JPS6368280A - Joining method for titanium and steel - Google Patents

Joining method for titanium and steel

Info

Publication number
JPS6368280A
JPS6368280A JP21146386A JP21146386A JPS6368280A JP S6368280 A JPS6368280 A JP S6368280A JP 21146386 A JP21146386 A JP 21146386A JP 21146386 A JP21146386 A JP 21146386A JP S6368280 A JPS6368280 A JP S6368280A
Authority
JP
Japan
Prior art keywords
steel
titanium
joining
plate
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21146386A
Other languages
Japanese (ja)
Other versions
JPH0369631B2 (en
Inventor
Taiji Hase
泰治 長谷
Tadao Ogawa
忠雄 小川
Masayoshi Kondo
正義 近藤
Seiichi Soeda
添田 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21146386A priority Critical patent/JPS6368280A/en
Publication of JPS6368280A publication Critical patent/JPS6368280A/en
Publication of JPH0369631B2 publication Critical patent/JPH0369631B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Resistance Welding (AREA)

Abstract

PURPOSE:To obtain the joining part having a high joining strength and excellent bending characteristic by interposing the insert stock of a steel net on the joining face of a titanium and steel and performing the joining with pressure by an electric resistance welding. CONSTITUTION:A spot welding is performed by inserting a SUS 304 net 4 on the joining face of a titanium plate 2 and steel plate 3. The part of the steel plate 3 side of the SUS 304 net is deposited by attaining to an integral body on the steel plate 3 at a nugget part 1 and the part of the titanium plate 2 side attains to a projection part 5 and is pushed into the titanium plate 2. The sound joining part having a high joining strength and an excellent bending property can thus be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチタン材と鋼の接合方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for joining titanium material and steel.

〔従来の技術〕[Conventional technology]

チタン材と鋼の接合方法としてはJIS G 3603
に爆着クラッドが示されているが、この方法は爆音や危
険を防止するための特別な手段が必要であり簡易な接合
方法ではない。特公昭57−24459号公報は1!I
仮とチタン板の間に銅薄板とステンレス網とを介挿して
溶岩させるクラツド鋼板である。しかしこの方法は銅薄
板とステンレス網とを介挿させるため複雑でコストが高
くなる。特開昭56−80381号公報はチタンとステ
ンレス鋼を銅を介して電子ビームあるいはレーザービー
ムで重ね溶接する方法であるが、この方法で大型の継手
をうるには高価な溶接設備が必要となる。
JIS G 3603 is the method for joining titanium and steel.
Explosive bonding cladding is shown in Figure 2, but this method requires special measures to prevent explosion noise and danger, and is not a simple bonding method. Special Publication No. 57-24459 is 1! I
This is a clad steel plate in which a thin copper plate and a stainless steel mesh are inserted between a temporary and titanium plate to form lava. However, this method involves interposing a copper thin plate and a stainless steel mesh, making it complicated and expensive. JP-A-56-80381 discloses a method of lap welding titanium and stainless steel through copper using an electron beam or laser beam, but this method requires expensive welding equipment to obtain large joints. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、チタン材と鋼とを、汎用の接合設備で簡易に
接合でき、且接合部が適度の強度と靭性を有する、チタ
ン材と鋼の接合を目的とする。
The present invention aims at joining titanium and steel, which can be easily joined using general-purpose joining equipment, and in which the joint has appropriate strength and toughness.

【問題点を解決するための手段〕[Means to solve problems]

本発明は、チタン材と鋼の接合面にtA網のインサート
材を介挿し、電気抵抗溶接により加圧接合することを特
徴とする、チタン材と鋼の接合方法である。
The present invention is a method for joining titanium material and steel, characterized in that a tA mesh insert material is inserted into the joining surface of titanium material and steel, and the joining is performed under pressure by electric resistance welding.

〔作用、実施例〕[Function, Examples]

第1表に、本発明者等が行った、チタン材と鋼のスポッ
ト溶接による接合試験の例を示す。又第3図はこの接合
試験での接合方法を示す図で、Aは従来法、Bは本発明
の方法である。第1表の試験番号1及び2にみられる如
く、チタン材と鋼とをインサート材なしでスポット溶接
した従来法の継手は、接合強度が低く又曲げ試験で良好
な結果は得られない。第1表の試験番号3.4は本発明
の継手で、チタン材と鋼の接合面にw4網又はステンレ
スt[Jilのインサート材を介挿してスポット溶接し
た例で、接合強度が高く且曲げ特性の優れた健全な接合
部を得ることができる。次に本発明の接合の作用を説明
する。第1図は第1表の試験番号3の接手のナゲツト部
断面の拡大図である。チタン板2と鋼板3の接合面に5
IJS 304 、W 4を介挿してスポット溶接する
が、ナゲツト部では5OS304網4は、鋼板3側の部
分は鋼板3に一体物となって溶着し、又チタン仮2例の
部分は突起部5となってチタン仮2内に押し込まれてい
る。即ちナゲツト部ではチタン板2と鋼板3は5IJS
 304金M44を介して凹凸状に噛合い強固な接合部
を形成している。第2図は第1図の突起部5の近傍の組
成を自動多機能分析装置(CMA)で示した図である。
Table 1 shows examples of joint tests conducted by the present inventors using spot welding between titanium materials and steel. Moreover, FIG. 3 is a diagram showing the joining method in this joining test, where A is the conventional method and B is the method of the present invention. As shown in test numbers 1 and 2 in Table 1, conventional joints made by spot welding titanium and steel without an insert material have low joint strength and do not give good results in bending tests. Test number 3.4 in Table 1 is a joint of the present invention, which is an example in which a W4 mesh or stainless steel T [Jil insert material is inserted into the joint surface of titanium material and steel and spot welded. A healthy joint with excellent properties can be obtained. Next, the effect of the joining according to the present invention will be explained. FIG. 1 is an enlarged cross-sectional view of the nugget portion of the joint of Test No. 3 in Table 1. 5 on the joint surface of titanium plate 2 and steel plate 3
IJS 304 and W 4 are inserted and spot welded, but in the nugget part, the 5OS304 mesh 4 is welded to the steel plate 3 as an integral part on the steel plate 3 side, and the part of the two temporary titanium parts is welded to the protrusion 5. It was pushed into the titanium temporary 2. That is, in the nugget part, titanium plate 2 and steel plate 3 are 5IJS.
They are interlocked in a concave and convex manner through 304 gold M44 to form a strong joint. FIG. 2 is a diagram showing the composition near the protrusion 5 in FIG. 1 using an automatic multifunctional analyzer (CMA).

ここでCMAとは、真空中で試料面の多数点(104以
上)に電子線を照射し、発生する特性X線(または反射
電子)を測定し、これらを電算機処理することによって
成分の分布状態をカラー表示すると共に、定性、定量分
析を行う、EPMAの原理を用いた大型試料の高度画像
処理装置をいう(1984年5月、金属、臨時増刊号別
冊)。第2図でチタン板2と鋼板3とは、SOS 30
4金網を介挿することにより、Ti−Fe−Cr−Ni
の接合層7及びTi−Feの接合層8によって接合して
いる他、鋼板とステンレス金網が直接接合した強度や靭
性に優れたFe−Cr−Ni層9によって接合されてお
り、且両接合面は5tlS 304の金網がTi板内に
押込まれて出来た突起状のFe−Cr−Ni部6によっ
て凹凸状に噛合った接合となっている。面接合面が凹凸
状に噛合った接合となるのは、第1図及び第2図より、
溶接に際してチタン板や鋼網や鋼板がそれぞれ加熱され
、この加熱温度でチタン板が鋼網よりも軟質となるため
に溶接時の加圧で鋼網がチタン板に押込まれて生じた事
は明かである。即ちffJ 網を介挿させることにより
板と鋼網との接触部は優先的に昇温し、従って比較的小
さな圧力でも第1図や第2図の如き噛合せ接合が得られ
る。
Here, CMA refers to the distribution of components by irradiating multiple points (104 or more) on a sample surface with an electron beam in vacuum, measuring the generated characteristic X-rays (or reflected electrons), and processing these using a computer. This is an advanced image processing device for large samples using the principle of EPMA, which displays the status in color and performs qualitative and quantitative analysis (May 1984, Metals, extra issue special edition). In Figure 2, titanium plate 2 and steel plate 3 are SOS 30
4 By inserting a wire mesh, Ti-Fe-Cr-Ni
In addition to the bonding layer 7 of the steel plate and the bonding layer 8 of Ti-Fe, the steel plate and the stainless wire mesh are bonded by a Fe-Cr-Ni layer 9 with excellent strength and toughness that is directly bonded. The wire mesh of 5tlS 304 is pressed into the Ti plate to form a protruding Fe-Cr-Ni portion 6 which engages in a concave and convex manner. From Figures 1 and 2, the reason for the joint where the surface mating surfaces mesh in an uneven manner is as follows.
It is clear that the titanium plate, steel mesh, and steel plate were heated during welding, and the titanium plate became softer than the steel mesh at this heating temperature, so the steel mesh was pushed into the titanium plate by the pressure applied during welding. It is. That is, by inserting the ffJ mesh, the temperature of the contact area between the plate and the steel mesh is preferentially increased, and therefore, the interlocking joint as shown in FIGS. 1 and 2 can be obtained even with a relatively small pressure.

本発明でチタン材は、工業用純チタンあるいはタン合金
の何れであってもよい。電気抵抗溶接に際しこれらのチ
タン材の鋼網接触部の近傍はβトランザス以上に加熱さ
れ、鋼網よりも軟質となるために鋼網は押し込まれる。
In the present invention, the titanium material may be either industrially pure titanium or a tan alloy. During electric resistance welding, the vicinity of the contact portion of these titanium materials with the steel mesh is heated to a temperature higher than the β transus, and the steel mesh is pushed into the titanium material because it becomes softer than the steel mesh.

鋼網の材質としては高温で硬質のオーステナイト系が望
ましい、 SOS 304鋼網は入手が容易であるが、
SOS 310系や5IJS 316系の鋼網も高温で
硬質である。又FJ網はその一部が鋼板と溶着し、第2
図9に示す溶着層を形成するが、綱網の材質と鋼板の材
質との組合せを適正に選択する事により、強度と靭性に
優れた第2図9に示す溶着層が形成される。即ち通常の
電気抵抗溶接で優れた接合部が得られる材質の組合せが
、本発明でm網の材質や鋼板の材質を選定する際の組合
せとしても望ましい。
The material for the steel mesh is preferably austenitic, which is hard at high temperatures.SOS 304 steel mesh is easily available;
SOS 310 series and 5IJS 316 series steel meshes are also hard at high temperatures. Also, part of the FJ net is welded to the steel plate, and the second
The welded layer shown in FIG. 9 is formed. By appropriately selecting the combination of the wire mesh material and the steel plate material, the welded layer shown in FIG. 2 and 9, which has excellent strength and toughness, is formed. That is, a combination of materials that can provide an excellent joint by ordinary electric resistance welding is also desirable as a combination when selecting the material of the m-mesh and the material of the steel plate in the present invention.

接合する鋼板は従って、炭素鋼、ステンレス鋼、合金鋼
の何れであってもよいが、第2図8の溶着層の靭性を高
めるために、炭素含有量の低いものが望ましい。
Therefore, the steel plates to be joined may be made of carbon steel, stainless steel, or alloy steel, but in order to improve the toughness of the welded layer shown in FIG. 28, it is desirable that the steel plates have a low carbon content.

電気抵抗溶接による加圧接合は、点溶接、シーム溶接、
アップセット溶接、バットシーム溶接等に適用でき、又
溶接条件は例えば薄い鋼網をインサート材として使用す
る際は第1表の如くインサート材を介挿しない場合に準
じて接合を行う事ができる。
Pressure joining by electric resistance welding includes spot welding, seam welding,
It can be applied to upset welding, butt seam welding, etc., and when a thin steel mesh is used as an insert material, the welding conditions can be the same as in Table 1 when no insert material is inserted.

〔発明の効果〕〔Effect of the invention〕

チタン材と鋼を直接溶接すると、脆い溶接部となるが、
本発明によりmsのインサート材を介挿し溶接すると、
接合特性の優れた溶接部が得られる。又本発明では汎用
の接合設備で、チタン材と鋼を簡易に接合する事ができ
る。
Direct welding of titanium and steel results in brittle welds, but
When inserting and welding ms insert material according to the present invention,
A welded part with excellent bonding properties can be obtained. Further, in the present invention, titanium material and steel can be easily joined using general-purpose joining equipment.

【図面の簡単な説明】 第1図は本発明の方法でTi板と5tlS 304 m
板を接合した際のナゲツト断面の拡大スケッチ図、第2
図は第1図の突起部5の各位置のCMAによる組成を示
す図、第3図はチタン材と鋼のスポット溶接の例を示す
図で、Aは従来法、Bは本発明の方法、第4図は接合強
度の試験方法を示した図である。 1;ナゲツト部、2;チタン板、3;鋼板、4;SυS
 304 綱、5:突起部、6 ; Fe−Cr−Ni
部、7; Ti−Fe−Cr−Ni層、8;Ti−Fe
層、9 ; Fe−Cr−Ni層、10;電極、11;
接合部、12;引張力。
[Brief Description of the Drawings] Figure 1 shows the method of the present invention using a Ti plate and 5tlS 304 m.
Enlarged sketch of the nugget cross section when the plates are joined, 2nd
The figure shows the composition by CMA of each position of the projection 5 in Fig. 1, and Fig. 3 shows an example of spot welding of titanium material and steel, where A is the conventional method, B is the method of the present invention, FIG. 4 is a diagram showing a method of testing bonding strength. 1; Nugget part, 2; Titanium plate, 3; Steel plate, 4; SυS
304 Steel, 5: Protrusion, 6; Fe-Cr-Ni
Part, 7; Ti-Fe-Cr-Ni layer, 8; Ti-Fe
Layer, 9; Fe-Cr-Ni layer, 10; Electrode, 11;
Joint, 12; tensile force.

Claims (1)

【特許請求の範囲】[Claims] チタン材と鋼の接合面に、鋼網のインサート材を介挿し
、電気抵抗溶接により加圧接合することを特徴とする、
チタン材と鋼の接合方法。
It is characterized by inserting a steel mesh insert material into the joining surface of titanium material and steel, and joining them under pressure by electric resistance welding.
A method of joining titanium and steel.
JP21146386A 1986-09-10 1986-09-10 Joining method for titanium and steel Granted JPS6368280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21146386A JPS6368280A (en) 1986-09-10 1986-09-10 Joining method for titanium and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21146386A JPS6368280A (en) 1986-09-10 1986-09-10 Joining method for titanium and steel

Publications (2)

Publication Number Publication Date
JPS6368280A true JPS6368280A (en) 1988-03-28
JPH0369631B2 JPH0369631B2 (en) 1991-11-01

Family

ID=16606355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21146386A Granted JPS6368280A (en) 1986-09-10 1986-09-10 Joining method for titanium and steel

Country Status (1)

Country Link
JP (1) JPS6368280A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622422A (en) * 1979-07-31 1981-03-03 Fuji Photo Film Co Ltd Microfiche assorting method of com unit
JPS5724459U (en) * 1980-07-17 1982-02-08
JPS6038269A (en) * 1983-07-29 1985-02-27 スクリーゲル コーポレーシヨン Inhibiting device for smog by wheel
JPS617155A (en) * 1984-06-20 1986-01-13 Hitachi Ltd Paper carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622422A (en) * 1979-07-31 1981-03-03 Fuji Photo Film Co Ltd Microfiche assorting method of com unit
JPS5724459U (en) * 1980-07-17 1982-02-08
JPS6038269A (en) * 1983-07-29 1985-02-27 スクリーゲル コーポレーシヨン Inhibiting device for smog by wheel
JPS617155A (en) * 1984-06-20 1986-01-13 Hitachi Ltd Paper carrier

Also Published As

Publication number Publication date
JPH0369631B2 (en) 1991-11-01

Similar Documents

Publication Publication Date Title
US20130189023A1 (en) Apparatus and methods for joining dissimilar materials
JPH0481288A (en) Method for joining steel material with aluminum material
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JPH07328774A (en) Dissimilar material joining method of aluminum and steel
JPH07178563A (en) Joining method and joining structure by spot welding using together press welding
CN100361774C (en) Joint reinforcing method for controlling copper alloy and steel butt-welding joint interface structure
JP2003236673A (en) Method for joining different kinds of materials
JPH0811302B2 (en) Dissimilar metal joining method
JPS6368280A (en) Joining method for titanium and steel
JP2009095881A (en) Method of manufacturing welded structural member
JP2531052B2 (en) Resistance welding method for dissimilar metals
JP2017087281A (en) Joint structure and method
JP3555698B2 (en) Resistance welding method for aluminum material and T-shaped aluminum structure
JP2754898B2 (en) Spot welding of Al-Fe based dissimilar metals
JP2636516B2 (en) Dissimilar metal joining method
JPH07290244A (en) Method for welding clad steel pipe
JP4718343B2 (en) Electromagnetic welding method and joined body of iron-based material and aluminum-based plate
JPS63230271A (en) Lap resistance welding method for al material to fe material
JPS5890389A (en) Laser welding method for different kind of metal
JP2008246558A (en) Butt-weld joint of dissimilar material of plated steel plate and aluminum alloy plate, and its joining method
JPH0240427B2 (en)
JP2019175804A (en) Terminal, connection structure body, wire harness, and manufacturing method of the terminal
JPS5832593A (en) Welding method
Cook et al. Narrow gap welding with the hot wire GTA process
JPH06190573A (en) Manufacture of hollow structural material