JPS6367595A - Method of processing waste organic phosphoric ester compound - Google Patents

Method of processing waste organic phosphoric ester compound

Info

Publication number
JPS6367595A
JPS6367595A JP61213453A JP21345386A JPS6367595A JP S6367595 A JPS6367595 A JP S6367595A JP 61213453 A JP61213453 A JP 61213453A JP 21345386 A JP21345386 A JP 21345386A JP S6367595 A JPS6367595 A JP S6367595A
Authority
JP
Japan
Prior art keywords
waste organic
phosphoric acid
solidified
mainly composed
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213453A
Other languages
Japanese (ja)
Inventor
皓 田中
中林 重俊
建二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61213453A priority Critical patent/JPS6367595A/en
Publication of JPS6367595A publication Critical patent/JPS6367595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業分野) 本発明は使用済核燃料再処理において発生する有機りン
αエステル化合物を主成分とする廃有機溶媒を固体化か
つ減容する処理方法に関するものである。更に、詳しく
は本発明は次の諸方法、すなわち、 (a)  ウラン精錬、非鉄金属湿式精錬施設及び核燃
料再処理施設の抽出工程において発生する有機リン酸エ
ステル系の廃抽出溶媒を、リン酸による化学分離法、蒸
留法等により処理し、分離した有機リン酸エステルを主
成分とする廃有機溶媒を減容固化処理する方法。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field) The present invention relates to a processing method for solidifying and reducing the volume of a waste organic solvent containing an organophosphorus α-ester compound as a main component generated in spent nuclear fuel reprocessing. More specifically, the present invention relates to the following methods: (a) The organic phosphate waste extraction solvent generated in the extraction process of uranium refining, nonferrous metal hydrometallurgical refining facilities, and nuclear fuel reprocessing facilities is treated with phosphoric acid. A method in which the waste organic solvent, which is mainly composed of organic phosphate esters, is treated by a chemical separation method, distillation method, etc., and then solidified to reduce its volume.

(υ 核燃料及び放射性同位元素等を取り扱う研究施設
等から発生する有機リン酸エステルを主成分とする廃有
機溶媒の減容固化処理方法、(c)  一般分析等の抽
出前処理(分離槽M)に使用された有機リン酸エステル
を主成分とする廃有機溶媒の減容固化処理方法、 にも関するものである。
(υ Volume reduction and solidification treatment method for waste organic solvents mainly composed of organic phosphate esters generated from research facilities that handle nuclear fuels and radioactive isotopes, etc., (c) Extraction pretreatment for general analysis, etc. (separation tank M) The present invention also relates to a volume reduction and solidification treatment method for a waste organic solvent containing an organic phosphate ester as a main component used in the present invention.

(従来技術とその問題点) 上記の廃溶媒(有機リン酸エステル+希釈剤)の処理方
法として次のような方法がある。
(Prior art and its problems) The following methods are available as methods for treating the above waste solvent (organic phosphate ester + diluent).

(1)固化法 この方法は固化剤としてプラスチック(アタクチックポ
リプロピレン、熱硬化性樹脂、熱可塑性pvc樹脂)ま
たは無機物(雲母、Ca(OHt))を添加して固化さ
せる方法であるが、添加物質が有機リン酸エステルに対
して多く必要であり増容となる。また、プラスチック固
化等は通常の方法では固化が不充分であり、強度が十分
な固化物を得ることができない。
(1) Solidification method This method is a method of solidifying by adding plastic (atactic polypropylene, thermosetting resin, thermoplastic PVC resin) or inorganic material (mica, Ca (OHt)) as a solidifying agent. is necessary compared to the organic phosphate ester, resulting in an increase in volume. Further, solidification of plastics is insufficient by ordinary methods, and it is not possible to obtain a solidified product with sufficient strength.

(2)燃焼法 (at  そのまま燃焼する方法 との方法ではPによる装置腐食があり、実施されていな
い。
(2) Combustion method (at) The method of burning as is and the method involve corrosion of equipment due to P, so they are not implemented.

(b)  塩添加によるPIJ定燃能法CCsC0H)
*−炭酸ナトリウム、カルシウム、オクトエイト等)こ
の方法は燃焼分解とPの固定が同時進行であるため、全
fPが固定できない。すなわち100慢有機リン酸エス
テルの処理は装置腐食等により困[!である。
(b) PIJ constant combustion capacity method CCsC0H with salt addition)
*-Sodium carbonate, calcium, octoate, etc.) In this method, combustion decomposition and P fixation proceed simultaneously, so the total fP cannot be fixed. In other words, processing of 100% organic phosphate ester is difficult due to equipment corrosion etc. It is.

(3)湿式分解法 la)  fi分解法 この方法)! E(s P 04 * HIS 04 
等を用いて分解するのであるが1反応速度がおそい。
(3) Wet decomposition method (la) fi decomposition method (this method)! E(s P 04 * HIS 04
However, the reaction rate is slow.

(bl  Hoot分解法 ■ この方法は触媒としてH! S 04を使用し、120
〜180℃の温度範囲で行うが、反応が激しく制御が困
難である。
(bl Hoot decomposition method ■ This method uses H! S 04 as a catalyst,
Although it is carried out at a temperature range of ~180°C, the reaction is violent and difficult to control.

(CI  H!01分解法 ■ この方法は触媒としてHapo、、硫酸銅、リン酸鋼を
使用する。単位触媒あたりの添加H,O!が多量に必要
である。
(CI H!01 Decomposition Method ■ This method uses Hapo, copper sulfate, and phosphate steel as catalysts. A large amount of added H and O! is required per unit catalyst.

(d)0□分解法 この方法は反応条件が加圧を必要とするなど厳しい。(d) 0□ decomposition method This method requires severe reaction conditions, such as requiring pressurization.

(発明の目的) 本発明者らは、上記の従来技術の問題点を解決し、使用
済み核燃料処理等において発生する有機リン酸エステル
を主成分とする廃有機溶媒を固体化しかつ減容する処理
方法を提供することを目的とし、検討した結果、有機リ
ン酸エステルが含水塩化アルミニウム(六水塩)または
ポリ塩化アルミニウムと混合し加熱することにより目的
を達成しうろことを見出し、本発明に到達した。
(Purpose of the Invention) The present inventors have solved the problems of the prior art described above, and have developed a process for solidifying and reducing the volume of waste organic solvents mainly composed of organic phosphate esters generated during spent nuclear fuel processing, etc. With the aim of providing a method, as a result of investigation, it was discovered that the purpose could be achieved by mixing organic phosphoric acid ester with hydrated aluminum chloride (hexahydrate) or polyaluminum chloride and heating, and the present invention was achieved. did.

(発明の構成) すなわち、本発明によれば、有機り7酸エステルを主成
分とする廃有機溶媒な含水塩化アルミニウム(六水塩)
あるいはポリ塩化アルミニウムと混合し、加熱すること
によりリン分を含む固化物とすることを特徴とする廃有
機リン酸エステル化合物の処理方法、が得られる。
(Structure of the Invention) That is, according to the present invention, hydrated aluminum chloride (hexahydrate) which is a waste organic solvent containing an organic heptaacid ester as a main component
Alternatively, a method for treating a waste organic phosphoric acid ester compound is obtained, which is characterized in that it is mixed with polyaluminum chloride and heated to form a solidified product containing phosphorus.

本発明ではさらに、上記リン分を含む固化物を低温仮焼
し、安定な無機リン酸化合物に分解し、減容かつ安定化
を進めることもできる。
In the present invention, the solidified product containing the phosphorus content can be further calcined at a low temperature and decomposed into a stable inorganic phosphoric acid compound, thereby reducing the volume and stabilizing the product.

さらに、また、本発明では上記仮焼前及び仮焼後の固化
物をセメントあるいはプラスチックで固化することも可
能である。
Furthermore, in the present invention, it is also possible to solidify the solidified material before and after the calcination with cement or plastic.

このように、本発明では、有機リン酸エステルを主成分
とする廃有機溶媒を含水塩化アルミニウム(六水塩)ま
たはポリ塩化アルきニウムと混合し、50〜150℃の
温度条件で加熱するととくより、固体化とする。この時
、含水塩化アル1=ウム(六水塩)またはポリ塩化アル
ミニウムの添加量は、有機リン酸エステルのモル数に対
して0.3以上である。
As described above, in the present invention, a waste organic solvent containing an organic phosphate ester as a main component is mixed with hydrated aluminum chloride (hexahydrate) or polyaluminum chloride, and heated at a temperature of 50 to 150°C. It becomes solid. At this time, the amount of hydrated aluminum chloride (hexahydrate) or polyaluminum chloride added is 0.3 or more based on the number of moles of the organic phosphate ester.

以上において、加熱温度50〜150℃については、固
化反応を数時間〜20時間で修了させるためには少なく
とも50℃以上の加熱が必要であるので、下限を50℃
とし、また上限は有機リン酸エステルの沸点との関係で
150℃とする。すなわち150℃以上では固化反応時
の有機リン酸エステルの蒸発が無視できなくなるからで
ある。
In the above, regarding the heating temperature of 50 to 150°C, heating to at least 50°C is required to complete the solidification reaction in several hours to 20 hours, so the lower limit is set to 50°C.
The upper limit is 150°C in relation to the boiling point of the organic phosphoric acid ester. That is, at temperatures above 150°C, the evaporation of the organic phosphate ester during the solidification reaction cannot be ignored.

また、含水塩化アルミニウム等の固化剤の添加量につい
ては、0.3チ以下では明らかな固化効果がみられない
Further, with regard to the amount of solidifying agent such as hydrous aluminum chloride added, no obvious solidifying effect is observed when the amount is less than 0.3 inch.

さらに、仮焼温度については上記固化物中のブチル基等
の有機成分が仮焼によりガスとして分解(除去)を開始
するのが270℃であるので、270℃以上とするが、
装置腐食の面からできるだけ低温による仮焼が望ましい
ので仮焼温度は300℃とする。−万、上記低温仮焼に
よって分解生成した塩化アルキル化合物および有機ガス
は焼却等により処理が可能である。
Furthermore, regarding the calcination temperature, the organic components such as butyl groups in the solidified product start to be decomposed (removed) as gas by calcination at 270°C, so the temperature should be 270°C or higher.
From the standpoint of equipment corrosion, it is desirable to calcinate at as low a temperature as possible, so the calcination temperature is set at 300°C. - The alkyl chloride compound and organic gas decomposed and produced by the above-mentioned low-temperature calcination can be disposed of by incineration or the like.

次に、該固化物(塊状)を270℃以上で低温仮焼し、
固化物中に残留しているアルキル基有機成分を、有機可
燃性ガスとして完全に除去し、減容された安定な無機リ
ン酸化合物とする。このようにして得た仮焼前及び仮焼
後の固化物はプラスチック固化あるいはセメント固化を
施すことにより安定化度を増すことができる。
Next, the solidified product (lump) is calcined at a low temperature of 270°C or higher,
The alkyl group organic component remaining in the solidified product is completely removed as an organic combustible gas to form a stable inorganic phosphoric acid compound with reduced volume. The degree of stabilization of the thus obtained solidified material before and after calcination can be increased by solidifying it with plastic or cement.

なお、上記固化剤(含水塩化アルミニウム(六水塩)ま
たはポリ塩化アルミニウム)にアルカリ土類全項の水酸
化物あるいは水酸化アルミニウムを添加して固化剤とす
ることにより、分解固化反応に使用されなかった余剰の
塩素(塩酸)の同化体中へのトラップを容易にすること
も可能である。
In addition, by adding alkaline earth hydroxide or aluminum hydroxide to the above solidifying agent (hydrated aluminum chloride (hexahydrate) or polyaluminum chloride) to make it a solidifying agent, it can be used in the decomposition solidification reaction. It is also possible to facilitate trapping of excess chlorine (hydrochloric acid) into the assimilate.

本発明の有機リン酸エステルはリン酸トリブチル、リン
酸ジブチル、リン酸モノブチル、ジ2エチルへキシルリ
ン酸、モノ2エテルヘキシルリン酸の中から選ばれた一
種または二種以上から成るものである。
The organic phosphate ester of the present invention is composed of one or more selected from tributyl phosphate, dibutyl phosphate, monobutyl phosphate, di-2-ethylhexyl phosphoric acid, and mono-2-ethylhexyl phosphoric acid.

また、有機リン酸エステル中の希釈剤濃度が比較的高い
廃溶媒の場合(20〜70%希釈剤+有m’)7eエス
テル)については、塩化カルシウムを添加することによ
り該固化操作を行うことが可能である。この時の塩化カ
ルシウムは希釈剤の吸収剤として作用する。希釈剤とし
ては通常鎖状(Cが6〜12)の炭化水素及び芳香族炭
化水素が使用されるが、ドデカンが主として使用される
In addition, in the case of a waste solvent in which the diluent concentration in the organic phosphate ester is relatively high (20 to 70% diluent + 7e ester), the solidification operation may be performed by adding calcium chloride. is possible. Calcium chloride at this time acts as an absorbent for the diluent. As the diluent, chain hydrocarbons (C 6 to 12) and aromatic hydrocarbons are usually used, but dodecane is mainly used.

次に、本発明を実施例によってより具体的に説明するが
、以下の実施例は本発明の範囲を限定するものではない
Next, the present invention will be explained in more detail with reference to examples, but the following examples do not limit the scope of the present invention.

実施例 I TBP(リン酸トリブチル) 100 cc(96,1
,9)にTBP中のリン分と同当量の塩化アルミニウム
6水和物を89.li!加え混合し、100℃に加熱し
たところ、約6時間で固化した。さらに、加熱を継続す
ると、約15時間でほぼ100%のTBP分子がアルミ
ニウムと結合し、不溶解化した。
Example I TBP (tributyl phosphate) 100 cc (96,1
, 9) was added with aluminum chloride hexahydrate in an amount equivalent to the phosphorus content in TBP. li! When the mixture was added and mixed and heated to 100°C, it solidified in about 6 hours. Furthermore, when heating was continued, approximately 100% of the TBP molecules bonded with aluminum and became insoluble in about 15 hours.

実施例 2〜14 種々の模擬溶媒(試薬)を実施例1と同様の方法で固化
した結果を第1表に、実施例2〜14として併せ示す。
Examples 2 to 14 The results of solidifying various simulated solvents (reagents) in the same manner as in Example 1 are also shown in Table 1 as Examples 2 to 14.

なお、各溶媒分子が100幅アルミニウムと結合し、不
溶解化する時間は何れの例の場合も15〜20時間であ
る。
In all cases, the time required for each solvent molecule to bond with the 100-width aluminum and make it insoluble is 15 to 20 hours.

実施例 15 模擬廃溶媒を以下のようにして調製した。これは、リン
酸抽出法で希釈剤を回収した後の廃有機リン酸エステ〃
を模擬した廃溶媒である。
Example 15 A simulated waste solvent was prepared as follows. This is waste organic phosphate ester after diluent has been recovered by phosphoric acid extraction method.
This is a waste solvent that simulates

70チドデカノ−TBP溶媒とコールドのF’Pを含有
する模擬高レベル廃液を相比1:1で5時間接触させ、
F’Pを溶媒中に抽出した。この溶媒を10”Rで”C
orllA照射し、放射線により劣化させ、抽出不能に
なった模擬廃溶媒を調製した。
70tidecano-TBP solvent and a simulated high-level waste liquid containing cold F'P were brought into contact at a phase ratio of 1:1 for 5 hours,
F'P was extracted into a solvent. This solvent was
A simulated waste solvent that was irradiated with orllA and degraded by radiation to become unextractable was prepared.

この廃溶媒をアルカリ洗浄し、約70%リン酸水溶液と
接触させ、ドデカ/を分離し、第3相としてTBP/H
IPO4溶媒を得た(模擬廃溶媒1)。
This waste solvent is washed with an alkali and brought into contact with an approximately 70% phosphoric acid aqueous solution to separate dodeca/H and TBP/H as the third phase.
IPO4 solvent was obtained (simulated waste solvent 1).

また、この溶媒を水で洗浄し、HsPO4を分離した溶
媒を得た(模擬廃溶媒2)。
In addition, this solvent was washed with water to obtain a solvent from which HsPO4 was separated (simulated waste solvent 2).

模擬廃溶媒1 100cc(106,99)に溶媒中の
リン分と同当量の塩化アルミニウム6水和物を119、
?加え混合し、100℃にて加熱したところ、約6時間
で固体化した。さらに、加熱を継続すると、約15時間
でほぼ1001のTBP分子がアルミニウムと結合し不
溶解化した。
Simulated waste solvent 1 Add aluminum chloride hexahydrate in an amount equivalent to the phosphorus content in the solvent to 100 cc (106,99),
? When the mixture was added and mixed and heated at 100°C, it solidified in about 6 hours. Furthermore, when heating was continued, approximately 1001 TBP molecules bonded with aluminum and became insoluble in about 15 hours.

上記の模擬廃溶媒1,2について、同様の方法で固化を
行った結果をSj!施例16〜1Bとして第2表に示す
The results of solidifying the above simulated waste solvents 1 and 2 using the same method are Sj! These are shown in Table 2 as Examples 16-1B.

実施例 19 模擬廃溶媒を以下のようにしてvR裂した。これは減圧
蒸留法で希釈剤を回収した後の廃有機リン酸エステルを
模擬した廃溶媒である。
Example 19 A simulated waste solvent was subjected to vR cleavage as follows. This is a waste solvent that simulates waste organic phosphate ester after the diluent is recovered by vacuum distillation.

実施例15の照射f8煤をアルカリ洗浄後、減圧蒸留法
によりドデカンを回収し、TBP、DBPを含む高沸点
釜残液を作成した1(模擬廃溶媒3)。
After washing the irradiated f8 soot of Example 15 with an alkali, dodecane was recovered by vacuum distillation to create a high-boiling pot residue containing TBP and DBP 1 (simulated waste solvent 3).

なお、この模擬廃溶媒3を構成するTBPは90チ、D
BPは10%であった。
In addition, TBP constituting this simulated waste solvent 3 is 90 cm, D
BP was 10%.

模擬廃溶建3 100cc(98,!i’)に溶媒中の
リン分と同当量の塩化アルきニウム6水和物を91p加
え混合し、100℃にて加熱したところ約6時間で固体
化した。さらに加熱を継続すると、約17時間でほぼ1
00憾のTBP分子がアルミニウムと結合して不MM化
した。
Simulated abandoned construction 3 91p of aluminum chloride hexahydrate, which is equivalent to the phosphorus content in the solvent, was added to 100cc (98,!i') and mixed, and when heated at 100℃, it solidified in about 6 hours. did. If heating is continued further, approximately 1
000 TBP molecules combined with aluminum and became non-MM.

実施例 20 模12刑溶媒3,100cc(98Jinに溶媒中のり
ン分とt81siのポリ塩化アル1=ウム8011を加
え混合し、100℃に加熱したところ、約8時間で固体
化した。さらに、加熱を継続すると、約17時間でほぼ
100%のTBP分子がアルミニウムと結合し不溶解化
した。
Example 20 To 3,100 cc of the solvent (98Jin), the phosphorus content in the solvent and the t81si polyaluminum chloride 8011 were added and mixed, and when heated to 100°C, it solidified in about 8 hours.Furthermore, When heating was continued, approximately 100% of the TBP molecules bonded with aluminum and became insoluble in about 17 hours.

実施例 21 91!施例15,16,19で得られた固化物を粉砕し
、各々7Ilずつ混合し、20.9を管状電気炉により
9素ガスを100 cc/−程度送り込みながら、約3
00℃で4時間仮焼したところ、固体中の有機成分は、
主にブテンガスとして分解除去され、11.5.9の無
機リン酸化合物が得られた。仮焼後の仮焼前粉末に対す
る減容比(#/i)は約110.7であった。
Example 21 91! The solidified materials obtained in Examples 15, 16, and 19 were pulverized, mixed with 7 Il each, and 20.9 was mixed with about 3 liters of 9-element gas in a tubular electric furnace while feeding about 100 cc/- of 9-element gas.
When calcined at 00℃ for 4 hours, the organic components in the solid were
It was mainly decomposed and removed as butene gas, and an inorganic phosphoric acid compound of 11.5.9 was obtained. The volume reduction ratio (#/i) after calcination to the powder before calcination was about 110.7.

仮焼時に揮散したリン分を確認するために、窪素ガス出
口に水トラツプ(100cc)を設け、液中のりン濃度
を吸光光度法により測定した結果、12 ppm であ
った。
In order to confirm the phosphorus content volatilized during calcination, a water trap (100 cc) was provided at the silicon gas outlet, and the phosphorus concentration in the liquid was measured by spectrophotometry, and the result was 12 ppm.

この結果によれば、固花物から揮散したりン分は、固化
物中のリン分のわずか約0.41以下であ秒、はぼ10
0%のリン分が仮焼物中に固定されていることが確認さ
れた。100チリン酸エステル溶媒(リン酸エステ/I
/濃厚溶媒)の仮焼処理が可能であった。
According to this result, the amount of phosphorus volatilized from solid flowers is only about 0.41 or less compared to the amount of phosphorus in the solidified materials, which is approximately 10% per second.
It was confirmed that 0% phosphorus content was fixed in the calcined product. 100 phosphoric acid ester solvent (phosphoric acid ester/I
/ concentrated solvent) was possible.

また、仮焼時において、 F’Pのガス中へのfit量
を確認するために%窒素ガス出口に水トラツプ(100
cc)を設け、液中のRu、 Z r、 MotP d
tNct、 Yの濃度を発光分光分析により測定した。
In addition, during calcination, a water trap (100%
cc), Ru, Zr, MotPd in the liquid
The concentration of tNct,Y was measured by emission spectrometry.

その結果、何れの元紫も検出限界以下(ippm以下)
であり、廃溶媒中のFPは全量固化物中に固定されてい
ることがN認された。
As a result, both original purples were below the detection limit (ippm or below)
It was confirmed that the entire amount of FP in the waste solvent was fixed in the solidified product.

実施例17,18.20で得られた固化物を粉砕し、各
々7IIずつ混合し、上記と全く同様にして仮焼試験を
行ったところ、1011の無機リン酸化合物が得られた
。仮焼後の仮焼前粉末に対する減容比(前/後)は約1
10.7であり、トラップ中のりノ濃度は10 ppm
で固化物から揮散したリン分は固化物中のり7分の僅か
約0.4s以下、F’Pの揮散量は検出限度以下であっ
た。
The solidified products obtained in Examples 17, 18, and 20 were pulverized, 7II of each was mixed, and a calcination test was conducted in exactly the same manner as above, and 1011 inorganic phosphoric acid compounds were obtained. The volume reduction ratio after calcination to the powder before calcination (before/after) is approximately 1
10.7, and the concentration of glue in the trap is 10 ppm.
The amount of phosphorus volatilized from the solidified product was only about 0.4 seconds or less than 7 minutes in the solidified product, and the amount of F'P volatilized was below the detection limit.

実施例 22 実施例1. 2. 3で得られた固化物を粉砕し、各々
7Iずつを混合し、約20Fを管状電気炉により窒素ガ
スを1o Occ/瓢程度送り込みながら約300℃で
4時間仮焼したところ、固化体中の有機成分は主にブラ
ンガスとして分解除去され、12gの無機リン酸化合物
の粉末が得られた。仮焼後の仮焼前粉末に対する減容比
は(#/後)約170.7であった。
Example 22 Example 1. 2. The solidified material obtained in step 3 was crushed, mixed with 7I each, and calcined at about 300°C for 4 hours at about 20F in a tubular electric furnace while feeding nitrogen gas at about 10 Occ/gourd. The organic components were mainly decomposed and removed as bran gas, and 12 g of inorganic phosphoric acid compound powder was obtained. The volume reduction ratio after calcination to the powder before calcination was (#/after) about 170.7.

仮焼時に揮散したりン分を確認するために、窒素ガス出
口にトラップ(100cc)を設け、液中のリン濃度を
吸光光度法により測定した結果、16ppmであった。
In order to confirm the amount of phosphorus volatilized during calcination, a trap (100 cc) was installed at the nitrogen gas outlet, and the phosphorus concentration in the liquid was measured by spectrophotometry, and the result was 16 ppm.

この結果によれば、固化物から揮散したリン分は固化物
中のリン分のわずか約0.4’j以下であり、はぼ10
0%のリンが仮焼物中に固定されていることが確認され
た。
According to this result, the phosphorus content volatilized from the solidified product is only about 0.4'j or less than the phosphorus content in the solidified product, and about 10
It was confirmed that 0% phosphorus was fixed in the calcined product.

実施例6,7.8で得られた同化体を粉砕し、各々7g
ずつ混合し、上記と全く同様にして仮焼試験を行ったと
ころ、仮焼後の仮焼前粉末に対する減容比は(前/後)
約110.7、トラップ中リン濃度は13ppmで、固
化物から揮散したりン分は団体中のリン分のわずか約0
.4%以下、F’Pの揮散量は検出限度以下であった。
The assimilates obtained in Examples 6 and 7.8 were crushed, and 7 g each
When a calcination test was conducted in exactly the same manner as above, the volume reduction ratio after calcination to the powder before calcination was (before/after).
110.7, the phosphorus concentration in the trap is 13 ppm, and the phosphorus content volatilized from the solidified material is only about 0.
.. The amount of F'P volatilized was 4% or less, which was below the detection limit.

実施例 23 実施例4,5,9.10で得られた固化体を粉砕し、各
々59ずつ混合し、約211を管状電気炉により窒素ガ
スを100cc/−程度送り込みながら、約300℃で
4時間仮焼したところ、固体中の有機成分は炭素数が2
〜6の有機可燃性ガスとして分解除去され、10.5J
Fの無機リン酸化合物の粉末が得られた。仮焼後の仮焼
前粉末に対する減容比は(前/後)約170.7であっ
た。
Example 23 The solidified bodies obtained in Examples 4, 5, and 9.10 were pulverized, 59 pieces of each were mixed, and about 211 was heated at about 300°C for 4 hours while feeding about 100 cc/- of nitrogen gas in a tubular electric furnace. When calcined for an hour, the organic component in the solid had a carbon number of 2.
Decomposed and removed as organic combustible gas of ~6, 10.5J
A powder of an inorganic phosphoric acid compound of F was obtained. The volume reduction ratio after calcination to the powder before calcination (before/after) was about 170.7.

仮焼時に揮散したリン分を確認するために、窒素ガス出
口に水トラツプ(100cc)を設け、液中のリン濃度
を吸光光度法により測定した結果。
In order to confirm the phosphorus content volatilized during calcination, a water trap (100cc) was installed at the nitrogen gas outlet, and the phosphorus concentration in the liquid was measured by spectrophotometry.

12 pp−あった。この結果によれば、固化物から揮
散したリン分は固体中のリン分の僅か約0.4係以下で
あり、はぼ100%のリン分が仮焼物中に固定されてい
ることが確認された。
There were 12 pp-. According to this result, the phosphorus content volatilized from the solidified product was only about 0.4 times less than the phosphorus content in the solid, and it was confirmed that almost 100% of the phosphorus content was fixed in the calcined product. Ta.

実施例 24 実施例11,12,13.14で得られた固化物な粉砕
し、各々511ずつ混合し、約2011を管状電気炉に
より、窒素ガスをI Q OCC/WtR程度有機成分
は、主にブテンガスまたCが5以下の炭化水素として分
解除去され、79の無機リン酸化合物の粉末が得られた
。仮焼後の仮焼前粉末に対する減容比はCm/後)約1
 / 0.7であった。
Example 24 The solidified products obtained in Examples 11, 12, 13. Then, butene gas and C were decomposed and removed as hydrocarbons having 5 or less, and 79 inorganic phosphoric acid compound powders were obtained. The volume reduction ratio after calcination to the powder before calcination is Cm/after) approximately 1
/ 0.7.

仮焼時に揮散したリン分を確認するために、窒素ガス出
口に水トラツプ(100cc)を設け、液中のリン濃度
を吸光光度法により測定した結果、15 ppmであっ
た。この結果によれば、固化物から揮散したリン分は固
化体中のリン分の僅か約0.4慢以下であり、はぼ10
0%のリン分が仮焼物中に固定されていることが確認さ
れた。
In order to confirm the phosphorus content volatilized during calcination, a water trap (100 cc) was installed at the nitrogen gas outlet, and the phosphorus concentration in the liquid was measured by spectrophotometry, and the result was 15 ppm. According to this result, the phosphorus content volatilized from the solidified product was only about 0.4% less than the phosphorus content in the solidified product, and about 10%
It was confirmed that 0% phosphorus content was fixed in the calcined product.

実施例 25 実施例1〜5′!及び15,16.19にて得られた固
体物を粉砕し、各々40ccづつ混合し、約300CC
を下記の条件でエポキシ樹脂、セメントによる固化を行
った。また、実施例6〜lO及び17゜1B、20.ま
た、実施例11,12,13.14で得られた固体物も
粉砕混合し、各々約300 cc。
Example 25 Examples 1 to 5'! The solids obtained in Steps 15 and 16.
was solidified with epoxy resin and cement under the following conditions. In addition, Examples 6 to 1O and 17°1B, 20. In addition, the solids obtained in Examples 11, 12, 13, and 14 were also pulverized and mixed, each yielding approximately 300 cc.

約150ccを同様にして同化を行った。Approximately 150 cc was assimilated in the same manner.

ビスフェノ−A/Aエポキシ樹脂+硬化剤+(反応性希
釈剤) 硬化時間:約1日 、 温度:室温 混合比(固化物/上記配合樹脂) : 3/2セメント
十水(2:1) 硬化及び養生時間:約1週間 、 温度:室温混合比(
固化物/セメント中水):1/3まず、エポキシ樹脂に
よる3F!1の固化体は、圧縮強度は何れも約500に
9/c!Iであり、従来の液状TBPのエポキシによる
固化体(圧縮強度20〜1ooky/cri)K比べて
強度的に十分な固化体を得ることができた。
Bispheno-A/A epoxy resin + curing agent + (reactive diluent) Curing time: Approximately 1 day, Temperature: Room temperature Mixing ratio (solidified product/above compounded resin): 3/2 cement 10 water (2:1) Curing and curing time: about 1 week, temperature: room temperature mixing ratio (
Solidified product/water in cement): 1/3 First, 3F with epoxy resin! The compressive strength of each solidified product of No. 1 is approximately 500 to 9/c! I was able to obtain a solidified product with sufficient strength compared to the conventional solidified product of liquid TBP with epoxy (compressive strength of 20 to 1ooky/cri) K.

次に、セメントによる固化体は、その8E縮強度は何れ
も約2oo)II/cilと、通常のセメントによる固
化体と同等の値を示し、廃溶媒のセメントによる同化が
可能であることがWIK:!できた。
Next, the 8E shrinkage strength of cement solidified bodies is about 2oo) II/cil, which is equivalent to that of ordinary cement solidified bodies, and it is WIK that waste solvent can be assimilated by cement. :! did it.

実施例 26 実施例21〜24にて得られた仮焼固体物を粉砕し、各
々混合し、約300ccを下記の条件でセメント、エポ
キシ樹脂による固化を行った。
Example 26 The calcined solids obtained in Examples 21 to 24 were pulverized and mixed, and about 300 cc was solidified with cement and epoxy resin under the following conditions.

セメント中水(2:1) 硬化及び養生時間:約1週間 、r!A度:室温混合比
(固化物/セメント中水) : 2/1ビスフエノール
Aエポキシ樹脂+硬化剤+(反応性希釈剤) 硬化時間:約1日 、 臨度二室温 混合比(固化物/上記配合樹脂’) : 3/2まず、
このようにして得たセメント固化体は、圧縮強度が約2
00klI/d穆度と、通常のセメント固化体と同等の
値であり、廃溶媒を無機物とすることにより、セメント
による廃溶媒の安定固化が可能になった。
Cement water (2:1) Hardening and curing time: about 1 week, r! Degree A: Room temperature mixing ratio (solidified product/water in cement): 2/1 bisphenol A epoxy resin + curing agent + (reactive diluent) Curing time: about 1 day, Temperature 2 room temperature mixing ratio (solidified product/water in cement) The above blended resin'): 3/2 First,
The solidified cement thus obtained has a compressive strength of approximately 2
00 klI/d, which is the same value as that of a normal cement solidified body, and by using an inorganic waste solvent as the waste solvent, stable solidification of the waste solvent by cement became possible.

次に、エポキシ樹脂による固化体、その圧縮強度は、約
500ゆ/cilであり、従来の液状TBPのエポキシ
による固化体(圧縮強度20〜100kIi/cIl)
に比べて強度的に十分な固化体を得ることができた。
Next, the solidified body of epoxy resin has a compressive strength of about 500 yu/cil, and the conventional solidified body of liquid TBP made of epoxy (compressive strength of 20 to 100 kIi/cIl)
We were able to obtain a solidified material with sufficient strength compared to the previous method.

(発明の効果) 本発明は上記構成をとることによって、次の効果を示す
ことができる。
(Effects of the Invention) By adopting the above configuration, the present invention can exhibit the following effects.

(1)  溶媒中のリン分が全量固化物中に固定され、
後に仮焼操作を行うことができ、有機成分を除去するこ
とにより、減容効果が得られ、併せてさらに安定な無機
リン酸化合物とすることができる。
(1) The entire amount of phosphorus in the solvent is fixed in the solidified product,
A calcining operation can be performed afterwards, and by removing organic components, a volume reduction effect can be obtained, and at the same time, a more stable inorganic phosphoric acid compound can be obtained.

並びに、無機化できることにより、セメントによる固化
安定化が可能になる(有機液体は通常セメントでは固化
不可能である)。
In addition, since it can be mineralized, it can be solidified and stabilized with cement (organic liquids cannot normally be solidified with cement).

(2)有機リン酸エステルを粉末あるいは、塊状のリン
酸化合物として固化できる。液状の溶媒はプラスチック
固化等を適用するにあたっては、固化が不十分である等
の問題が残されていた。しかし、固化することにより、
この問題が解決される。したがって、これら固化法の前
処理操作として使用することができる。
(2) Organic phosphate esters can be solidified as powder or bulk phosphoric acid compounds. When liquid solvents are applied to plastic solidification, there remain problems such as insufficient solidification. However, by solidifying,
This problem is resolved. Therefore, it can be used as a pretreatment operation for these solidification methods.

(3)塩化アルミニウム水和物あるいは塩基性(PAC
)化合物を用いることにより、無水物に比べて取り扱い
が容易であり、かつ反応の制御が容易である。
(3) Aluminum chloride hydrate or basic (PAC
) Compounds are easier to handle than anhydrides, and reactions can be easily controlled.

Claims (7)

【特許請求の範囲】[Claims] (1)有機リン酸エステルを主成分とする廃有機溶媒を
、含水塩化アルミニウム(六水塩)あるいはポリ塩化ア
ルミニウムを主成分とする固化剤と混合し、加熱するこ
とにより、リン分を含む固化物とすることを特徴とする
廃有機リン酸エステル化合物の処理方法。
(1) Solidify waste organic solvent containing phosphorus by mixing waste organic solvent mainly composed of organic phosphate ester with solidifying agent mainly composed of hydrated aluminum chloride (hexahydrate) or polyaluminum chloride and heating. 1. A method for processing waste organic phosphate ester compounds, characterized in that the waste organic phosphoric acid ester compounds are converted into products.
(2)有機リン酸エステルを主成分とする廃有機溶媒を
、含水塩化アルミニウム(六水塩)あるいはポリ塩化ア
ルミニウムを主成分とする固化剤と混合し、加熱するこ
とにより、リン分を含む固化物とし、該固化物を仮焼し
て安定な無機リン酸化合物に分解することを特徴とする
廃有機リン酸エステル化合物の処理方法。
(2) By mixing the waste organic solvent mainly composed of organic phosphate ester with a solidifying agent mainly composed of hydrated aluminum chloride (hexahydrate) or polyaluminum chloride and heating it, it is solidified to contain phosphorus. 1. A method for treating waste organic phosphoric acid ester compounds, which comprises converting the solidified material into a stable inorganic phosphoric acid compound by calcining the solidified material.
(3)有機リン酸エステルを主成分とする廃有機溶媒を
、含水塩化アルミニウム(六水塩)あるいはポリ塩化ア
ルミニウムを主成分とする固化剤と混合し、加熱するこ
とにより、リン分を含む固化物とし、かつ該固化物をセ
メントあるいはプラスチックにより固体化することを特
徴とする廃有機リン酸エステル化合物の処理方法。
(3) Solidify waste organic solvent containing phosphorus by mixing the waste organic solvent mainly composed of organic phosphate ester with a solidifying agent mainly composed of hydrated aluminum chloride (hexahydrate) or polyaluminum chloride and heating. 1. A method for treating waste organic phosphate ester compounds, which comprises solidifying the solidified product with cement or plastic.
(4)有機リン酸エステルを主成分とする廃有機溶媒を
、含水塩化アルミニウム(六水塩)あるいはポリ塩化ア
ルミニウムを主成分とする固化剤と混合し加熱すること
により、リン分を含む固化物とし、該固化物を仮焼して
安定な無機リン酸化合物に分解させ、さらに該無機リン
酸化合物を、セメントあるいはプラスチックにより固体
化することを特徴とする廃有機リン酸エステル化合物の
処理方法。
(4) A solidified product containing phosphorus is produced by mixing waste organic solvent mainly composed of organic phosphate ester with a solidifying agent mainly composed of hydrated aluminum chloride (hexahydrate) or polyaluminum chloride and heating the mixture. A method for treating waste organic phosphate ester compounds, which comprises: calcining the solidified product to decompose it into a stable inorganic phosphate compound; and further solidifying the inorganic phosphate compound with cement or plastic.
(5)特許請求の範囲(1)〜(4)のいずれか一項に
記載の廃有機リン酸エステル化合物の処理方法であって
、前記有機リン酸エステルは燐酸トリブチル、燐酸ジブ
チル、燐酸モノブチル、ジ2エチルヘキシル燐酸及びモ
ノ2エチルヘキシル燐酸よりなる群の中から選ばれた一
種または二種以上であることを特徴とする処理方法。
(5) The method for treating a waste organic phosphate compound according to any one of claims (1) to (4), wherein the organic phosphate compound is tributyl phosphate, dibutyl phosphate, monobutyl phosphate, 1. A treatment method characterized by using one or more selected from the group consisting of di-2-ethylhexyl phosphoric acid and mono-2-ethylhexyl phosphoric acid.
(6)特許請求の範囲(1)〜(4)のいずれか一項に
記載の廃有機リン酸エステル化合物の処理方法であって
、前記廃有機溶媒は無機リン酸を含有することを特徴と
する処理方法。
(6) A method for treating a waste organic phosphate compound according to any one of claims (1) to (4), characterized in that the waste organic solvent contains inorganic phosphoric acid. processing method.
(7)特許請求の範囲(1)〜(4)のいずれか一項に
記載の廃有機リン酸エステル化合物の処理方法であって
、前記固化剤はアルカリ土類金属の水酸化物あるいは水
酸化アルミニウムを含有することを特徴とする処理方法
(7) The method for treating waste organic phosphate compounds according to any one of claims (1) to (4), wherein the solidifying agent is alkaline earth metal hydroxide or hydroxide. A treatment method characterized by containing aluminum.
JP61213453A 1986-09-10 1986-09-10 Method of processing waste organic phosphoric ester compound Pending JPS6367595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213453A JPS6367595A (en) 1986-09-10 1986-09-10 Method of processing waste organic phosphoric ester compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213453A JPS6367595A (en) 1986-09-10 1986-09-10 Method of processing waste organic phosphoric ester compound

Publications (1)

Publication Number Publication Date
JPS6367595A true JPS6367595A (en) 1988-03-26

Family

ID=16639467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213453A Pending JPS6367595A (en) 1986-09-10 1986-09-10 Method of processing waste organic phosphoric ester compound

Country Status (1)

Country Link
JP (1) JPS6367595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240291A (en) * 1990-07-27 1992-08-27 J M Voith Gmbh Device for removing coagulation product from steam heating drying cylinder
US5276251A (en) * 1990-01-17 1994-01-04 Mitsubishi Nuclear Fuel Co. Process for treating organic phosphoric acids
WO1994004290A1 (en) * 1992-08-19 1994-03-03 British Technology Group Inter-Corporate Licensing Limited Process for encapsulating a waste material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276251A (en) * 1990-01-17 1994-01-04 Mitsubishi Nuclear Fuel Co. Process for treating organic phosphoric acids
JPH04240291A (en) * 1990-07-27 1992-08-27 J M Voith Gmbh Device for removing coagulation product from steam heating drying cylinder
WO1994004290A1 (en) * 1992-08-19 1994-03-03 British Technology Group Inter-Corporate Licensing Limited Process for encapsulating a waste material
GB2284808A (en) * 1992-08-19 1995-06-21 British Tech Group Int Process for encapsulating a waste material
GB2284808B (en) * 1992-08-19 1996-06-05 British Tech Group Int Process for encapsulating a waste material
US5562590A (en) * 1992-08-19 1996-10-08 British Technology Group Limited Process for encapsulating a waste material
AU683602B2 (en) * 1992-08-19 1997-11-13 British Technology Group Inter-Corporate Licensing Limited Process for encapsulating a waste material

Similar Documents

Publication Publication Date Title
EP0111839B1 (en) Method of disposing radioactive ion exchange resin
RU2592078C1 (en) Method of immobilization of liquid containing tritium radioactive wastes
US3716490A (en) Treatment of radioactive liquids
JPS6367595A (en) Method of processing waste organic phosphoric ester compound
Kulyako et al. Preparation of powdered uranium oxides by denitration of nitric acid uranium solutions using UHF radiation
JPS60233598A (en) Method of treating radioactive organic waste
Gordon et al. Synthesis and energetic content of red oil
US3153566A (en) Decontamination of volatile radioactive effluents
JP2005509163A (en) Method and apparatus for the treatment of radioactive waste
JPH03284689A (en) Treatment of waste organic phosphoric acid ester
US2962431A (en) Activated carbon catalyst radiochemical hydrocarbon conversions
JPS62233799A (en) Method of solidifying and processing radioactive waste
GB2133919A (en) Process for denitrating aqueous, nitric acid and salt containing waste solutions
Cooper et al. Aqueous Processes for Separation and Decontamination of Irradiated Fuels
Yang et al. Selective Co2+ recovery using MgNa3H (PO4) 2 adsorbent from water
JPS62214399A (en) Method of processing radioactive waste organic solvent
JPS6155079B2 (en)
JPH0648316B2 (en) Treatment method of radioactive waste liquid
JPS62160181A (en) Method for treating waste organophosphoric ester compound
JPS6061697A (en) Method of decomposig and treating radioactive liquid organic waste
Campbell et al. Low-level liquid waste decontamination by ion exchange
JPS59102196A (en) Method of denitrating water solution waste containing nitrate
Williams Homogeneous Reactor Fuel and Blanket Studies: Production of ThO2
JPH0723920B2 (en) Method for decomposing radioactive waste organic solvent
JPS60105997A (en) Method of decomposing radioactive waste organic phosphoric acid esters