒートポンプ式空調装置。
(48) A plurality of first heat pipes and a plurality of second heat pipes are arranged, and each second heat pipe is thermally connected to a common heat collector, and the first and second heat pipes are connected thermally to a common heat collector. 48. The heat pump air conditioner according to claim 47, wherein each of the heat pipes is thermally connected to a common thermal connector.
(49)集熱器、第2のヒートパイプ、熱的接続器、及
び第1のヒートパイプの凝縮部に至るまでの部分の少な
くとも一が熱的絶縁物によつて覆われていることを特徴
とする特許請求の範囲第47項又は第48項に記載のヒ
ートポンプ式空調装置。
(49) At least one of the heat collector, the second heat pipe, the thermal connector, and the first heat pipe up to the condensing part is covered with a thermal insulator. A heat pump air conditioner according to claim 47 or 48.
JP21210186A 1986-09-08 1986-09-08 Heat pump type air conditioner Pending JPS6370056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21210186A JPS6370056A (en) 1986-09-08 1986-09-08 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21210186A JPS6370056A (en) 1986-09-08 1986-09-08 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS6370056A true JPS6370056A (en) 1988-03-30

Family

ID=16616898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21210186A Pending JPS6370056A (en) 1986-09-08 1986-09-08 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS6370056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029768U (en) * 1988-07-04 1990-01-22
JP2008121909A (en) * 2006-11-08 2008-05-29 Iida Sangyo:Kk Heat pipe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114032A (en) * 1974-02-20 1975-09-06
JPS52154232A (en) * 1976-06-17 1977-12-21 Matsushita Electric Ind Co Ltd Air conditioner
JPS5477350A (en) * 1977-12-02 1979-06-20 Hitachi Ltd Heat conveyer
JPS5481649A (en) * 1977-12-12 1979-06-29 Toshiba Corp Separate type air conditioner
JPS55667A (en) * 1978-10-27 1980-01-07 Meisei Electric Co Ltd Flip-flop circuit of relay
JPS55107893A (en) * 1979-02-13 1980-08-19 Kuintaru Aibuan Underground temperature exchanger
JPS6131866A (en) * 1984-07-23 1986-02-14 サンデン株式会社 Air-conditioning hot-water supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114032A (en) * 1974-02-20 1975-09-06
JPS52154232A (en) * 1976-06-17 1977-12-21 Matsushita Electric Ind Co Ltd Air conditioner
JPS5477350A (en) * 1977-12-02 1979-06-20 Hitachi Ltd Heat conveyer
JPS5481649A (en) * 1977-12-12 1979-06-29 Toshiba Corp Separate type air conditioner
JPS55667A (en) * 1978-10-27 1980-01-07 Meisei Electric Co Ltd Flip-flop circuit of relay
JPS55107893A (en) * 1979-02-13 1980-08-19 Kuintaru Aibuan Underground temperature exchanger
JPS6131866A (en) * 1984-07-23 1986-02-14 サンデン株式会社 Air-conditioning hot-water supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029768U (en) * 1988-07-04 1990-01-22
JP2008121909A (en) * 2006-11-08 2008-05-29 Iida Sangyo:Kk Heat pipe

Similar Documents

Publication Publication Date Title
WO1999050604A1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
JP2007032910A (en) Ground heat exchanger and air conditioner
WO2020029582A1 (en) Fan-free indoor heat exchanger for air source heat pump air conditioner and having built-in heat storage medium
KR100953907B1 (en) Base plate for evaporating refrigerant and evaporator using thereof
CN107462094B (en) Phase transformation heat collector cavity heat pipe heat
CN112393319B (en) Aluminum alloy high heat exchange efficiency radiator
JPS6370056A (en) Heat pump type air conditioner
JP3539151B2 (en) Cooling system
KR100620907B1 (en) Subterranean heat a house fever seive also heat pump type cooling and heating by subterranean heat a house fever seive
KR101534612B1 (en) Out-door condenser
KR200430990Y1 (en) Heat pump type Cooling and heating by subterranean heat on the water
JPH102616A (en) Evaporation block for heat storage heat pipe-type hot water supply device
CN212029727U (en) Capillary heat exchanger of air conditioning system
CN111895687A (en) Sleeve type water-cooled condenser
JPH0239707B2 (en)
CN215597510U (en) Indoor unit of air conditioner
CN220355761U (en) Dehumidifying device
CN218895684U (en) Condensed water heat exchange system and storage device
CN216203717U (en) Heat exchange device of heating and ventilation equipment
CN215934244U (en) Switch integration box convenient to heat dissipation
CN217685493U (en) Air conditioner outdoor unit and air conditioner
CN114111120B (en) Falling film finned tube heat exchanger and air conditioning system
JPH0137660B2 (en)
JP2003042572A (en) Solar thermal collector and water heater using the same
KR20080043285A (en) The air conditioner passing the air through the source of heat or the water