JPS6366939B2 - - Google Patents

Info

Publication number
JPS6366939B2
JPS6366939B2 JP56170751A JP17075181A JPS6366939B2 JP S6366939 B2 JPS6366939 B2 JP S6366939B2 JP 56170751 A JP56170751 A JP 56170751A JP 17075181 A JP17075181 A JP 17075181A JP S6366939 B2 JPS6366939 B2 JP S6366939B2
Authority
JP
Japan
Prior art keywords
glass fiber
resin
mortar
fiber bundles
pine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56170751A
Other languages
Japanese (ja)
Other versions
JPS5876565A (en
Inventor
Sadao Kawashima
Chiharu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP56170751A priority Critical patent/JPS5876565A/en
Publication of JPS5876565A publication Critical patent/JPS5876565A/en
Publication of JPS6366939B2 publication Critical patent/JPS6366939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 本発明はモルタル或は樹脂等の組成物の補強体
として好適な補強用マツト及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reinforcing mat suitable as a reinforcing body for compositions such as mortar or resin, and a method for producing the same.

硝子繊維で補強されたモルタル(GRC)は硝
子繊維束切断物(チヨツプドストランド、以下
CSと略称)とモルタルを予め混合し、所定形状
に成型硬化せしめることによつて製造することが
できるが、この方法は次の如き難点を有する。
Glass fiber-reinforced mortar (GRC) is a chopped glass fiber bundle (hereinafter referred to as chopped strand).
It can be manufactured by pre-mixing (abbreviated as CS) and mortar and molding and hardening it into a predetermined shape, but this method has the following drawbacks.

(1) CSとモルタルを混合する際、硝子繊維が傷
つき、強度が低下し易い。
(1) When mixing CS and mortar, the glass fibers are easily damaged and their strength decreases.

(2) CSとモルタルを充分良く混合するためには
水分の多い流動性の良好なモルタルを使用する
必要があり、高強度の硬化製品をうることがで
き難い。
(2) In order to thoroughly mix CS and mortar, it is necessary to use mortar with high moisture content and good fluidity, making it difficult to obtain a cured product with high strength.

(3) CSとモルタルを充分良く混合するためには、
比較的短いCSを使用する必要があり、充分強
度の大きい硬化製品をうることができ難い。
(3) In order to mix CS and mortar sufficiently,
It is necessary to use a relatively short CS, and it is difficult to obtain a cured product with sufficient strength.

(4) 混合中にCSが開繊して絡まり合い均一な製
品をうることが困難である。
(4) During mixing, CS opens and becomes entangled, making it difficult to obtain a uniform product.

モルタルとCSの混合に伴う難点を解決するた
め、CSとモルタルを型面に同時に吹付ける方法
も提案されているが、層間剥離を生じ難い巣のな
い均質な製品をうることが困難である等の難点が
ある。
In order to solve the difficulties associated with mixing mortar and CS, a method has been proposed in which CS and mortar are simultaneously sprayed onto the mold surface, but it is difficult to obtain a homogeneous product without cavities that is unlikely to cause delamination, etc. There is a drawback.

上述の難点を解決するため予め所定形状を附与
した硝子繊維補強体にモルタルを注入する方法
(注型法という)も提案されている。本願発明は、
注型法に用いられる硝子繊維束よりなる補強体に
ついて各種実験を重ねる過程において、時として
発生する補強体界面におけるモルタル硬化の遅延
及びこれに伴う強度低下という難点を解決する方
途について検討を行つた結果、本発明に到達した
ものである。以下述べるように、本発明の補強体
は次の如き利点を併せ有することも判明した。
In order to solve the above-mentioned difficulties, a method (referred to as a casting method) has also been proposed in which mortar is injected into a glass fiber reinforced body that has been given a predetermined shape in advance. The present invention is
In the process of conducting various experiments on reinforcing bodies made of glass fiber bundles used in the casting method, we investigated ways to solve the problems of delayed mortar hardening at the interface of the reinforcing bodies, which sometimes occurs, and the resulting decrease in strength. As a result, we have arrived at the present invention. As described below, it has been found that the reinforcing body of the present invention has the following advantages.

(1) 本発明は補強用マツトを構成する硝子繊維束
はポリエステル樹脂、エポキシ樹脂、フエノー
ル樹脂又はメラミン樹脂硬化物で被覆されてい
るので、硝子繊維束のアルカリによる劣化を有
効に防止しうる。
(1) In the present invention, since the glass fiber bundles constituting the reinforcing mat are coated with a cured product of polyester resin, epoxy resin, phenol resin, or melamine resin, deterioration of the glass fiber bundles due to alkali can be effectively prevented.

(2) 又、本発明のマツトは、通常のチヨツプドス
トランドマツトに比し硝子繊維束が細い場合で
も圧縮率が大きく、硝子繊維束が動き難く、モ
ルタル中の粗粒成分の通過抵抗も小さく、モル
タル成分の分離が起り難い。
(2) Furthermore, compared to ordinary chopped strand mats, the mat of the present invention has a higher compression ratio even when the glass fiber bundles are thinner, makes it difficult for the glass fiber bundles to move, and reduces the passage resistance of coarse particles in the mortar. is also small, making it difficult for mortar components to separate.

次に本発明を更に具体的に説明する。 Next, the present invention will be explained in more detail.

本発明においては、1000m当りの重量が20〜
50grの長尺の硝子繊維束をを使用する。硝子繊維
束はブツシングから引出した硝子繊維に集束剤を
附与して集束することによつて製造され、硝子繊
維束の1000m当りの重量は硝子繊維の太さ及び集
束本数によつて実質的に定まる。硝子繊維束の
1000m当りの重量(以下太さという)を上述の範
囲とし、好適な結果をうるための硝子繊維束の太
さ及び集束本数は夫々10〜30μ及び30〜7000本程
度である。なお、集束剤としては酢酸ビニル重合
体、ポリエステル等の被膜形成剤、アミン系界面
活性剤等の潤滑剤等を固型分として合計3%程度
を含む液状のものが適当である。又、集束剤の附
与量は固型分として硝子繊維束重量の0.5〜2%
程度とするのが適当である。
In the present invention, the weight per 1000m is 20~
Use a long glass fiber bundle of 50gr. Glass fiber bundles are manufactured by adding a sizing agent to glass fibers drawn from a bushing and converging them.The weight per 1000m of glass fiber bundles depends on the thickness of the glass fibers and the number of bundles. Determined. glass fiber bundle
The weight per 1000m (hereinafter referred to as thickness) is within the above-mentioned range, and the thickness and number of bundles of glass fibers to obtain suitable results are approximately 10 to 30μ and 30 to 7000, respectively. The sizing agent is suitably a liquid one containing a total solid content of about 3% of a film forming agent such as a vinyl acetate polymer or polyester, or a lubricant such as an amine surfactant. In addition, the amount of sizing agent added is 0.5 to 2% of the weight of the glass fiber bundle as a solid content.
It is appropriate to set it as a degree.

長尺の硝子繊維束を移動するコンベア上に落下
堆積せしめる。ここに長尺とは未切断の連続した
繊維束若しくは60cm以上望ましくは100cm以上の
切断物をいう。硝子繊維束は無方向に彎曲した形
状をなしてコンベア上に堆積し、互に絡み合いマ
ツト状物となる。なお、硝子繊維束の堆積量は
300〜1200gr/m2程度とするのが適当である。
A long glass fiber bundle is dropped and deposited on a moving conveyor. Here, long refers to uncut continuous fiber bundles or cut pieces of 60 cm or more, preferably 100 cm or more. The glass fiber bundles are piled up on the conveyor in a non-directionally curved shape and intertwined with each other to form a mat-like material. The amount of accumulated glass fiber bundles is
Appropriately, it is about 300 to 1200gr/ m2 .

硝子繊維束に熱硬化性結合剤を附与して加熱
し、結合剤を重合硬化せしめて硝子繊維束同志を
結合せしめる。この際熱硬化性の結合剤の重合を
充分に行うことが必要であり、重合が不充分の場
合モルタル硬化の遅延及びこれに伴う強度低下が
生じ重合が極端に低い場合モルタルが硬化しない
場合もあることが判明した。例えば従来FRP補
強用として用いられているコンテイニユアススト
ランドマツト(CSM)製造の場合におけるよう
に、ポリエステル樹脂のエマルジヨンを使用した
場合には通常の条件ではモルタルの硬化の阻害を
有効に防止するに足る程充分に重合した被膜をう
ることはできない(なお、加熱温度、加熱時間を
極端に大きくすることにより重合を充分大とする
ことができるが、この方法は実際的ではない)。
A thermosetting binder is added to the glass fiber bundle and heated to polymerize and harden the binder, thereby bonding the glass fiber bundles together. At this time, it is necessary to sufficiently polymerize the thermosetting binder; if the polymerization is insufficient, mortar hardening will be delayed and strength will decrease accordingly, and if polymerization is extremely low, the mortar may not harden. It turns out that there is something. For example, when a polyester resin emulsion is used in the production of continuous strand mats (CSM), which are conventionally used for FRP reinforcement, inhibition of mortar hardening cannot be effectively prevented under normal conditions. It is not possible to obtain a film that is sufficiently polymerized (although polymerization can be sufficiently increased by extremely increasing the heating temperature and heating time, this method is not practical).

硝子繊維束に硬化性を有する液状の不飽和ポリ
エステル樹脂、エポキシ樹脂、フエノール樹脂、
又はメラミン樹脂に噴霧し、樹脂の薄い被膜を形
成せしめた後80〜160℃において1〜3分程度加
熱して樹脂を硬化せしめ、硝子繊維束同志を樹脂
硬化物で結合し、且つ硝子繊維束の表面には樹脂
硬化物の薄膜を形成することにより、本発明の目
的に極めて好適なマツトを得ることができた。
Liquid unsaturated polyester resin, epoxy resin, phenolic resin, which has hardening properties on glass fiber bundles,
Alternatively, spray on melamine resin to form a thin film of the resin, and then heat at 80 to 160°C for about 1 to 3 minutes to harden the resin, bonding the glass fiber bundles together with the cured resin, and forming the glass fiber bundle. By forming a thin film of cured resin on the surface of the mat, it was possible to obtain a mat that is extremely suitable for the purpose of the present invention.

好ましい高重合の硬化物は液状の不飽和ポリエ
ステル樹脂とスチレンの混合物(両者の混合比は
100〜300:100程度とするのが適当である)を使
用することによりうることができる。或は硬化剤
を含むエポキシ樹脂を使用することもできる。
A preferred highly polymerized cured product is a mixture of liquid unsaturated polyester resin and styrene (the mixing ratio of the two is
(100 to 300:100 is appropriate). Alternatively, an epoxy resin containing a hardening agent can also be used.

何故結合剤の重合が不充分であるとモルタル硬
化の遅延が生ずるのかその理由は充分明らかでな
いが、重合が不充分の場合、セメントに含まれる
アルカリ成分により結合剤重合分子が分解して生
ずる低分子成分がモルタルの硬化を遅延せしめる
ものと考えられ、硝子繊維束マツトを1%
NaOH溶液に、20℃において5分間浸漬した場
合における結合剤の溶出量が全結合剤の量(灼熱
減量)の15wt%以下のものを使用することによ
り好適な結果の得られることが判明した。
The reason why mortar curing is delayed when the binder is insufficiently polymerized is not fully clear, but if the polymerization is insufficient, the alkaline components contained in the cement decompose the binder polymer molecules and the It is thought that the molecular components delay the hardening of mortar, and 1% glass fiber bundle matt
It has been found that suitable results can be obtained by using a binder whose elution amount when immersed in NaOH solution at 20°C for 5 minutes is 15 wt% or less of the total binder amount (loss on ignition).

例えば従来のCSMのようにポリエステルエマ
ルジヨンを使用した場合、アルカリ溶出量は
25wt%であり、モルタル硬化の遅延が生ずるが、
不飽和ポリエステルとスチレンの混合物を用いた
場合、アルカリ溶出量は10wt%であり、極めて
好適な結果をうることができる。
For example, when polyester emulsion is used as in conventional CSM, the amount of alkali elution is
25wt%, which causes delay in mortar hardening,
When a mixture of unsaturated polyester and styrene is used, the amount of alkaline elution is 10 wt%, and very suitable results can be obtained.

尚、樹脂の附与量は硝子繊維束に対し集束剤と
の合計量が2〜50wt%となるよう定めるのが適
当である。樹脂量があまり少いと効果が充分でな
く、樹脂量があまり多いと樹脂の附着が不均一と
なり、均一な製品が得難くなる。
The amount of resin to be added is appropriately determined so that the total amount of the resin and the sizing agent is 2 to 50 wt% based on the glass fiber bundle. If the amount of resin is too small, the effect will not be sufficient, and if the amount of resin is too large, the resin will not adhere uniformly, making it difficult to obtain a uniform product.

本発明の補強体を所定形状となし、モルタルを
含浸せしめると、モルタルは速に硬化し長い、傷
のない硝子繊維束で補強された強度の大きい
GRCをうることができ、しかもモルタル中のア
ルカリによる硝子繊維の劣化が生じ難い。
When the reinforcing body of the present invention is formed into a predetermined shape and impregnated with mortar, the mortar hardens quickly and is reinforced with long, undamaged glass fiber bundles, which provide high strength.
GRC can be obtained, and glass fibers are less likely to deteriorate due to alkali in mortar.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 太さ13μの硝子繊維200本に酢ビ系集束剤を固
型分として1%附与集束してなる1000m当りの重
量83grの連続したストランドを530gr/m2の割合で
移動するコンベア上に落下堆積せしめた。落下し
つつあるストランドにBPOを1重量%含み、且
つ空気硬化剤を附与した液状の不飽和ポリエステ
ル樹脂(昭和高分子株式会社製157BQT)を、ス
トランドに対し15重量%の割合で吹付け、120℃
で2分間加熱して樹脂を硬化させ、厚み7mm、嵩
比重87Kg/m3、アルカリ溶出量10wt%のマツト状
物を得た。このマツト状物を第1図に示すように
ポルトランドセメント5重量部、砂(0.5mm以下)
3重量部、水3重量部よりなるモルタル中を通過
せしめて、マツト状物にモルタルを含浸せしめ、
更に上面に同組成のモルタルをスプレー装置でス
プレーし、ローラーで表面を平滑にし、50℃で5
時間養生し、1ケ月経過後GRCの物性を測定し、
次の結果を得た。
Example: A continuous strand of 200 glass fibers with a thickness of 13μ with a solid content of 1% vinyl acetate-based sizing agent and a weight of 83gr per 1000m is moved at a rate of 530gr/m 2 on a conveyor. It was caused to fall and accumulate. Spray liquid unsaturated polyester resin (157BQT manufactured by Showa Kobunshi Co., Ltd.) containing 1% by weight of BPO and an air hardening agent onto the falling strands at a ratio of 15% by weight to the strands. 120℃
The resin was cured by heating for 2 minutes to obtain a mat-like material having a thickness of 7 mm, a bulk specific gravity of 87 Kg/m 3 , and an alkali elution amount of 10 wt%. As shown in Figure 1, mix this pine-like material with 5 parts by weight of Portland cement and sand (0.5 mm or less).
passing through a mortar consisting of 3 parts by weight and 3 parts by weight of water to impregnate the pine-like material with mortar,
Furthermore, spray mortar of the same composition on the top surface with a spray device, smooth the surface with a roller, and heat it at 50℃ for 5 minutes.
After curing for a period of time, the physical properties of GRC were measured after one month.
I got the following results.

曲げ強度 384Kg/cm2 引張り強度 141Kg/cm2 アイゾツト衝撃強度 13.2Kg/cm2 Bending strength 384Kg/cm 2 Tensile strength 141Kg/cm 2 Izotsu impact strength 13.2Kg/cm 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の補強用マツトを使用して
GRCを製造する方法を示す説明図である。 なお、図中1は補強用マツト、2はモルタルを
示す。
Figure 1 shows the reinforcing mat of the present invention.
FIG. 2 is an explanatory diagram showing a method for manufacturing GRC. In the figure, 1 indicates reinforcing mat and 2 indicates mortar.

Claims (1)

【特許請求の範囲】 1 1000m当りの重量が20〜500grの長尺の硝子
繊維束が彎曲した形状をなして堆積しているマツ
ト状物であり、硝子繊維束はアルカリ溶出量15%
以下の不飽和ポリエステル樹脂又はエポキシ樹
脂、フエノール樹脂、又はメラミン樹脂硬化物で
被覆され、且つ互に結合されており、集束剤と樹
脂硬化物との合計量と硝子繊維束の重量との割合
は2〜50:100であることを特徴とする補強用マ
ツト。 2 1000m当りの重量が20〜500grの長尺の硝子
繊維束を移動するコンベア上に堆積せしめてマツ
ト状物とする工程、スチレンを含む不飽和ポリエ
ステル樹脂組成物を附与する工程、マツト状物を
加熱し樹脂組成物を硬化させる工程とを含む補強
用マツトの製造方法。
[Claims] 1. A pine-like material in which long glass fiber bundles weighing 20 to 500 gr per 1000 m are piled up in a curved shape, and the glass fiber bundles have an alkali elution amount of 15%.
The following unsaturated polyester resin, epoxy resin, phenolic resin, or melamine resin cured product is coated and bonded to each other, and the ratio of the total amount of the sizing agent and resin cured product to the weight of the glass fiber bundle is A reinforcing mat characterized by a ratio of 2 to 50:100. 2. A step of depositing long glass fiber bundles weighing 20 to 500 gr per 1000 m on a moving conveyor to form a pine-like material, a step of applying an unsaturated polyester resin composition containing styrene, a pine-like material A method for producing a reinforcing pine comprising the step of heating and curing a resin composition.
JP56170751A 1981-10-27 1981-10-27 Reinforcing mat and production thereof Granted JPS5876565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170751A JPS5876565A (en) 1981-10-27 1981-10-27 Reinforcing mat and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170751A JPS5876565A (en) 1981-10-27 1981-10-27 Reinforcing mat and production thereof

Publications (2)

Publication Number Publication Date
JPS5876565A JPS5876565A (en) 1983-05-09
JPS6366939B2 true JPS6366939B2 (en) 1988-12-22

Family

ID=15910707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170751A Granted JPS5876565A (en) 1981-10-27 1981-10-27 Reinforcing mat and production thereof

Country Status (1)

Country Link
JP (1) JPS5876565A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643659B2 (en) * 1987-04-01 1994-06-08 旭ファイバ−グラス株式会社 FRP press molding continuous strand mat
JPS63249756A (en) * 1987-04-01 1988-10-17 旭フアイバ−グラス株式会社 Mat for press molding
JPS63256758A (en) * 1987-04-15 1988-10-24 旭フアイバ−グラス株式会社 fiberglass matte

Also Published As

Publication number Publication date
JPS5876565A (en) 1983-05-09

Similar Documents

Publication Publication Date Title
TWI850226B (en) Composite reinforcing member
CN112897958B (en) Grid fabric reinforced cement-based composite material and preparation method thereof
TW201800361A (en) Silica-coated composite fiber for the reinforcement of concrete
US3403069A (en) Resin coated single fibers for molding compositions
CZ248897A3 (en) Process for producing a glass mating and product produced in such a manner
US3425982A (en) Water soluble winding mandrels and method of making the same
JPS6366939B2 (en)
CN109369091B (en) A kind of hybrid basalt fiber reinforced concrete and preparation method thereof
JPS60162612A (en) Composite pipe and manufacture
US4260445A (en) Process for producing thick reinforced plastic articles
JPH0143704B2 (en)
JPS6366938B2 (en)
EP0150002B1 (en) Cured extruded articles of metal fiber-reinforced hydraulic materials, and method for production thereof
US3849527A (en) Method for making reinforced or filled resin products
JPS6141723B2 (en)
JPH08175861A (en) Formed plate of inorganic material and its production
JPH0535099B2 (en)
US3839270A (en) Concrete reinforcing materials
JPS63305146A (en) Fiber-reinforced phenolic resin foam and its production
JPH0689162B2 (en) Fiber impregnation method of phenol resin
JPH04240265A (en) Fiber for reinforcing thermosetting resin
Matsuno et al. Glass fiber reinforced propylene-ethylene copolymer base resin composition
SU1041309A1 (en) Method for making heat insulating material
KR810000123B1 (en) Manufacturing method of lightweight aggregate using asbestos
JPH0323249A (en) Production of fiber-reinforced cement product