JPS636799A - Method and apparatus for automatic beam position control - Google Patents

Method and apparatus for automatic beam position control

Info

Publication number
JPS636799A
JPS636799A JP14998686A JP14998686A JPS636799A JP S636799 A JPS636799 A JP S636799A JP 14998686 A JP14998686 A JP 14998686A JP 14998686 A JP14998686 A JP 14998686A JP S636799 A JPS636799 A JP S636799A
Authority
JP
Japan
Prior art keywords
output
current
charged particle
particle beam
beam position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14998686A
Other languages
Japanese (ja)
Inventor
戸田 陽二郎
山木 晋一
庸夫 佐藤
照明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP14998686A priority Critical patent/JPS636799A/en
Publication of JPS636799A publication Critical patent/JPS636799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はサイクロトロンで加速した荷電粒子をビーム輸
送装置を通してターゲット材料に常に−定した量及び形
状のビームとして照射する自動制御方法及び自動制御装
置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides an automatic control method and apparatus for irradiating charged particles accelerated in a cyclotron onto a target material as a beam with a constant amount and shape through a beam transport device. Regarding.

(従来の技術) 一般に小型のサイクロトロンは第2図の段断面図、第3
図の横断面図に示すように1.上下に対向しているヨー
ク2.3と励磁コイル4,5よりなる電磁石の対向する
磁極間に水平に加速空間1を設け、磁極の中心部にイオ
ン源6を設けである。
(Prior art) In general, a small cyclotron is
As shown in the cross-sectional view of the figure, 1. An acceleration space 1 is provided horizontally between opposing magnetic poles of an electromagnet consisting of a yoke 2.3 and excitation coils 4 and 5, which face each other vertically, and an ion source 6 is provided at the center of the magnetic poles.

加速空間1には水平面で上下に対向している2組の同形
の扇形状の電極7,7及び8,8をそれぞれ中心点に対
して対称でかつ水平に配置し、これらの電極7.8には
周波数rの発振器9がらの高周波電圧をそれぞれRFフ
ァイナルアンプ1o1フィーダー11を介して印加しで
ある。
In the acceleration space 1, two sets of identical fan-shaped electrodes 7, 7 and 8, 8, which are vertically opposed on a horizontal plane, are arranged horizontally and symmetrically with respect to the center point, and these electrodes 7.8 A high frequency voltage from an oscillator 9 having a frequency r is applied through the RF final amplifier 1o1 feeder 11, respectively.

また加速空間lは真空ポンプ26.27で真空にしてあ
り、励磁コイル4,5は可変直流電源25で励磁されて
いる。
Further, the acceleration space 1 is evacuated by vacuum pumps 26 and 27, and the excitation coils 4 and 5 are excited by a variable DC power supply 25.

このような構造のサイクロトロンでイオン源6から放出
された荷電粒子は励磁コイル4,5で励磁されている磁
極間の加速空間1内を磁場で拘束され、電極7,8によ
りR1”電界で加速されて2#iSS状の運動をし、最
終的には偏向デフレクタ14で荷電粒子ビーム15を取
出し口16に誘導する。
In a cyclotron with such a structure, charged particles emitted from the ion source 6 are restrained by a magnetic field in the acceleration space 1 between the magnetic poles excited by the excitation coils 4 and 5, and are accelerated by the R1'' electric field by the electrodes 7 and 8. Then, the charged particle beam 15 is guided to the extraction port 16 by the deflector 14 .

この場合荷電粒子ビーム15の速度は電極7,8に印加
するRF雷電圧周波数と、この場合に必要な励磁コイル
4,5の励磁電流の調節により適宜に選ぶことが出来る
In this case, the speed of the charged particle beam 15 can be appropriately selected by adjusting the RF lightning voltage frequency applied to the electrodes 7 and 8 and the excitation current of the excitation coils 4 and 5 required in this case.

取出し口16の外部には荷電粒子ビーム15を輸送する
ビーム輸送装置17が設けてあり、荷電粒子ビーム15
はビーム輸送装置17及びこの中に設けられているビー
ム位置調節袋W19を通ってターゲットボックス18内
のターゲット材料を照射する。
A beam transport device 17 for transporting the charged particle beam 15 is provided outside the extraction port 16.
irradiates the target material in the target box 18 through the beam transport device 17 and the beam position adjustment bag W19 provided therein.

第4図はビーム輸送装置17内に設けたビーム位置調節
装置19の(イ)示は縦断面図、(ロ)示は測定用電極
21の配置図、(ハ)示はステアリングマグネット20
の断面図で、荷電粒子ビーム15の流れ方向(大矢印)
の上流側にビーム位置偏向用の互いに直交する2対のス
テアリングマグネット20を設け、下流側にビーム位置
測定用の互いに直交す、る2対の4個の測定用電極21
が設けである。この測定用電極21はいずれも対地絶縁
してあり、荷電粒子ビーム15が衝突すると、その荷電
粒子量に応じて接地間にビーム検出電流が流れる。この
電流を測定して上記4個の測定用電極21の検出電流が
等しくなるように上記2対のステアリングマグネット2
0の励磁電流を調節して荷電粒子ビーム15が対をなす
測定用電極2Iの中心線の交点(図の黒丸印)を通るよ
うに手動調節する。
FIG. 4 shows (a) a longitudinal sectional view of the beam position adjustment device 19 provided in the beam transport device 17, (b) a layout diagram of the measurement electrode 21, and (c) a steering magnet 20.
In the cross-sectional view, the flow direction of the charged particle beam 15 (large arrow)
Two pairs of steering magnets 20 orthogonal to each other for beam position deflection are provided on the upstream side, and two pairs of four measurement electrodes 21 orthogonal to each other for beam position measurement are provided on the downstream side.
is the provision. These measurement electrodes 21 are all insulated from the ground, and when the charged particle beam 15 collides with them, a beam detection current flows between the ground and the ground according to the amount of the charged particles. This current is measured and the two pairs of steering magnets 2 are arranged so that the detected currents of the four measuring electrodes 21 are equal.
0 excitation current is manually adjusted so that the charged particle beam 15 passes through the intersection of the center lines of the pair of measurement electrodes 2I (black circles in the figure).

なお測定用電極21は荷電粒子ビーム15が衝突しても
放射能を持ちにくいようなグラファイトで衝突面をコー
ティングしである。
Note that the collision surface of the measurement electrode 21 is coated with graphite, which does not easily generate radioactivity even when the charged particle beam 15 collides with it.

この場合荷電粒子ビーム15は一部がヨリ定用電極21
でカットされて損失となるが、第5図示のような荷電粒
子ビームの電流分布図の両側の裾の部分であるので、殆
ど影響はない。
In this case, a portion of the charged particle beam 15 is skewed to the fixed electrode 21.
However, since it is located at the tails on both sides of the charged particle beam current distribution diagram as shown in FIG. 5, it has almost no effect.

従来このようにして荷電粒子ビーム15の位置を中心位
置に調節してからターゲットに照射していた。
Conventionally, the position of the charged particle beam 15 was adjusted to the center position in this way before irradiating the target.

(発明が解決しようとする問題点) 上述のように荷電粒子ビーム15を照射直前に位置調整
するが、照射中の電圧その他種々の変動により荷電粒子
ビーム15の位置は必ずしも一定せず、照射効率が低下
することがある。
(Problems to be Solved by the Invention) As described above, the position of the charged particle beam 15 is adjusted just before irradiation, but the position of the charged particle beam 15 is not necessarily constant due to voltage and other various fluctuations during irradiation, resulting in poor irradiation efficiency. may decrease.

(問題を解決するための手段) 本発明は上述の問題を解決して、照射中も常に一定の位
置を保持出来るビーム位置自動制御方法と、その装置を
提供することを目的とする。
(Means for Solving the Problems) An object of the present invention is to solve the above-mentioned problems and provide an automatic beam position control method and apparatus that can maintain a constant position at all times during irradiation.

即ちビーム位置調節装置内のステアリングマグネットを
通過した荷電粒子ビーム位置を、互いに対向しかつ対向
方向が直角である2組の測定用電極で測定し、その結果
各測定用電極で検出したビーム電流のうち、対向する1
組の測定用電極の検出電流を比較器で比較して両電極の
検出電流が等しければ零出力、一方が大きければ正出力
、他方が大きければ負出力を出力し、その出力によって
直流電源からの電流を切換器で前記零出力の場合は遮断
し、前記正出力の場合は正方向の電流に、前記負出力の
場合は負方向の電流に制御して前記ステアリングマグネ
ットの1組の磁場方向を調節し、前記対向する1組と直
交する他の1組の測定用電極及びステアリングマグネッ
トも同様な動作で自動調節して荷電粒子ビームが常に2
組の測定用電極の中央部を通過するように制御する方法
である。
That is, the position of the charged particle beam that has passed through the steering magnet in the beam position adjustment device is measured by two sets of measurement electrodes that face each other and whose opposing directions are perpendicular to each other, and as a result, the beam current detected by each measurement electrode is Among them, 1 facing
The detected currents of the pair of measurement electrodes are compared using a comparator, and if the detected currents of both electrodes are equal, a zero output is output, if one is larger, a positive output is output, and if the other is larger, a negative output is output. The direction of the magnetic field of one set of the steering magnets is changed by cutting off the current using a switch when the output is zero, controlling the current to a positive current when the output is positive, and controlling the current to a negative current when the output is negative. The other pair of measurement electrodes and steering magnets perpendicular to the opposing pair are automatically adjusted in the same way so that the charged particle beam is always 2.
This method controls the measurement electrodes so that they pass through the center of the set of measurement electrodes.

またビーム輸送装置内に設けたビーム位置調節装置の互
いに直交する2組の電磁石を設けたステアリングマグネ
ットと、ビーム位置抄出器に設けた互いに対向しかつ対
向方向が互いに直交する2組の測定用電極と、各組の対
向するそれぞれの検出出力の大きさを比較して正出力、
零出力若しくは負出力を出力する比較器と、この比較器
の出力により直流電源からの電流を正方向、遮断若しく
は負方向の電流に切換えて前記ステアリングマグネット
に供給する切換器とを設けた装置である。
In addition, there is a steering magnet provided with two sets of electromagnets orthogonal to each other in the beam position adjustment device provided in the beam transport device, and two sets of measurement electrodes provided in the beam position extractor that are opposed to each other and whose opposing directions are perpendicular to each other. The positive output is obtained by comparing the magnitudes of the opposing detection outputs of each pair.
A device equipped with a comparator that outputs a zero output or a negative output, and a switching device that switches the current from the DC power source to a positive direction, cutoff, or negative direction current according to the output of the comparator and supplies it to the steering magnet. be.

(作用) 上述のように何らかの原因で荷電粒子ビーム位置が変化
した場合は、変化した方向の一対のIII定用重用電極
出出力に差が出来、その結果比較器と切換器が動作して
荷電粒子ビーム位置を変化前の位置に修正するような方
向の電流がステアリングマグネットに流れ、常に荷電粒
子ビームを設定位置に自動的に保持している。
(Function) As mentioned above, if the charged particle beam position changes for some reason, there will be a difference in the output output of the pair of III regular and heavy duty electrodes in the direction of change, and as a result, the comparator and switch will operate and the charged particle beam will change. A current flows through the steering magnet in a direction that corrects the particle beam position to the previous position, automatically holding the charged particle beam at the set position at all times.

(実施例) 第1図は本発明の自動制御装置の制御回路のブロック図
である。測定用電極21はA、BとC,Dでそれぞれ対
向する2対の電極を構成している。
(Embodiment) FIG. 1 is a block diagram of a control circuit of an automatic control device of the present invention. The measurement electrodes 21 constitute two pairs of electrodes A, B and C, D, which are opposed to each other.

1対のA、  Bの出力はそれぞれ比較器22−1に入
力し、大小を比較される。図中電極対の中心部の黒丸印
は荷電粒子ビームの位置を示したもので、図示のような
中央にあれば4個の測定用電極21の検出出力はA、B
、C,Dともに等しい値を示すものである。若し何らか
の理由で図中の黒丸位置が例えばA側に移動したとする
と、C,Dの検出出力は変化しないが、A、Bの検出出
力はAが大、Bが小となる。この検出出力は比較器22
−1で比較される。上記の場合はAの検出出力が大きい
ので比較器22−1の出力は正出力となり、この出力は
増幅器23−1で増幅され、切換器24−1を動作させ
て図示しない直流電源(DCPS)からの電流を荷電粒
子ビーム15が中央に戻る方向にステアリングマグネッ
ト20のコイルC’、D’ に流す。
The outputs of the pair of A and B are respectively input to a comparator 22-1 and compared in magnitude. The black circle mark at the center of the electrode pair in the figure indicates the position of the charged particle beam.
, C, and D both show equal values. If for some reason the position of the black circle in the figure moves to the A side, for example, the detection outputs of C and D do not change, but the detection outputs of A and B become large for A and small for B. This detection output is the comparator 22
-1 is compared. In the above case, since the detection output of A is large, the output of the comparator 22-1 becomes a positive output, and this output is amplified by the amplifier 23-1, and the switch 24-1 is operated to connect to a DC power supply (DCPS, not shown). A current is passed through the coils C' and D' of the steering magnet 20 in the direction in which the charged particle beam 15 returns to the center.

上述と逆方向に荷電粒子ビーム15が変化した場合は上
述と逆方向の動作をする。荷電粒子ビーム15の位置が
中央のままで変化しない間はA、Bの検出出力は等しい
ので、比較器22−1の出力は零出力であり、切換器2
4−1は遮断状態にあるのでステアリングマグネットの
コイルC’ 、D″には励磁電流が流れず、荷電粒子ビ
ーム15は偏向することなく通過する。
When the charged particle beam 15 changes in the opposite direction to that described above, the operation is performed in the opposite direction to that described above. As long as the position of the charged particle beam 15 remains at the center and does not change, the detection outputs of A and B are equal, so the output of the comparator 22-1 is zero, and the output of the switch 2
4-1 is in the cutoff state, so no excitation current flows through the coils C' and D'' of the steering magnet, and the charged particle beam 15 passes through without being deflected.

測定用電極21のC,D方向に荷電粒子ビーム15の位
置が変化した場合も前述の場合と全く同様に動作するの
で説明は省略する。
Even when the position of the charged particle beam 15 changes in the C and D directions of the measurement electrode 21, the operation is exactly the same as in the above case, so a description thereof will be omitted.

なおC,D方向の比較器は22−2、増幅器は23−2
、切換器は24−2であり、コイIしIs A ’、 
B ’で鳴る。
The C and D direction comparators are 22-2, and the amplifiers are 23-2.
, the switch is 24-2, and the coil I is A',
B' sounds.

(発明の効果) 上述のように本発明の装置は荷電粒子ビーム15が常に
測定用電極21の中心部に自動的に制御されているので
、従来のような初期調節のみではなく、動作中学に制御
しているリアルタイム制御であるので、照射効率を極め
て高くすることが出来る。
(Effects of the Invention) As described above, in the device of the present invention, the charged particle beam 15 is automatically controlled to always be at the center of the measurement electrode 21, so that it is not only necessary to perform initial adjustment as in the conventional case, but also to adjust it during operation. Since it is controlled in real time, the irradiation efficiency can be extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は自動制御装置の制御回路のブロック図、第2図
はサイクロトロンの縦断面図、第3図は同じく横断面図
、第4図はビーム位置調節装置の説明図で、(イ)は縦
断面図、(ロ)は測定用電極の配置図、(ハ)はステア
リングマグネットの断面図、第5図は荷電粒子ビームの
電流分布図である。 I9:ビーム位置調節装置、 20ニステアリングマグ
ネツト、 21:測定用電極、 22−1.22−2 
:比較器、 24−1.24−2 :切換器。 1、事件の表示 昭和61年 特許願 第149986号2、発明の名称 ビーム位置自動制御方法及び装置 3、補正をする者 事件との関係   特許出願人 421 株式会社 日本製鋼所 4、代理人
Fig. 1 is a block diagram of the control circuit of the automatic control device, Fig. 2 is a vertical cross-sectional view of the cyclotron, Fig. 3 is a cross-sectional view of the same, and Fig. 4 is an explanatory diagram of the beam position adjustment device. FIG. 5 is a longitudinal cross-sectional view, (b) is a layout diagram of measurement electrodes, (c) is a cross-sectional view of a steering magnet, and FIG. 5 is a current distribution diagram of a charged particle beam. I9: Beam position adjustment device, 20 Ni steering magnet, 21: Measurement electrode, 22-1.22-2
: Comparator, 24-1.24-2 : Switcher. 1. Indication of the case 1986 Patent Application No. 149986 2. Name of the invention Method and device for automatically controlling beam position 3. Person making the amendment Relationship to the case Patent applicant 421 Japan Steel Works, Ltd. 4, Agent

Claims (1)

【特許請求の範囲】 1)サイクロトロンの荷電粒子ビーム位置の制御方法に
おいて、ビーム位置調節装置内のステアリングマグネッ
ト部を通過した荷電粒子ビーム位置を、互いに対向しか
つ対向方向が直角である2組の測定用電極で測定し、そ
の結果各測定用電極で検出したビーム電流のうち、対向
する1組の測定用電極の検出電流を比較器で比較して両
電極の検出電流が等しければ零出力、一方が大きければ
正出力、他方が大きければ負出力を出力し、その出力に
よって直流電源からの電流を切換器で前記零出力の場合
は遮断し、前記正出力の場合は正方向の電流に、前記負
出力の場合は負方向の電流に制御して前記ステアリング
マグネットの1組の磁場方向を調節し、前記対向する1
組と直交する他の1組の測定用電極及びステアリングマ
グネットも同様な動作で自動調節して荷電粒子ビームが
常に2組の測定用電極の中央部を通過するように制御す
ることを特徴とするビーム位置自動制御方法。 2)サイクロトロンの荷電粒子ビーム位置の制御装置に
おいて、ビーム輸送装置内に設けたビーム位置調節装置
の互いに直交する2組の電磁石を設けたステアリングマ
グネットと、ビーム位置検出器に設けた互いに対向しか
つ対向方向が互いに直交する2組の測定用電極と、各組
の対向するそれぞれの検出出力の大きさを比較して正出
力、零出力若しくは負出力を出力する比較器と、この比
較器の出力により直流電源からの電流を正方向、遮断若
しくは負方向の電流に切換えて前記ステアリングマグネ
ットに供給する切換器とを設けてなるビーム位置自動制
御装置。
[Claims] 1) In a method for controlling the position of a charged particle beam in a cyclotron, the position of a charged particle beam that has passed through a steering magnet section in a beam position adjustment device is controlled by two sets whose opposing directions are perpendicular to each other. Among the beam currents measured by the measurement electrodes and detected by each measurement electrode, the detection currents of a pair of opposing measurement electrodes are compared using a comparator, and if the detection currents of both electrodes are equal, the output is zero; If one is larger, it outputs a positive output, if the other is larger, it outputs a negative output, and depending on the output, the current from the DC power source is cut off by a switch in the case of the zero output, and in the case of the positive output, it is changed to a positive direction current, In the case of the negative output, the direction of the magnetic field of one pair of the steering magnets is adjusted by controlling the current in the negative direction, and
Another set of measuring electrodes and a steering magnet perpendicular to the set are automatically adjusted in a similar manner to control the charged particle beam so that it always passes through the center of the two sets of measuring electrodes. Automatic beam position control method. 2) In a cyclotron charged particle beam position control device, a steering magnet provided with two mutually orthogonal sets of electromagnets of a beam position adjustment device provided in a beam transport device, and a steering magnet provided with two sets of mutually opposing electromagnets provided in a beam position detector. Two sets of measuring electrodes whose opposing directions are perpendicular to each other, a comparator that compares the magnitude of the opposing detection outputs of each set and outputs a positive output, zero output, or negative output, and the output of this comparator. A beam position automatic control device comprising: a switching device that switches a current from a DC power source to a positive direction, a cutoff, or a negative direction current and supplies the current to the steering magnet.
JP14998686A 1986-06-25 1986-06-25 Method and apparatus for automatic beam position control Pending JPS636799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14998686A JPS636799A (en) 1986-06-25 1986-06-25 Method and apparatus for automatic beam position control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14998686A JPS636799A (en) 1986-06-25 1986-06-25 Method and apparatus for automatic beam position control

Publications (1)

Publication Number Publication Date
JPS636799A true JPS636799A (en) 1988-01-12

Family

ID=15486968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14998686A Pending JPS636799A (en) 1986-06-25 1986-06-25 Method and apparatus for automatic beam position control

Country Status (1)

Country Link
JP (1) JPS636799A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211400A (en) * 1975-07-17 1977-01-28 Nisshin Haiboruteeji Kk Chaged paticle accelerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211400A (en) * 1975-07-17 1977-01-28 Nisshin Haiboruteeji Kk Chaged paticle accelerator

Similar Documents

Publication Publication Date Title
US5132544A (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
EP0631358A2 (en) Device for producing magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
JP2014232671A5 (en)
JP2005533353A (en) Characteristic control of ribbon ion beam for implanter
WO1988009559A1 (en) Improved wien filter design
TWI607483B (en) Method for implanting ions in work piece using ion implantation tool, system for implanting ions in work piece, non-transitory computer-readable storage medium, method of shaping ion beam, and system for shaping ion beam
US20100012033A1 (en) Sheet Plasma Film Forming Apparatus
JP2008027845A (en) Analysis electromagnet, its control method, and ion implanting device
US3883761A (en) Electrostatic extraction method and apparatus for cyclotrons
JPS636799A (en) Method and apparatus for automatic beam position control
Wijethunga et al. Simulation study of the magnetized electron beam
JP6537067B2 (en) Particle beam irradiation apparatus and control method thereof
JPH07233473A (en) Magnetron sputtering device
JP3867668B2 (en) Bending electromagnet, charged particle transport path, and circular accelerator
KR100716136B1 (en) An apparatus for measuring ion fractions of ion beam using a permanent dipole magnet filter
JP3133155B2 (en) Electron beam accelerator and bending magnet used for the accelerator
JP2006147244A (en) Ion implanting device
JPH0234414B2 (en)
Hazewindus et al. The axial injection system of the SIN injector cyclotron: II. Description and experiments
Nagaoka et al. Response of negative ion beamlet to RF field in beam extraction region
JPH03115899A (en) Method and apparatus for controlling beam focusing of unipolar charged particle
JPH0613226A (en) Electromagnet device
JPS5887747A (en) Ion implantation device
JPS5846163B2 (en) Continuous magnetic field variable device using permanent magnets