JPS6367760A - Heat dissipation fin structure with built-in micro-heat-pipe - Google Patents

Heat dissipation fin structure with built-in micro-heat-pipe

Info

Publication number
JPS6367760A
JPS6367760A JP61210742A JP21074286A JPS6367760A JP S6367760 A JPS6367760 A JP S6367760A JP 61210742 A JP61210742 A JP 61210742A JP 21074286 A JP21074286 A JP 21074286A JP S6367760 A JPS6367760 A JP S6367760A
Authority
JP
Japan
Prior art keywords
heat dissipation
heat
dissipation fin
spiral
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61210742A
Other languages
Japanese (ja)
Inventor
Toshio Yamagata
山形 俊男
Itsuo Okamoto
岡本 逸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61210742A priority Critical patent/JPS6367760A/en
Publication of JPS6367760A publication Critical patent/JPS6367760A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0225Microheat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To achieve highly efficient heat dissipation by a method wherein a heat-pipe is composed of a part which is in contact with the upper surface of an electronic device and a part which penetrates the body of a heat dissipation fin main part is built in the heat dissipation fin main part which is composed of a plurality of plate- shape fin parts provided with certain intervals and the body which links the fin parts. CONSTITUTION:The lower part of a micro heat-pipe 20 is formed into a flat spiral 21 and warped upward from the center of the spiral. If the micro heat-pipe 20 is inserted into a heat dissipation fin main part 10, the lower spiral part 21 is fitted in the opening 14 of the heat dissipation fin main part 10 and the part 22 extended upward penetrates through the hole 15 of the body 13 of the heat dissipation fin main part 10. As the spiral part 21 is directly in contact with the upper surface of an electronic device 1, it receives the heat from the electronic device 1 and the liquid in the spiral part 21 is vaporized and quickly transferred to the upper part 22. As the upper part 22 is close to fin parts 11, the part 22 is always cooled and the vaporized liquid is condensed and transferred to the lower spiral part 21 through capillaries by gravity. By repeating this cycle, highly efficient heat dissipation can be achived in a short period.

Description

【発明の詳細な説明】 〔概 要〕 大型集積回路(LSI)モジュール等の高集積化、高消
費電力化されたデバイスの冷却技術であって、放熱効果
を高めるための構造に関する。すなわち、デツプ型パッ
ケージに、表面積を極力大きくしかつマイクロヒートパ
イプを内蔵した五重搭構造の放熱フィンを搭載し、デバ
イス上の熱を効率良く放熱フィンに伝える構造を有する
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a cooling technology for devices with high integration and high power consumption, such as large integrated circuit (LSI) modules, and relates to a structure for enhancing the heat dissipation effect. That is, it has a structure in which heat dissipation fins with a five-layered structure with as large a surface area as possible and a built-in micro heat pipe are mounted on a deep-type package, and the heat on the device is efficiently transferred to the heat dissipation fins.

【産業上の利用分野〕[Industrial application field]

本発明はLSIモジュール等の電子部品(デバイス)を
冷却する放熱フィンの構造、特にマイクロヒートパイプ
を内蔵した放熱フィンの構造に関する。
The present invention relates to the structure of a heat dissipation fin that cools electronic components (devices) such as LSI modules, and particularly to the structure of a heat dissipation fin that includes a built-in micro heat pipe.

〔従来の技術〕[Conventional technology]

LSIモジュール等の高集積化、高消費電力化された電
子部品を冷却する従来の放熱フィンは第6回に示すよう
に表面積を極力大きくした五重搭板状のものであり、L
SIモジュール1を構成する基板上に直接搭載されてい
た。この放熱フィン2は円柱形の胴体部3と数枚の円板
形のフィン部分4とで構成されており、主として強制空
冷用として、LSIモジュール1から上方へ伝わった熱
が複数のフィン部分4で放出される。
Conventional heat dissipation fins that cool highly integrated and high power consumption electronic components such as LSI modules are five-layered fins with a surface area as large as possible, as shown in Part 6.
It was directly mounted on the board constituting the SI module 1. The heat dissipation fin 2 is composed of a cylindrical body part 3 and several disc-shaped fin parts 4, and is mainly used for forced air cooling. released in

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、LSIモジュールのような電子部品は近
年より小型高S積化し消費電力が増加する傾向にあり、
それに伴って放熱フィンも一層放熱性に優れたものが求
められるようになった。放熱フィンの放熱面積を大きく
するには重量増加の問題もあり、また隣接する他の電子
部品や、他のプリント基板との間隔上の制限等の問題が
あった。
However, in recent years, electronic components such as LSI modules have become smaller and have a higher S density, leading to increased power consumption.
As a result, heat dissipation fins with even better heat dissipation properties are required. Increasing the heat dissipation area of the heat dissipation fins has the problem of increased weight, and there are also other problems such as limitations on the distance from other adjacent electronic components and other printed circuit boards.

一方、プリント基板に実装される電子部品は近年増々小
型、高密度化が進み、消費電力が増加するのに伴って1
つの電子部品あたりの発熱量も増加してきた。
On the other hand, electronic components mounted on printed circuit boards have become increasingly smaller and denser in recent years, and power consumption has increased.
The amount of heat generated per electronic component has also increased.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、大型集積回路モジュール等のような電
子部品上面に搭載され、間隔をおいた数枚の板状フィン
部分とこれらを連結する胴体部分とで構成される放熱フ
ィン本体に、少なくとも前記電子部品の上面に接触する
部分と、前記胴体部分を貫通する部分とから成るマイク
ロヒートパイプを内蔵して成る放熱フィン構造が提供さ
れる。
According to the present invention, at least A heat dissipation fin structure is provided that incorporates a micro heat pipe that includes a portion that contacts the top surface of the electronic component and a portion that penetrates the body portion.

〔作 用〕 電子部品の熱はヒートパイプに吸収され、ヒートパイプ
下部の液体は蒸発して高速で上方へ移動しフィン上部の
冷えた部分に触れると凝縮して液体になり重力の作用で
下方へ戻る。この作用を繰り返すことにより効率良く放
熱する。
[Operation] The heat from the electronic components is absorbed by the heat pipe, and the liquid at the bottom of the heat pipe evaporates and moves upward at high speed. When it touches the cold part of the upper part of the fin, it condenses into liquid and moves downward under the action of gravity. Return to By repeating this action, heat is efficiently dissipated.

〔実施例〕〔Example〕

第1図〜第5図において、本発明のマイクロヒートパイ
プを内蔵した放熱フィンの実施例を示す。
1 to 5 show examples of heat dissipation fins incorporating micro heat pipes according to the present invention.

放熱フィン本体10は間隔をおいた数枚の円板状のフィ
ン部分11と、最も下側の正方形の基台部12と、これ
らを連結する円柱状の胴体部分13とがアルミニウム等
の放熱性に優れた金属材で一体成形されたものである。
The heat dissipation fin main body 10 has several disc-shaped fin parts 11 spaced apart, a square base part 12 at the lowermost side, and a cylindrical body part 13 connecting these parts, which are made of heat dissipating material such as aluminum. It is integrally molded from a metal material with excellent properties.

基台部12の下側には円形の開口部14が設けられ、ま
た胴体部分13には内部を貫通する中心穴15が設けら
れ、この中心穴15の下端は開口部14に開口している
A circular opening 14 is provided on the lower side of the base portion 12, and a center hole 15 passing through the body portion 13 is provided, and the lower end of this center hole 15 opens into the opening 14. .

この開口部14に隣接する穴15の部分15aでは径が
大きくなっており、また上部において径の小さくなった
部分15bがある。
A portion 15a of the hole 15 adjacent to the opening 14 has a larger diameter, and a portion 15b has a smaller diameter at the upper portion.

マイクロヒートパイプ20は下部において平面状のスパ
イラル(21)に形成され、そのスパイラル部21の中
心部から上方へ湾曲した形状であって、マイクロヒート
パイプ20を放熱フィン本体10に挿入すると下部のス
パイラル部21が放熱フィン本体10の開口部14内に
収容され、上方へ延びた部分22が胴体部分13の穴1
5を貫通する。
The micro heat pipe 20 is formed into a planar spiral (21) at the lower part, and is curved upward from the center of the spiral part 21, and when the micro heat pipe 20 is inserted into the heat dissipation fin body 10, the lower spiral The portion 21 is accommodated in the opening 14 of the radiation fin body 10, and the upwardly extending portion 22 is inserted into the hole 1 of the body portion 13.
Penetrate 5.

マイクロヒートパイプ20はよく知られているように内
部に燈心状の毛細管物質をライニングし部分真空中に少
量の液体(例えば、純水)を封入した金属管で構成され
たもので、このマイクロヒートパイプ20の直径を!!
(この場合1〜3鶴)とし、開口部14の深土l3、穴
15の径の小さくなった部分15bの内径β2とすると
、l、及びptはβより若干小さくなっておりg>i、
、1>12)、マイクロヒートパイプ20を放熱フィン
本体10に圧入できるようになっている。また、プリン
ト基板5(第2図)上のLSIモジュール等の電子部品
(例えば30”X30mの正方形状のもの)1上に搭載
した時、マイクロヒートパイプ20がその上面に圧接さ
れるようになっている。
As is well known, the micro heat pipe 20 is composed of a metal tube lined with a wick-shaped capillary material and filled with a small amount of liquid (for example, pure water) in a partial vacuum. The diameter of pipe 20! !
(in this case, 1 to 3 cranes), and assuming that the deep soil l3 of the opening 14 and the inner diameter β2 of the smaller diameter portion 15b of the hole 15, l and pt are slightly smaller than β, and g>i,
, 1>12), the micro heat pipe 20 can be press-fitted into the radiation fin main body 10. Furthermore, when mounted on an electronic component (for example, a 30" x 30 m square shaped component) 1 such as an LSI module on a printed circuit board 5 (Fig. 2), the micro heat pipe 20 is pressed against the upper surface of the electronic component 1. ing.

なお、穴15の径の径の大きくなった部分15aはマイ
クロヒートパイプ20のスパイラル部21と上方へ延び
た直線部分22との間の曲げ部分に逃げを構成している
。また、マイクロヒートパイプ20を放熱フィン本体1
oとの密着性を良好にするために、マイクロヒートパイ
プ2oの挿入後、内部の隙間にサーマルコンパウンド(
図示せず)を充填し放熱フィン本体10との接触砥抗を
低減し、両者間の熱の伝導性を良くするのが良い。また
、マイクロヒートパイプ20を組付後の放熱フィンは例
えば基台部12の四隅をネジ止めすることにより電子部
品1、例えばLSIモジュールの基板の上面に直接取り
付けられる。
The larger diameter portion 15a of the hole 15 forms a relief in the bent portion between the spiral portion 21 of the micro heat pipe 20 and the straight portion 22 extending upward. In addition, the micro heat pipe 20 is connected to the heat dissipation fin body 1.
After inserting the micro heat pipe 2o, apply thermal compound (
(not shown) to reduce contact resistance with the radiation fin main body 10 and improve heat conductivity between the two. Further, the heat dissipation fin after the micro heat pipe 20 is assembled can be directly attached to the upper surface of the electronic component 1, for example, the substrate of an LSI module, by screwing the four corners of the base portion 12, for example.

多数の電子部品1を実装したプリント基板5は電子装置
のシェルフ(図示せず)等に収容され、強制空冷の場合
はファン(図示せず)で冷却空気が循環される。マイク
ロヒートパイプ20の下部スパイラル部21は直接電子
部品1の上面に接触しているので電子部品1より発熱さ
れる熱を受け、その内部の液体は蒸発して急速に上昇し
上部22へ移動する。上部22はフィン部分11に近い
ので冷却されており、凝縮作用により液体となり重力の
作用で毛細管を通り下方のスパイラル部21へ移動する
。このサイクルを繰り返すことにより短時間で効率良く
放熱することができる。
The printed circuit board 5 on which a large number of electronic components 1 are mounted is housed in a shelf (not shown) of an electronic device, and in the case of forced air cooling, cooling air is circulated by a fan (not shown). Since the lower spiral part 21 of the micro heat pipe 20 is in direct contact with the upper surface of the electronic component 1, it receives the heat generated by the electronic component 1, and the liquid inside evaporates and rapidly rises and moves to the upper part 22. . The upper part 22 is cooled because it is close to the fin part 11, becomes a liquid by condensation, and moves downward to the spiral part 21 through a capillary tube by the action of gravity. By repeating this cycle, heat can be efficiently dissipated in a short time.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば電子部品の放熱
フィンにマイクロヒートパイプを組み込んだので効率よ
(放熱することができ、LSIモジュールのような小型
で高集積化されかつ高消費電力化された電子部品の放熱
に十分対処することができる。
As explained above, according to the present invention, a micro heat pipe is incorporated into the heat dissipation fin of an electronic component. It can sufficiently deal with the heat dissipation of electronic components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るマイクロヒートパイプを内蔵した
放熱フィンの実施例の平面図、第2図は同断面図、第3
図は同斜視図、第4図は放熱フィン本体の断面図、第5
図は下側より見た放熱フィン本体の斜視図、第6図は従
来の放熱フィンを示す斜視図である。 1・・・電子部品、     5・・・プリント基板、
10・・・放熱フィン本体、11・・・フィン部分、1
2・・・基台、      13・・・胴体部、20・
・・マイクロヒートパイプ、 21・・・スパイラル部、  22・・・直線部。
FIG. 1 is a plan view of an embodiment of a heat dissipation fin incorporating a micro heat pipe according to the present invention, FIG. 2 is a cross-sectional view of the same, and FIG.
The figure is a perspective view of the same, Figure 4 is a sectional view of the radiation fin body, and Figure 5 is a sectional view of the radiation fin body.
The figure is a perspective view of the heat dissipation fin main body viewed from below, and FIG. 6 is a perspective view showing a conventional heat dissipation fin. 1...Electronic components, 5...Printed circuit boards,
10... Heat dissipation fin body, 11... Fin part, 1
2... Base, 13... Body part, 20.
...Micro heat pipe, 21...Spiral part, 22...Straight line part.

Claims (1)

【特許請求の範囲】[Claims] 1、大型集積回路モジュール等のような電子部品(1)
上面に搭載され、間隔をおいた数枚の板状フィン部分(
11)とこれらを連結する胴体部分(13)とで構成さ
れる放熱フィン本体(10)に、少なくとも前記電子部
品(1)の上面に接触する部分(21)と、前記胴体部
分(13)を貫通する部分(22)とから成るマイクロ
ヒートパイプ(20)を内蔵して成る放熱フィン構造。
1. Electronic components such as large integrated circuit modules (1)
Mounted on the top surface, several plate-shaped fins spaced apart (
11) and a body part (13) that connects them, at least a part (21) that contacts the top surface of the electronic component (1) and a body part (13). The radiation fin structure includes a built-in micro heat pipe (20) consisting of a penetrating portion (22).
JP61210742A 1986-09-09 1986-09-09 Heat dissipation fin structure with built-in micro-heat-pipe Pending JPS6367760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210742A JPS6367760A (en) 1986-09-09 1986-09-09 Heat dissipation fin structure with built-in micro-heat-pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210742A JPS6367760A (en) 1986-09-09 1986-09-09 Heat dissipation fin structure with built-in micro-heat-pipe

Publications (1)

Publication Number Publication Date
JPS6367760A true JPS6367760A (en) 1988-03-26

Family

ID=16594360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210742A Pending JPS6367760A (en) 1986-09-09 1986-09-09 Heat dissipation fin structure with built-in micro-heat-pipe

Country Status (1)

Country Link
JP (1) JPS6367760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149780A1 (en) * 2010-05-23 2011-12-01 Forced Physics Llc Heat and energy exchange
US8414847B2 (en) 2008-09-30 2013-04-09 Forced Physics, Llc Method and apparatus for control of fluid temperature and flow

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414847B2 (en) 2008-09-30 2013-04-09 Forced Physics, Llc Method and apparatus for control of fluid temperature and flow
US8986627B2 (en) 2008-09-30 2015-03-24 Forced Physics, Llc Method and apparatus for control of fluid temperature and flow
US10113774B2 (en) 2008-09-30 2018-10-30 Forced Physics, Llc Method and apparatus for control of fluid temperature and flow
US10697671B2 (en) 2008-09-30 2020-06-30 Forced Physics, Llc Method and apparatus for control of fluid temperature and flow
WO2011149780A1 (en) * 2010-05-23 2011-12-01 Forced Physics Llc Heat and energy exchange
CN102985781A (en) * 2010-05-23 2013-03-20 福斯德物理学有限责任公司 Heat and energy exchange
JP2013528275A (en) * 2010-05-23 2013-07-08 フォースト・フィジックス・リミテッド・ライアビリティ・カンパニー Heat and energy exchange

Similar Documents

Publication Publication Date Title
US6167948B1 (en) Thin, planar heat spreader
US5396947A (en) Radiating device
US6550531B1 (en) Vapor chamber active heat sink
US6981543B2 (en) Modular capillary pumped loop cooling system
US6256201B1 (en) Plate type heat pipe method of manufacturing same and cooling apparatus using plate type heat pipe
US6085831A (en) Direct chip-cooling through liquid vaporization heat exchange
US7304842B2 (en) Apparatuses and methods for cooling electronic devices in computer systems
US20130020053A1 (en) Low-profile heat-spreading liquid chamber using boiling
US20060039111A1 (en) [high-performance two-phase flow evaporator for heat dissipation]
KR20040030513A (en) Heat dissipation device
JPH11502300A (en) Cooling system for electronics
US6608751B2 (en) Electronic device
US20020171139A1 (en) High performance air cooled heat sinks used in high density packaging applications
US6000125A (en) Method of heat dissipation from two surfaces of a microprocessor
US6504721B1 (en) Thermal cooling apparatus
JP2000074536A (en) Evaporative cooler
GB2342152A (en) Plate type heat pipe and its installation structure
JPS6367760A (en) Heat dissipation fin structure with built-in micro-heat-pipe
JPH06204368A (en) Cooling structure of ceramic substrate
JP2000035294A (en) Plate type heat pipe and cooling structure using the same
JPH05198714A (en) Cooling structure for electronic equipment
JPS6412101B2 (en)
JPS62216299A (en) Heat radiating structure of cubicle in which electronic equipment is housed
JP2768018B2 (en) Semiconductor element package
JP2000216309A (en) Heat radiating structure for electronic element