JPS636719Y2 - - Google Patents

Info

Publication number
JPS636719Y2
JPS636719Y2 JP1980040295U JP4029580U JPS636719Y2 JP S636719 Y2 JPS636719 Y2 JP S636719Y2 JP 1980040295 U JP1980040295 U JP 1980040295U JP 4029580 U JP4029580 U JP 4029580U JP S636719 Y2 JPS636719 Y2 JP S636719Y2
Authority
JP
Japan
Prior art keywords
pressure vessel
pressure
control rod
guide tube
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980040295U
Other languages
Japanese (ja)
Other versions
JPS56142499U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980040295U priority Critical patent/JPS636719Y2/ja
Publication of JPS56142499U publication Critical patent/JPS56142499U/ja
Application granted granted Critical
Publication of JPS636719Y2 publication Critical patent/JPS636719Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【考案の詳細な説明】 本考案は可動コイル型制御棒駆動装置の改良に
関するものであり、さらに詳しくは駆動部にシー
ル構造のない特徴を有しながら原子炉発電用に使
用可能な可動コイル型制御棒駆動装置に関するも
のである。
[Detailed description of the invention] The present invention relates to an improvement of a moving coil type control rod drive device, and more specifically, a moving coil type control rod drive device that can be used for nuclear power generation while having a feature that the drive part does not have a seal structure. It relates to a control rod drive device.

現在の原子力発電所の炉型式は沸騰水型(B.
W.R.)及び加圧水型(P.W.R.)が主流を占めて
おり、その原子炉の制御はスプリツトローラー
(SPLIT ROLLER)とスクリユー(SCREW)、
磁気ジヤツキ及びラツク・ピニオン等の方式によ
る制御棒駆動装置(以下CRDMと呼ぶ)によつ
て行なわれている。これらのCRDMは、駆動部
が案内管を貫通又は案内管内部にあり、貫通部よ
りの原子炉冷却材の漏れや、内部機構の保守に支
障を来たし大きな問題となつている。
The reactor type of current nuclear power plants is boiling water type (B.
WR) and pressurized water type (PWR) are the mainstream, and their reactors are controlled by split rollers (SPLIT ROLLER), screws (SCREW),
This is done by a control rod drive device (hereinafter referred to as CRDM) that uses magnetic jacks and rack-and-pinion systems. In these CRDMs, the drive section passes through the guide tube or is located inside the guide tube, causing major problems such as leakage of reactor coolant from the penetration section and hindrance to maintenance of the internal mechanism.

一方近年、第1図に示すような可動コイル型原
子炉制御棒駆動装置が出願人によつて提案されて
いる。すなわち、第1図において1は原子炉容器
に連らなる挿入管の下端であり、上部に図示しな
い制御棒を連結した駆動軸2は上端位置にて全出
力、下端位置にて炉の停止を各々与える。上記管
1の下部には上部案内管4′を介して駆動軸を上
下動させるためのプランジヤアセンブリ3を内挿
したプランジヤ案内管4が連らなり、プランジヤ
案内管4の下端は管栓5を介して外部配管系に接
続されている。負荷反力に抗して制御棒先端の中
性子吸収体の位置決め動作を行なうアクチユエー
タ構成は、上記プランジヤアセンブリ3と非磁性
材製の薄肉の案内管4を介して配設された可動コ
イルアセンブリ6と、該可動コイルアセンブリ6
を吊持して送りネジ7の回動によつて可動コイル
アセンブリ6を上下動させる送り機構8と、さら
にプランジヤアセンブリ3の下端および可動コイ
ルアセンブリ6の下端にて相対位置検出をする差
動トランス9と、スクラム時に急速落下する管内
駆動部のスクラムエネルギーを吸収するスナツバ
用ピストン10およびスナツバシリンダ11とを
含んでなる。
On the other hand, in recent years, the applicant has proposed a moving coil type nuclear reactor control rod drive device as shown in FIG. That is, in Fig. 1, 1 is the lower end of the insertion tube leading to the reactor vessel, and the drive shaft 2, to which a control rod (not shown) is connected to the upper end, outputs full power at the upper end position and stops the reactor at the lower end position. Give each. A plunger guide tube 4 in which a plunger assembly 3 for vertically moving the drive shaft is inserted is connected to the lower part of the tube 1 via an upper guide tube 4', and a pipe stopper 5 is connected to the lower end of the plunger guide tube 4. Connected to external piping system via. The actuator configuration that positions the neutron absorber at the tip of the control rod against the load reaction force includes the plunger assembly 3 and a movable coil assembly 6 disposed via a thin guide tube 4 made of a non-magnetic material. , the moving coil assembly 6
a feeding mechanism 8 that suspends the movable coil assembly 6 and moves the movable coil assembly 6 up and down by rotation of the feed screw 7; and a differential transformer that detects relative positions at the lower end of the plunger assembly 3 and the lower end of the movable coil assembly 6. 9, and a snubber piston 10 and a snubber cylinder 11 that absorb the scram energy of the in-tube drive unit that rapidly falls during scram.

上記構成においてスナツバ部のスナツバシリン
ダ11、案内管4、下部管栓5およびそれらの付
属品がいわゆる原子炉一次系水の圧力バウンダリ
を成し、原子炉容器或いはそれに連設している不
動構造部分に配設支持される。これら固定部分の
内部には一次冷却水が満され、その中でプランジ
ヤアセンブリ3と、カーボンベアリング20と、
スナツバピストン10と駆動軸2などから一体に
構成された管内駆動部が軸方向に連動する。通常
運転時は圧力管外部の可動コイルプランジヤが励
磁され、従つてプランジヤアセンブリ3は可動コ
イルアセンブリ6に磁気結合力で追従して移動
し、一方スクラム時には可動コイルの励磁が消勢
されて磁気結合力が消去され、上記一体化された
プランジヤアセンブリやスナツバピストンおよび
駆動軸さらには制御棒が自重にて急速に落下運動
し、制御棒に取付けられた中性子吸収体が燃料要
素を遮蔽することになる。
In the above configuration, the snubber cylinder 11, the guide pipe 4, the lower pipe stopper 5, and their accessories of the snubber part form the so-called pressure boundary of the reactor primary system water, and are connected to the reactor vessel or an immovable structure connected thereto. Placed and supported on the part. The inside of these fixed parts is filled with primary cooling water, and the plunger assembly 3, carbon bearing 20,
An in-tube drive section that is integrally formed of a snubber piston 10, a drive shaft 2, etc. is interlocked in the axial direction. During normal operation, the movable coil plunger outside the pressure pipe is energized, and the plunger assembly 3 moves following the movable coil assembly 6 by magnetic coupling force, while during scram, the movable coil is deenergized and magnetically coupled. The force is eliminated, and the integrated plunger assembly, snubber piston, drive shaft, and control rod rapidly fall under their own weight, and the neutron absorber attached to the control rod shields the fuel element. Become.

上述のように駆動装置の電磁石はプランジヤ案
内管を磁気ギヤツプとした磁気回路となつている
ため、磁気吸引力を大きくするためにはプランジ
ヤ案内管をできるだけ薄くすることが望ましい
が、プランジヤ案内管の材質をSUS 316LTPと
し、その肉厚を1mmに設定した場合、プランジヤ
案内管の耐圧は通産省令第501号告示案で定めら
れた設計応力強さに関する規準から、100℃の時
47Kg/cm2、400℃の時は35.8Kg/cm2となり、発電
炉の高圧(例えばPWRで運転圧力約160Kg/cm2
BWRでは約71Kg/cm2である)には耐え得ない。
As mentioned above, the electromagnet of the drive device is a magnetic circuit with the plunger guide tube as a magnetic gap, so in order to increase the magnetic attraction force, it is desirable to make the plunger guide tube as thin as possible. When the material is SUS 316LTP and the wall thickness is set to 1mm, the pressure resistance of the plunger guide tube is 100℃ according to the standard for design stress strength specified in Ministry of International Trade and Industry Ordinance No. 501.
47Kg/cm 2 , 35.8Kg/cm 2 at 400℃, and the high pressure of a power reactor (for example, PWR operating pressure of about 160Kg/cm 2 ,
BWR is approximately 71Kg/cm 2 ).

他方、プランジヤ案内管を発電炉の高圧に耐え
るようにするには、プランジヤ案内管の肉厚を
6.1mmに設計する必要があり、このため磁気抵抗
が増え、保持力が約1/6に低下することになる。
On the other hand, in order to make the plunger guide tube withstand the high pressure of the power generating furnace, the wall thickness of the plunger guide tube must be increased.
It needs to be designed to 6.1mm, which increases magnetic resistance and reduces holding force to about 1/6.

従つて、この対策としては電磁コイルの段数を
増やすか、コイル励磁電流を増やす必要がある
が、電磁コイルの段数を増やすことはいたずらに
装置の大型化を招くことになり、好ましくなく、
又コイル励磁電流を増やすことは電源が大規模に
なり、しかも電磁コイルの発熱が増大し電磁コイ
ルの冷却の問題も発生し、メリツトは少ない。
Therefore, as a countermeasure to this problem, it is necessary to increase the number of stages of electromagnetic coils or increase the coil excitation current, but increasing the number of stages of electromagnetic coils unnecessarily increases the size of the device, which is not desirable.
Furthermore, increasing the coil excitation current increases the size of the power supply, increases heat generation in the electromagnetic coil, and causes problems in cooling the electromagnetic coil, so there is little merit.

本考案は、かかる現状に鑑み創案されたもの
で、その目的とするところは、本出願人開発に係
る可動コイル型制御棒駆動装置の特徴を生かしな
がら原子力発電用にも十分使用できる装置を提供
することにある。
The present invention was devised in view of the current situation, and its purpose is to provide a device that can be fully used for nuclear power generation while taking advantage of the characteristics of the moving coil type control rod drive device developed by the applicant. It's about doing.

以下第2図乃至第5図に示す実施例により本考
案を詳述する。第2図は本考案の第1の実施例を
示すもので、これは第1図に示す可動コイル型制
御棒駆動装置部分の外周を上部圧力容器30と中
間圧力容器31と圧力容器底蓋32とよりなる圧
力容器33で密封状に囲繞せしめたもので、該圧
力容器33を構成する上、中、下各部材30,3
1,32はそれぞれフランジ結合されると共に上
部圧力容器30の上端フランジ34と上部案内管
4′の上端フランジ35とをフランジプレート6
0を介して密封状に連結し、又圧力容器底蓋32
の下部内周面と下部管栓フランジ5′とを密封状
に連結したものである。圧力容器33は耐圧強度
部材より形成され、その肉厚はSUS材を用いた
場合、内径を150mmに設定すると19.0mmとなる。
The present invention will be described in detail below with reference to embodiments shown in FIGS. 2 to 5. FIG. 2 shows a first embodiment of the present invention, in which the outer periphery of the moving coil type control rod drive device shown in FIG. The upper, middle and lower members 30, 3 constituting the pressure vessel 33 are hermetically surrounded by a pressure vessel 33 consisting of
1 and 32 are connected by flanges, and the upper end flange 34 of the upper pressure vessel 30 and the upper end flange 35 of the upper guide pipe 4' are connected to the flange plate 6.
0, and the bottom lid 32 of the pressure vessel.
The inner peripheral surface of the lower part of the pipe and the lower pipe plug flange 5' are connected in a sealed manner. The pressure vessel 33 is formed from a pressure-resistant strength member, and its wall thickness is 19.0 mm when the inner diameter is set to 150 mm when SUS material is used.

40及び41は上部圧力容器30及び中間圧力
容器31の各所定位置に設けられた冷却媒体供給
口及び排出口で、それぞれ循環回路の1部を構成
する図示しない流体供給管及び流体排出管を介し
てポンプユニツトに連結され、ポンプユニツトで
のポンプおよびバルブの操作により空気、絶縁油
或いは不活性ガス等の冷却媒体をCRDMと圧力
容器33との間の環状空間42に加圧状態で注入
して強制循環できるようになされている。この場
合、環状空間42内に充填された加圧冷却媒体は
電磁コイル等を冷却せしめると共に該冷却媒体の
圧力を適当に選択制御することにより原子炉冷却
材の圧力との圧力差を小さくし、薄肉のプランジ
ヤ案内管の耐圧性能を高めることができる。例え
ば原子炉冷却材との圧力差を30Kg/cm2以下に設定
する場合には、プランジヤ案内管は1mmの肉厚の
ものを用いることができる。
Reference numerals 40 and 41 denote cooling medium supply ports and discharge ports provided at respective predetermined positions of the upper pressure vessel 30 and the intermediate pressure vessel 31. is connected to a pump unit, and a cooling medium such as air, insulating oil, or inert gas is injected under pressure into the annular space 42 between the CRDM and the pressure vessel 33 by operating a pump and a valve in the pump unit. It is designed to allow forced circulation. In this case, the pressurized cooling medium filled in the annular space 42 cools the electromagnetic coil etc., and the pressure of the cooling medium is appropriately selected and controlled to reduce the pressure difference with the pressure of the reactor coolant. The pressure resistance of the thin-walled plunger guide tube can be improved. For example, if the pressure difference with the reactor coolant is set to 30 kg/cm 2 or less, a plunger guide tube with a wall thickness of 1 mm can be used.

又冷却媒体の圧力を原子炉冷却材圧力より適当
に低く制御しておくことにより原子炉冷却材の漏
れを検出できると共に該圧力容器及びこれに連通
して配設された循環回路により大気放出を防止す
ることができる。尚漏れ検出方法としては例えば
流体排出管に圧力検知器を設けて冷却媒体の圧力
変動を知ることにより冷却媒体の漏れを検知する
方法、原子炉冷却材と冷却媒体との差圧変動によ
り検知する方式、冷却媒体の水分濃度の変動によ
り検知する方法あるいは冷却媒体の放射能濃度の
変動により検知する方法等種々の方法が適用可能
である。
In addition, by controlling the pressure of the coolant to be appropriately lower than the reactor coolant pressure, leakage of the reactor coolant can be detected, and the pressure vessel and the circulation circuit connected thereto can prevent release into the atmosphere. It can be prevented. Leakage detection methods include, for example, installing a pressure detector in the fluid discharge pipe and detecting the pressure fluctuation of the cooling medium, and detecting the leakage by detecting the pressure difference between the reactor coolant and the cooling medium. Various methods can be applied, such as a detection method based on a variation in the moisture concentration of the cooling medium, or a detection method based on a variation in the radioactivity concentration of the cooling medium.

尚45は上部圧力容器30及び中間圧力容器3
1に設けられた電磁コイル給電ケーブルや
CRDM計装ケーブル等の貫装用ケーブルノズル、
46は圧力容器底蓋32に設けられたドレン排出
口である。
In addition, 45 is the upper pressure vessel 30 and the intermediate pressure vessel 3.
The electromagnetic coil power supply cable installed in 1
Cable nozzle for penetrating CRDM instrumentation cables, etc.
46 is a drain outlet provided in the bottom cover 32 of the pressure vessel.

第3図は本考案の他の例を示すもので、これは
上部及び中間圧力容器30′,31′ならびに圧力
容器底蓋32′に冷却フインを設け、自然放熱の
効果を上げたものであり、又第4図はさらに他の
例を示すもので、これは上部圧力容器の代りに圧
力容器上蓋50を設け、該圧力容器上蓋50を直
接プランジヤ案内管4の上端フランジ51に装着
すると共に上部案内管4′を肉厚(例えば6.1mm以
上)の耐圧強度部材で構成し、上記上蓋の上端フ
ランジ50′と上部案内管下部フランジ52とを
連結構成したもので、第2図のものと同様の作用
効果を奏するものである。
FIG. 3 shows another example of the present invention, in which cooling fins are provided on the upper and intermediate pressure vessels 30', 31' and the bottom cover 32' of the pressure vessel to improve the effect of natural heat dissipation. 4 shows still another example, in which a pressure vessel upper cover 50 is provided instead of the upper pressure vessel, and the pressure vessel upper cover 50 is directly attached to the upper end flange 51 of the plunger guide tube 4, and the upper pressure vessel The guide tube 4' is made of a pressure-resistant material with a wall thickness (for example, 6.1 mm or more), and the upper end flange 50' of the upper cover is connected to the lower flange 52 of the upper guide tube, similar to the one in FIG. It has the following effects.

第5図は第4図の変形例を示すもので、これは
圧力容器上蓋50′、中間圧力容器31′及び圧力
容器底蓋32′にそれぞれ冷却フインを付け、放
熱効果を上げたものである。
Fig. 5 shows a modification of Fig. 4, in which cooling fins are attached to the pressure vessel top cover 50', intermediate pressure vessel 31', and pressure vessel bottom cover 32', respectively, to improve the heat dissipation effect. .

なお、第2図に示す実施例では、冷却媒体を強
制循環させる場合について説明したが、勿論この
範囲に限定されず、例えば圧力容器内に充填され
た冷却媒体を自然対流させるようにしてもよいこ
とは云うまでもない。
In the embodiment shown in FIG. 2, a case has been described in which the cooling medium is forcedly circulated, but of course the cooling medium is not limited to this range, and for example, the cooling medium filled in the pressure vessel may be caused to undergo natural convection. Needless to say.

本考案は、上述のごとく可動コイル型CROM
の外周を圧力容器で密封状に囲繞せしめ、該
CRDMと圧力容器との環状空間に加圧冷却材を
充填するようにしたので、電磁コイル等の温度上
昇を確実に抑制可能であると共に薄肉のプランジ
ヤ案内管の耐圧性能が向上するため原子炉冷却材
が高温高圧条件に設定されていても十分使用に耐
え得るようになり、原子炉発電用可動コイル型
CRDMとして極めて大きな実用価値を有するも
のである。
As mentioned above, this invention is a moving coil type CROM.
Hermetically surround the outer periphery with a pressure vessel, and
Since the annular space between the CRDM and the pressure vessel is filled with pressurized coolant, it is possible to reliably suppress the temperature rise of the electromagnetic coils, etc., and the pressure resistance of the thin-walled plunger guide tube is improved, thereby cooling the reactor. The material can withstand use even under high temperature and high pressure conditions, and the moving coil type for nuclear power generation
It has extremely great practical value as a CRDM.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可動コイル型CRDMを示す概
略縦断面図、第2図は本考案の一例を示す概略断
面図、第3図、第4図及び第5図はそれぞれ本考
案の他の例を示す概略断面図である。 4……プランジヤ案内管、4′……上部案内管、
5……下部管栓、30,30′……上部圧力容器、
31,31′……中間圧力容器、32,32′……
圧力容器底蓋、33……圧力容器、34,35,
50′,51,52……フランジ、40……冷却
媒体供給口、41……冷却媒体排出口、42……
環状空間、50,50′……圧力容器上蓋。
Fig. 1 is a schematic vertical sectional view showing a conventional moving coil type CRDM, Fig. 2 is a schematic sectional view showing an example of the present invention, and Figs. 3, 4, and 5 are other examples of the present invention. FIG. 4... Plunger guide pipe, 4'... Upper guide pipe,
5... lower pipe plug, 30, 30'... upper pressure vessel,
31, 31'... Intermediate pressure vessel, 32, 32'...
Pressure vessel bottom cover, 33... Pressure vessel, 34, 35,
50', 51, 52...Flange, 40...Cooling medium supply port, 41...Cooling medium discharge port, 42...
Annular space, 50, 50'...pressure vessel upper cover.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 可動コイル型制御棒駆動装置本体と、該駆動装
置本体の外周を密封状に囲繞して配設され、かつ
所定位置に冷却材注入口及び排出口を備えた圧力
容器と、上記駆動装置本体と該圧力容器との間に
充填された加圧冷却材とを備えてなる可動コイル
型制御棒駆動装置。
A moving coil type control rod drive main body, a pressure vessel disposed sealingly surrounding the outer periphery of the drive main body and equipped with a coolant inlet and a discharge port at predetermined positions, the drive main body and A moving coil type control rod drive device comprising a pressurized coolant filled between the pressure vessel and the pressure vessel.
JP1980040295U 1980-03-28 1980-03-28 Expired JPS636719Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980040295U JPS636719Y2 (en) 1980-03-28 1980-03-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980040295U JPS636719Y2 (en) 1980-03-28 1980-03-28

Publications (2)

Publication Number Publication Date
JPS56142499U JPS56142499U (en) 1981-10-27
JPS636719Y2 true JPS636719Y2 (en) 1988-02-25

Family

ID=29635709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980040295U Expired JPS636719Y2 (en) 1980-03-28 1980-03-28

Country Status (1)

Country Link
JP (1) JPS636719Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10032529B2 (en) * 2010-12-09 2018-07-24 Westinghouse Electric Company Llc Nuclear reactor internal electric control rod drive mechanism assembly

Also Published As

Publication number Publication date
JPS56142499U (en) 1981-10-27

Similar Documents

Publication Publication Date Title
US3607629A (en) Drive mechanism for control elements
US7139352B2 (en) Reactivity control rod for core
JP5886312B2 (en) Hydraulic control rod drive mechanism for reactor internals
KR102115053B1 (en) Instrumentation and control penetration flange for pressurized water reactor
GB992482A (en) Reactor control rod system
GB2161014A (en) Remotely adjustable intermediate seismic support
JPS636719Y2 (en)
US3989589A (en) Hydraulic drive for control rods
GB1070571A (en) Nuclear reactor
JPS6176986A (en) Facility containing atomic nuclear reactor
US3167481A (en) Nuclear reactor refueling system
WO2021221051A1 (en) Reactor core
US4316770A (en) Liquid-metal-cooled reactor
JPH0552979A (en) Small-sized fast breeder reactor
JPH0650356B2 (en) Control rod drive
JPH06242277A (en) Control rod assembly
JPH06235785A (en) Control rod drive mechanism
CN115410728A (en) Full natural circulation reactor body system
JP3483214B2 (en) Liquid metal cooled fast reactor
JPH05209981A (en) Pressure tube reactor
JPS61164186A (en) Movable coil type control rod driving device
JPH04335190A (en) Fast breeder reactor
GB2064065A (en) Shock absorbers using electrically conductive liquid
Ventre Nuclear reactor with integrated heat exchanger
JPS6273191A (en) Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop