JPS636846Y2 - - Google Patents

Info

Publication number
JPS636846Y2
JPS636846Y2 JP10429482U JP10429482U JPS636846Y2 JP S636846 Y2 JPS636846 Y2 JP S636846Y2 JP 10429482 U JP10429482 U JP 10429482U JP 10429482 U JP10429482 U JP 10429482U JP S636846 Y2 JPS636846 Y2 JP S636846Y2
Authority
JP
Japan
Prior art keywords
needle
capillary
ion source
tip
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10429482U
Other languages
Japanese (ja)
Other versions
JPS5910842U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10429482U priority Critical patent/JPS5910842U/en
Publication of JPS5910842U publication Critical patent/JPS5910842U/en
Application granted granted Critical
Publication of JPS636846Y2 publication Critical patent/JPS636846Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【考案の詳細な説明】 本考案は特に安定なイオンビームを発生するこ
とができるイオン源に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to an ion source that can generate a stable ion beam.

セシウム等のアルカリ金属のE.H.D.(Electro
Hydro Dynamics)型フイルドイオン源は、液
体金属の性質(粘度)によりキヤピラリー型又は
キヤピラリーニードル型が使用される。本考案は
後者のイオン源に係るものである。キヤピラリー
ニードル型のイオン源として例えば第1図に示す
ような装置が提供されている。図において1は液
体金属例えばセシウム2を貯えるリザーバであ
り、3は金属細管(例えばステンレス)で作られ
たキヤピラリーである。4はキヤピラリー3内に
設置された例えばタングステン製からなる針状部
材で、該針状部材4の一端は、リザーバ1の内壁
にスポツト溶接5等によつて固着され、他の一端
は電解研摩により先端部4aを形成して接地電極
6に対向して配置されている。以上の構成におい
て図示しない加熱手段によりリザーバ1が加熱さ
れ、更に該リザーバ1、針状部材4には図示しな
い電源より正の高圧が印加されると、リザーバ1
内部のセシウム2は、針状部材4の先端部4aの
強電界によつてキヤピラリー3を通り該先端部4
aまで引出される。そして、該先端部のセシウム
2は針状部材4と接地電位の電極6との間に高電
圧を印加することによつて形成される強電界によ
つてテーラの円錐と称される円錐突起を形成す
る。この円錐突起の先端部に電界が集中し、先端
部のセシウム2は電界蒸発したセシウムイオン1
Bとなつて引出される。この場合キヤピラリー3
の先端とニードル4の先端部4aの位置関係、ニ
ードル3の表面の汚染物がこのイオン源の特性
(イオンエミツシヨン特性)に重大な影響を及ぼ
す。ところで、従来のイオン源の製作法として
は、第2図に示す様にタングステン製の針状部材
4をキヤピラリー3に通し、該針状部材4の一端
をリザーバ1の内壁に例えばスポツト溶接5等に
よつて固着する。次に、キヤピラリー3から突出
した他端をリング状電極7に通し、該電極7に
NaOH(水酸化ナトリウム)の電解溶液8を、第
2図に示すように付着させた後該電極7とリザー
バ1間にAC電源9より通電すると、該針状部材
4は電解研摩され、第3図に示す様な先端部4a
が形成される。この様にして仕上げられたリザー
バ1、キヤピラリー3及び針状部材4から構成さ
れるエミツターには次の様な欠点がある。
EHD (Electro
The capillary type or capillary needle type is used for the Hydro Dynamics type field ion source depending on the properties (viscosity) of the liquid metal. The present invention relates to the latter ion source. As a capillary needle type ion source, an apparatus as shown in FIG. 1, for example, is provided. In the figure, 1 is a reservoir for storing a liquid metal such as cesium 2, and 3 is a capillary made of a thin metal tube (for example, stainless steel). Reference numeral 4 denotes a needle-like member made of, for example, tungsten, installed in the capillary 3. One end of the needle-like member 4 is fixed to the inner wall of the reservoir 1 by spot welding 5 or the like, and the other end is fixed by electrolytic polishing. A tip portion 4a is formed and disposed facing the ground electrode 6. In the above configuration, when the reservoir 1 is heated by a heating means (not shown) and a positive high voltage is applied to the reservoir 1 and the needle member 4 from a power source (not shown), the reservoir 1 is heated.
The cesium 2 inside passes through the capillary 3 due to the strong electric field of the tip 4a of the needle-like member 4, and is transferred to the tip 4.
It is pulled out to a. The cesium 2 at the tip forms a conical protrusion called Taylor's cone due to the strong electric field created by applying a high voltage between the needle member 4 and the electrode 6 at ground potential. Form. The electric field concentrates at the tip of this conical protrusion, and the cesium 2 at the tip becomes the cesium ion 1 that has been evaporated by the electric field.
It becomes B and is drawn out. In this case capillary 3
The positional relationship between the tip of the needle 4 and the tip 4a of the needle 4, and contaminants on the surface of the needle 3 have a significant effect on the characteristics of this ion source (ion emission characteristics). By the way, as a conventional method for manufacturing an ion source, as shown in FIG. 2, a needle-like member 4 made of tungsten is passed through the capillary 3, and one end of the needle-like member 4 is attached to the inner wall of the reservoir 1 by spot welding 5 or the like. It is fixed by. Next, pass the other end protruding from the capillary 3 through the ring-shaped electrode 7, and connect it to the ring-shaped electrode 7.
After depositing an electrolytic solution 8 of NaOH (sodium hydroxide) as shown in FIG. Tip part 4a as shown in the figure
is formed. The emitter composed of the reservoir 1, capillary 3, and needle member 4 finished in this manner has the following drawbacks.

針状部材4が電解溶液8により電解研摩され
た先端部4aの上部に、電解研摩時の汚染物C
が付着して固まり液体金属例えばセシウム2の
流れを阻害する。
Contaminants C during electrolytic polishing are placed on the top of the tip 4a of the needle member 4 that has been electrolytically polished with the electrolytic solution 8.
adheres and solidifies, obstructing the flow of liquid metal such as cesium 2.

キヤピラリー3内の針状部材4の表面は電解
研摩ができないために、金属光沢のある清浄面
とすることができず、液体金属2との“ヌレ”
所謂親和性が悪く、液体金属2の移送抵抗を高
くしている。
Since the surface of the needle-shaped member 4 inside the capillary 3 cannot be electrolytically polished, it cannot be made into a clean surface with a metallic luster, and "wetting" with the liquid metal 2 occurs.
The so-called poor affinity makes the transfer resistance of the liquid metal 2 high.

針状先端部4aとキヤピラリー3との位置関
係は、リング状電極7の位置によつて決定さ
れ、更に他端はスポツト溶接5によつて固定さ
れているためキヤピラリー3と先端部4aの距
離lの調節ができず、移送抵抗(Flow
Conductance)を調節することができない。
The positional relationship between the needle tip 4a and the capillary 3 is determined by the position of the ring electrode 7, and since the other end is fixed by spot welding 5, the distance l between the capillary 3 and the tip 4a is determined by the position of the ring electrode 7. cannot be adjusted, and transfer resistance (Flow
conductance) cannot be adjusted.

このため、従来のイオン源では安定なイオンエ
ミツシヨンを得ることは困難であつた。
For this reason, it has been difficult to obtain stable ion emission using conventional ion sources.

本考案は以上の点に鑑みなされたものでイオン
化すべき金属を貯蔵するリザーバ部と該リザーバ
部と連通し液体金属が供給されるキヤピラリー部
と、該キヤピラリー部を貫通する針状部材とから
なるキヤピラリーニードル型のイオン源におい
て、キヤピラリーを貫通する針状部材の複数箇所
を屈曲させ該キヤピラリーと針状部材の屈曲部と
の摩擦力によつて針状部材をキヤピラリーに固定
するよう構成したことを特徴としている。
The present invention was developed in view of the above points, and consists of a reservoir section that stores the metal to be ionized, a capillary section that communicates with the reservoir section and supplies liquid metal, and a needle-like member that penetrates the capillary section. In a capillary needle type ion source, a needle-like member passing through the capillary is bent at a plurality of locations, and the needle-like member is fixed to the capillary by the frictional force between the capillary and the bent portion of the needle-like member. It is characterized by

以下本考案の実施例を添付図面に基づき詳説す
る。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第4図は本考案の一実施例を示す概略図であ
る。尚第1図と同一部分には同一番号を付してそ
の説明を省略する。図において10は本考案の針
状部材の一実施例である。該針状部材10は、例
えば第4図に示すごとく複数箇所で屈曲された形
状でキヤピラリー3内に挿入されるが、このとき
該針状部材10の屈曲した部分とキヤピラリー3
の内壁との間に、ある一定の摩擦力が生じ針状部
材10はこの摩擦力により固定されるよう構成さ
れている。
FIG. 4 is a schematic diagram showing an embodiment of the present invention. The same parts as in FIG. 1 are given the same numbers and their explanations will be omitted. In the figure, numeral 10 is an embodiment of the needle-like member of the present invention. The needle-like member 10 is inserted into the capillary 3 in a shape bent at a plurality of places as shown in FIG.
A certain amount of frictional force is generated between the needle-like member 10 and the inner wall of the needle member 10, and the needle-like member 10 is fixed by this frictional force.

ところで、このように構成するためには該針状
部材10を第5図aに示すように、先ず屈曲して
ない状態で、リング状電極7に通し電解溶液8を
付着し、AC電源9より該針状部材10とリング
状電極7間にある電圧を印加すると、電解研摩さ
れ先端部が形成される。次に第5図aの矢印に示
すごとく、針状部材10を移動させることによつ
て、該針状部材10の表面だけが電解研摩され、
金属光沢のある清浄面とすることができ、液体金
属との所謂親和性が良くなる。このため、液体金
属の移送抵抗が低くなり液体金属を安定して針状
部材10の先端部に移送することができる。又第
5図bは、上記のように電解研摩された針状部材
10のキヤピラリー3内に挿入される部分を屈曲
させた図で、この屈曲は針状部材10をキヤピラ
リー3内に挿入した場合、該屈曲部分とキヤピラ
リー3の内壁との間に生ずる摩擦力で固定する為
のものである。又、針状部材10の先端部とキヤ
ピラリー3との距離lの調節には、針状部材10
のリザーバー側先端に力を加えて、これをキヤピ
ラリーから出し入れして行なう。
By the way, in order to construct this structure, as shown in FIG. When a certain voltage is applied between the needle-shaped member 10 and the ring-shaped electrode 7, electrolytic polishing is performed to form a tip. Next, by moving the needle-like member 10 as shown by the arrow in FIG. 5a, only the surface of the needle-like member 10 is electrolytically polished.
A clean surface with metallic luster can be obtained, and so-called affinity with liquid metal is improved. Therefore, the transfer resistance of the liquid metal becomes low, and the liquid metal can be stably transferred to the tip of the needle member 10. Furthermore, FIG. 5b is a diagram showing a bent portion of the electrolytically polished needle-like member 10 inserted into the capillary 3, and this bending is shown when the needle-like member 10 is inserted into the capillary 3. , is for fixing by the frictional force generated between the bent portion and the inner wall of the capillary 3. Further, to adjust the distance l between the tip of the needle member 10 and the capillary 3, the needle member 10
Apply force to the tip of the reservoir side and move it in and out of the capillary.

以上の様に本考案は、キヤピラリーニードル型
のイオン源で使用される針状部材の先端部を電解
研摩によつて形成する場合、先端部の上部に付着
する汚染物を取り除き、又針状部材の表面を電解
研摩して金属光沢のある清浄面とすることによつ
て液体金属を安定して移送することができる。更
にキヤピラリー内に挿入される針状部材を屈曲す
ることによつて針状部材をキヤピラリーに固定
し、キヤピラリーと針状部材の先端との距離lの
調整可能とすることによつて安定したイオビーム
を得ることができる。
As described above, when the tip of a needle member used in a capillary needle type ion source is formed by electrolytic polishing, the present invention removes contaminants adhering to the upper part of the tip, and By electrolytically polishing the surface of the member to give it a clean surface with metallic luster, liquid metal can be stably transferred. Furthermore, by bending the needle-like member inserted into the capillary, the needle-like member is fixed to the capillary, and by making it possible to adjust the distance l between the capillary and the tip of the needle-like member, a stable iobeam can be produced. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のキヤピラリーニードル型のイオ
ン源の概略図、第2図は従来のイオン源の製造方
法を説明するための図、第3図は従来のイオン源
の部分拡大図、第4図は本考案によるイオン源の
一実施例の概略図、第5図a及びbは本考案によ
るイオン源の一実施例装置の製造方法を説明する
ための図である。 1……リザーバ、2……液体金属、3……キヤ
ピラリー、4……針状部材、5……溶接部、6…
…接地電極、7……リング状電極、8……電解溶
液、9……AC電源、10……針状部材。
Fig. 1 is a schematic diagram of a conventional capillary needle type ion source, Fig. 2 is a diagram for explaining the manufacturing method of a conventional ion source, Fig. 3 is a partially enlarged view of a conventional ion source, and Fig. 4 is a schematic diagram of a conventional capillary needle type ion source. The figure is a schematic diagram of an embodiment of the ion source according to the present invention, and FIGS. 5A and 5B are diagrams for explaining a method of manufacturing the apparatus of the embodiment of the ion source according to the present invention. DESCRIPTION OF SYMBOLS 1...Reservoir, 2...Liquid metal, 3...Capillary, 4...Acicular member, 5...Welding part, 6...
... Ground electrode, 7 ... Ring-shaped electrode, 8 ... Electrolyte solution, 9 ... AC power supply, 10 ... Needle-shaped member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] イオン化すべき金属を貯蔵するリザーバ部と該
リザーバ部と連通し液体金属が供給されるキヤピ
ラリー部と、該キヤピラリー部を貫通する針状部
材とからなるキヤピラリーニードル型のイオン源
において、キヤピラリーを貫通する針状部材の複
数箇所を屈曲させ該キヤピラリーと針状部材の屈
曲部との摩擦力によつて針状部材をキヤピラリー
に固定するよう構成したことを特徴とする金属イ
オン源。
In a capillary needle type ion source, the ion source is composed of a reservoir section that stores the metal to be ionized, a capillary section that communicates with the reservoir section and is supplied with liquid metal, and a needle-shaped member that penetrates the capillary section. A metal ion source characterized in that the needle-like member is bent at a plurality of locations to fix the needle-like member to the capillary by a frictional force between the capillary and the bent portion of the needle-like member.
JP10429482U 1982-07-09 1982-07-09 metal ion source Granted JPS5910842U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10429482U JPS5910842U (en) 1982-07-09 1982-07-09 metal ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10429482U JPS5910842U (en) 1982-07-09 1982-07-09 metal ion source

Publications (2)

Publication Number Publication Date
JPS5910842U JPS5910842U (en) 1984-01-23
JPS636846Y2 true JPS636846Y2 (en) 1988-02-26

Family

ID=30244950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10429482U Granted JPS5910842U (en) 1982-07-09 1982-07-09 metal ion source

Country Status (1)

Country Link
JP (1) JPS5910842U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245767A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Ion source and method of manufacturing the same

Also Published As

Publication number Publication date
JPS5910842U (en) 1984-01-23

Similar Documents

Publication Publication Date Title
JPS5916385B2 (en) ion source
SE8500714L (en) CONTACT NOZZLE WITH A SCRIPTURAL PASSAGE FOR A MELTABLE SWEET STRING
JPS6330985B2 (en)
US4318029A (en) Liquid metal ion source
JPS5840744A (en) Metal ion source
JPS636846Y2 (en)
FR2453704A1 (en) HORIZONTAL ELECTRIC WELDING PROCESS UNDER DAIRY FOR SURFACE EQUALIZATION
JPS58178944A (en) Liquid metal ion source
JPH1164598A (en) Laser plasma x-ray source
JPH1064438A (en) Liquid metallic ion source
JPS58169761A (en) Field emission type ion beam generator
JPS6129041A (en) Field emission type liquid metal ion source
JPS6316537A (en) Ion beam generator
JPS6024279A (en) Arc welding device
JPH0576127B2 (en)
JP3015437B2 (en) Method for producing impregnated cathode assembly
JPH0160891B2 (en)
JPH01139756A (en) Ion emitting source by electric field
JPS63146327A (en) Liquid metal ion source
JPS6298543A (en) Ion beam generator
JPS60236431A (en) Diffusion-supply-type ion source
JPS58106748A (en) Ion gun
JPS61121247A (en) Liquid metal ion source
JPS60185338A (en) Ion source
JPS63298940A (en) Liquid metal ion source and its manufacture