JPS6369702A - Process for storage and purification of hydrogen - Google Patents

Process for storage and purification of hydrogen

Info

Publication number
JPS6369702A
JPS6369702A JP61212650A JP21265086A JPS6369702A JP S6369702 A JPS6369702 A JP S6369702A JP 61212650 A JP61212650 A JP 61212650A JP 21265086 A JP21265086 A JP 21265086A JP S6369702 A JPS6369702 A JP S6369702A
Authority
JP
Japan
Prior art keywords
hydrogen
copper
gas
absorbed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61212650A
Other languages
Japanese (ja)
Inventor
Seiichi Kanda
神田 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61212650A priority Critical patent/JPS6369702A/en
Publication of JPS6369702A publication Critical patent/JPS6369702A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To store and purify hydrogen at low cost by absorbing gaseous hydrogen by allowing the gas to contact with a copper compd. and releasing the gas therefrom at need. CONSTITUTION:Hydrogen is absorbed by allowing gaseous hydrogen or hydrogen-contg. gas to contact with a copper compd., and releasing the absorbed hydrogen at need. Suitable copper compd. is copper sulfate, copper chloride, copper acetate, copper hydroxide, etc.; the copper compd. may be activated by the pretreatment, such as dehydration by heating, etc. Further, the absorption of hydrogen is performed at ca. 20-30atm, and 0 deg.C - room temp., and the elimination and recovery of hydrogen is performed by reducing the hydrogen pressure of the atmosphere or by elevating the temp. of the absorbent to >=ca. 50 deg.C. By this method, the storage and purification of hydrogen can be performed simultaneously at low cost.

Description

【発明の詳細な説明】 本発明は、銅化合物による水素吸収を利用する水素の貯
蔵及び精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for storing and purifying hydrogen using hydrogen absorption by a copper compound.

従来、水素は最も普通には高圧気体容器中に数百気圧に
圧縮して貯蔵されるが、この場合は容器の重量が大部分
を占め、極めて不経済である。最近、水素吸蔵合金が開
発されている。これによれば水素は金属(固体)に吸収
されて貯蔵され、必要な時に適当な方法で回収してガス
として利用できる。水素を吸蔵する金属(単体又は合金
)としてかなりの数のものが知られているが、白金やパ
ラジウムのような貴金属は特殊な目的にしか使用できな
い。また現在まで報告された合金類は、稀土類などのレ
アメタル又はニッケルなどの輸入金属に大きく依存して
おり、高価であるため、広く利用されるに至っていない
のが現状である。さらに性能についても改良が要望され
ている。
Hitherto, hydrogen has most commonly been compressed and stored in high-pressure gas containers at several hundred atmospheres, but in this case, the weight of the container accounts for most of the storage, making it extremely uneconomical. Recently, hydrogen storage alloys have been developed. According to this, hydrogen is absorbed by a metal (solid) and stored, and when necessary, it can be recovered by an appropriate method and used as a gas. A considerable number of metals (alone or alloys) are known to absorb hydrogen, but noble metals such as platinum and palladium can only be used for special purposes. In addition, the alloys reported to date are largely dependent on rare metals such as rare earth elements or imported metals such as nickel, and are expensive, so they are not widely used. Furthermore, improvements in performance are also desired.

本発明者は、金属以外の容易に入手しうる物質を用いて
、水素を可逆的に吸収及び脱離させることによる水素の
貯蔵及び精製法を求めて研究した結果、本発明に到達し
た。
The present inventor has arrived at the present invention as a result of research for a method for storing and purifying hydrogen by reversibly absorbing and desorbing hydrogen using easily available substances other than metals.

本発明は、銅化合物に水素ガス又は水素含有ガスを接触
させて銅化合物に水素を吸収させ、この吸収された水素
を必要に応じ脱離させることを特徴とする、銅化合物に
よる水素吸収を利用する水素の貯蔵又は精製法である。
The present invention utilizes hydrogen absorption by a copper compound, which is characterized by bringing hydrogen gas or a hydrogen-containing gas into contact with a copper compound, causing the copper compound to absorb hydrogen, and desorbing the absorbed hydrogen as necessary. This is a method for storing or purifying hydrogen.

銅化合物としては、好ましくは銅塩例えば硫酸銅、塩化
銅、過塩素酸鋼、酢酸銅、プロピオン酸銅、さらに水酸
化銅が用いられる。銅化合物は好ましくは固体として用
いられるが、濃厚な溶液好ましくは飽和溶液又は懸濁液
としても使用できる。溶剤としては一般に水が用いられ
るが、メタノール又はエタノール等の低級アルコールな
らびに水とアルコールの混合物も使用できる。銅化合物
は適当な前処理例えば加熱脱水により活性化することが
好ましい。
As the copper compound, preferably copper salts such as copper sulfate, copper chloride, steel perchlorate, copper acetate, copper propionate, and further copper hydroxide are used. The copper compounds are preferably used as solids, but can also be used as concentrated solutions, preferably saturated solutions or suspensions. Water is generally used as the solvent, but lower alcohols such as methanol or ethanol and mixtures of water and alcohol can also be used. The copper compound is preferably activated by a suitable pretreatment such as thermal dehydration.

本発明方法は例えば次のように実施することができる。The method of the present invention can be carried out, for example, as follows.

銅化合物を液状で又は好ましくは固体粉末状で、高圧力
の水素ガス又は水素含有ガスと接触させると、銅化合物
中の銅とほぼ等モル又はそれ以上の水素が吸収され、こ
うして水素を有効に貯蔵することができる。
When a copper compound, in liquid form or preferably in solid powder form, is brought into contact with hydrogen gas or hydrogen-containing gas under high pressure, about the same mole or more of hydrogen as copper in the copper compound is absorbed, thus making the hydrogen available. Can be stored.

ガスの圧力は、装置費、操作の安全性などの観点から、
約20〜30気圧が好ましい。これより高い圧力におい
ても、もち論水素吸収は行われる。圧力が20気圧より
低くなると次第に水素吸収塵が低下する。吸収の際の温
度は低温、例えば室温以下、特に0℃ないし室温が好ま
しい。水素を脱離回収する場合には、雰囲気の水素圧を
低下させるか、吸収体の温度を好ましくは50℃以上に
上昇させる。両者を併用すれば、より速やかに水素を放
出させることができる。混合ガスの場合は水素のみが選
択的に銅化合物により吸収され、脱離されるので、本発
明方法は水素の貯蔵と同時に精製のためにも利用できる
。混合ガスの精製の目的には、吸収操作ののち、吸収さ
れなかった残留ガスを除去するバッチ法により、ならび
に吸収体を一種の分離膜又は分離隔壁として用いる連続
法により、本方法を実施することが可能である。
Gas pressure is determined from the viewpoint of equipment cost, operational safety, etc.
A pressure of about 20 to 30 atmospheres is preferred. Hydrogen absorption can of course occur even at higher pressures. When the pressure becomes lower than 20 atm, the amount of hydrogen-absorbing dust gradually decreases. The temperature during absorption is preferably a low temperature, for example, below room temperature, particularly 0° C. to room temperature. When desorbing and recovering hydrogen, the hydrogen pressure in the atmosphere is reduced or the temperature of the absorber is preferably increased to 50° C. or higher. If both are used together, hydrogen can be released more quickly. In the case of a mixed gas, only hydrogen is selectively absorbed and desorbed by the copper compound, so the method of the present invention can be used for hydrogen storage and purification at the same time. For the purpose of purifying mixed gases, the process can be carried out in a batch process, in which the unabsorbed residual gas is removed after the absorption operation, and in a continuous process, in which the absorber is used as a kind of separation membrane or separation barrier. is possible.

本発明方法によれば、従来の高圧容器貯蔵法に比べて、
同−貯蔵水素量及び同一内容積の容器の耐えるべき圧力
は1/2o以下で足りる。また貯蔵合金法に比べて銅化
合物は安価で耐久性に優れ、反復使用できる。再生は一
般に必要でないが、所望により例えば水からの再結晶に
より簡単かつ容易に再生することができ、本発明方法は
経済性において特に優れている。
According to the method of the present invention, compared to the conventional high-pressure container storage method,
The pressure that a container with the same amount of stored hydrogen and the same internal volume should withstand is sufficient to be 1/2 o or less. In addition, compared to the storage alloy method, copper compounds are cheaper, more durable, and can be used repeatedly. Although regeneration is generally not necessary, it can be simply and easily regenerated if desired, for example by recrystallization from water, making the process of the invention particularly economical.

 3 一 実施例1 耐圧性ステンレス容器に精秤した銅塩を入れ、高圧水素
の注入及び排出を繰り返して空気を排除したのち、20
気圧の水素を加え、恒温槽内で25℃の温度に保持した
。圧力の変化が停止したのち、1気圧の水素を注入した
秤量皿に銅塩を入れ、水素の逃散を抑制しながらこの状
態で質量の時間的変化を調べた。その結果を次表に示す
3 Example 1 Precisely weighed copper salt was placed in a pressure-resistant stainless steel container, and air was removed by repeatedly injecting and discharging high-pressure hydrogen.
Atmospheric pressure of hydrogen was added and the temperature was maintained at 25° C. in a constant temperature bath. After the pressure change had stopped, the copper salt was placed in a weighing dish into which 1 atm of hydrogen had been injected, and the temporal change in mass was examined under this condition while suppressing the escape of hydrogen. The results are shown in the table below.

*水素圧を20気圧に保持したのち、1気圧(50℃)
まで減圧し、コックを閉じると徐々に1゜6気圧まで昇
圧した。この結果は吸収されていた水素の可逆的脱離を
示すものである。
*Hydrogen pressure is maintained at 20 atm, then 1 atm (50℃)
After closing the cock, the pressure was gradually increased to 1°6 atmospheres. This result indicates the reversible desorption of absorbed hydrogen.

この実験結果によれば、銅塩は高圧水素と接触させると
Cu 1モルにつきH2を約0.5〜2モル吸収するこ
と、そして減圧にすると、吸収量と同量の水素を放出す
ることが認められる。
According to the experimental results, when copper salt is brought into contact with high-pressure hydrogen, it absorbs approximately 0.5 to 2 moles of H2 per mole of Cu, and when the pressure is reduced, it releases the same amount of hydrogen as the absorbed amount. Is recognized.

実施例2 硫酸銅結晶を微粉末となし、加熱して結晶水を除去した
のち、閉鎖容器に入れ、約20気圧の水素ガスと接触さ
せた。無水硫酸銅結晶16g(その体積は約5crn3
)は、0℃及び1気圧で2.42以上すなわち約500
倍の水素を吸収した。吸収された水素は、単に雰囲気の
水素圧を低下させるだけで結晶から回収された。また水
素を吸収した結晶を閉鎖容器内で100℃に加熱すると
、1気圧より高い圧力を有する水素ガスが得られた。
Example 2 Copper sulfate crystals were made into fine powder, heated to remove crystal water, placed in a closed container, and brought into contact with hydrogen gas at about 20 atmospheres. 16 g of anhydrous copper sulfate crystals (its volume is approximately 5 crn3)
) is 2.42 or more at 0°C and 1 atm, or about 500
Absorbed twice as much hydrogen. The absorbed hydrogen was recovered from the crystal simply by lowering the atmospheric hydrogen pressure. Furthermore, when the hydrogen-absorbed crystals were heated to 100° C. in a closed container, hydrogen gas with a pressure higher than 1 atmosphere was obtained.

実施例3 実施例2と同様に操作し、ただし吸収体として硫酸銅の
飽和水溶液を用いると、同様の結果が得られる。
Example 3 Similar results are obtained by operating as in Example 2, but using a saturated aqueous solution of copper sulfate as absorber.

実施例4 実施例と同様に操作し、ただし吸収体としてプロピオン
酸銀をエタノール中の飽和溶液の形で用いると、同様の
結果が得られる。
Example 4 Similar results are obtained if one operates analogously to the example but uses silver propionate as absorber in the form of a saturated solution in ethanol.

出願人 神   1)  精   − −7=Applicant God 1) Spirit - −7=

Claims (1)

【特許請求の範囲】[Claims] 銅化合物に水素ガス又は水素含有ガスを接触させて銅化
合物に水素を吸収させ、この吸収された水素を必要に応
じ脱離させることを特徴とする、銅化合物による水素吸
収を利用する水素の貯蔵又は精製法。
Hydrogen storage utilizing hydrogen absorption by a copper compound, characterized by contacting a copper compound with hydrogen gas or a hydrogen-containing gas, causing the copper compound to absorb hydrogen, and desorbing the absorbed hydrogen as necessary. Or purification method.
JP61212650A 1986-09-11 1986-09-11 Process for storage and purification of hydrogen Pending JPS6369702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212650A JPS6369702A (en) 1986-09-11 1986-09-11 Process for storage and purification of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212650A JPS6369702A (en) 1986-09-11 1986-09-11 Process for storage and purification of hydrogen

Publications (1)

Publication Number Publication Date
JPS6369702A true JPS6369702A (en) 1988-03-29

Family

ID=16626141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212650A Pending JPS6369702A (en) 1986-09-11 1986-09-11 Process for storage and purification of hydrogen

Country Status (1)

Country Link
JP (1) JPS6369702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096609A (en) * 2004-09-29 2006-04-13 Kurita Water Ind Ltd Hydrogen storage method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096609A (en) * 2004-09-29 2006-04-13 Kurita Water Ind Ltd Hydrogen storage method

Similar Documents

Publication Publication Date Title
US5536302A (en) Adsorbent for removal of trace oxygen from inert gases
US3406496A (en) Separation of hydrogen from other gases
JPH01155945A (en) Production of adsorbent for separating and recovering co
US3814799A (en) Purifying gases containing mercury or mercury and oxygen as impurities
Noto et al. Mechanism of formic acid decomposition over dehydrogenation catalysts
US4302436A (en) Method of regenerating disproportionated hydrides
US4560816A (en) Catalyzed hydrogenation and dehydrogenation processes
US4556551A (en) Hydrogen storage materials of zirconium-chromium-iron and titanium alloys characterized by ZrCr2 stoichiometry
JPH059364B2 (en)
JPS6369702A (en) Process for storage and purification of hydrogen
US3438178A (en) Separation of hydrogen from other gases
JPS6159241B2 (en)
US4215008A (en) Rare earth-containing alloys and method for purification of hydrogen gas therewith
JPS5869724A (en) Oxygen-stabilized intermetallic compound able to absorbing hydrogen reversibly
Boffito et al. A new Zr-based alloy for tritium recovery from tritiated water
JPH1066865A (en) Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
Oesterreicher et al. Water formation on oxygen exposure of some hydrides of intermetallic compounds
US5064627A (en) Continuous process for separating hydrogen in high purity from a gaseous hydrogen-containing mixture
JPS6348802B2 (en)
Chen et al. The properties and some applications of the hydride hydrogen-compression alloy (CaMmCu)(NiAl) 5Zr0. 05
JPS6313925B2 (en)
Ishido et al. Effect of impurities and air exposure on hydrogen absorbing properties of Mg Ni alloys
US4749558A (en) Method of separating and purifying hydrogen
Bennett et al. Investigation of hydriding processes in low-temperature/low-pressure metal hydrides