JPS6366844A - Manufacture of incandescent bulb - Google Patents

Manufacture of incandescent bulb

Info

Publication number
JPS6366844A
JPS6366844A JP21070486A JP21070486A JPS6366844A JP S6366844 A JPS6366844 A JP S6366844A JP 21070486 A JP21070486 A JP 21070486A JP 21070486 A JP21070486 A JP 21070486A JP S6366844 A JPS6366844 A JP S6366844A
Authority
JP
Japan
Prior art keywords
filament
voltage
light bulb
coil
bulb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21070486A
Other languages
Japanese (ja)
Inventor
赤石 隆雄
邦彦 木原
佐藤 滋洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21070486A priority Critical patent/JPS6366844A/en
Publication of JPS6366844A publication Critical patent/JPS6366844A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は白熱電球の製造過程において、タングステンコ
イルフィラメントの熱処理条件を改良してフィラメント
強度を向上する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for improving the heat treatment conditions of a tungsten coil filament to improve the filament strength in the manufacturing process of an incandescent light bulb.

(従来の技術) 一般に、我が国で大量に消費される一般照明用電球は日
本工業規格J I S C7501に示されているガス
入り二重コイル電球(以下、ccta球と称する。)で
ある。この電球は典型的な大量生産品で、その製造設備
は高速機械の連係された製造ラインで構成されている。
(Prior Art) In general, the general lighting bulb that is consumed in large quantities in Japan is the gas-filled double coil bulb (hereinafter referred to as CCTA bulb) specified in the Japanese Industrial Standard JIS C7501. This light bulb is a typical mass-produced product, and its production equipment consists of a series of interconnected production lines of high-speed machinery.

このため電球製造用各種部品はいずれも規格化され、か
つ高速加工に耐えられるように定められている。
For this reason, all of the various parts used in light bulb manufacturing are standardized and designed to withstand high-speed processing.

(発明が解決しようとする問題点) 電球の中枢となるタングステンコイルフィラメントは電
球の製造工程、特に封止後の熱処理条件によって得られ
る最初の電圧印加によるアーク断線発生電圧(以下S電
圧と称する。)や衝撃などの機械的強度で大きく変化し
、しかもこれらの特性は多くはを反の関係にある。たと
えば、フィラメントの機械的強度を高くするため、熱処
理を二次再結晶温度よりはるかに低い温度で行なえば電
球のS電圧が仁王して使用に耐えられなくなる。
(Problems to be Solved by the Invention) The tungsten coil filament, which is the core of the light bulb, is exposed to an arc breakage generation voltage (hereinafter referred to as S voltage) due to the initial voltage application obtained through the light bulb manufacturing process, particularly the heat treatment conditions after sealing. ) and mechanical strength such as impact, and these properties are often inversely related to each other. For example, if heat treatment is performed at a temperature far lower than the secondary recrystallization temperature in order to increase the mechanical strength of the filament, the S voltage of the light bulb will increase and it will become unusable.

そこで、従来は所望のS電圧を得るため、フィラメント
を二次再結晶温度より高温で熱処理することにより、フ
ィラメントの機械的強度をある程度犠牲にせざるを得な
かった。このことは従来から間開とされ、特に定格10
0V 40W以下のCC電球においてはフィラメントが
特に細いタングステン線を巻回しであるため、フィラメ
ントの機械的強度が不足しやすく、断線の発生率が高か
った6そこで1本発明はフィラメントの機械的強度と電
球のS電圧を両立できるようにコイルフィラメントを熱
処理する方法を促供することを目的とする。
Therefore, conventionally, in order to obtain the desired S voltage, the mechanical strength of the filament had to be sacrificed to some extent by heat-treating the filament at a temperature higher than the secondary recrystallization temperature. This has traditionally been considered as a gap, especially with a rating of 10
In CC light bulbs of 0 V and 40 W or less, the filament is wound with a particularly thin tungsten wire, so the mechanical strength of the filament is likely to be insufficient and the incidence of disconnection is high6.Therefore, the present invention aims to improve the mechanical strength of the filament It is an object of the present invention to provide a method for heat treating a coil filament so as to be compatible with the S voltage of a light bulb.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明はタングステンコイルフィラメントを封装し、ア
ルゴンなどの不活性ガスを封入した白熱電球に通電して
、封装されたフィラメントを熱処理する工程において、
このフィラメントを二次再結晶処理したと仮定した場合
に比較してフィラメントコイルの降伏点を越えかつ電球
のS電圧が150v以上になるように加熱することによ
り、通常の取扱いにおいて振動や衝撃などによる断線も
スパークによる断線もほとんど発生しないようにしたも
のである。
(Means for Solving the Problems) The present invention includes a step of sealing a tungsten coil filament and heat-treating the sealed filament by applying electricity to an incandescent light bulb filled with an inert gas such as argon.
By heating the filament so that it exceeds the yield point of the filament coil and the S voltage of the bulb is 150V or more, compared to the case where the filament is subjected to secondary recrystallization treatment, it is possible to prevent vibrations, shocks, etc. during normal handling. This ensures that wire breakage and wire breakage due to sparks hardly occur.

(作 用) 本発明者は研究の結果、限られた狭い温度範囲において
フィラメントの機械的強度をあまり低下させずに電球の
S電圧を必要限度的に維持できることを発見した6そう
して、上述のように限定したことにより振動やWI撃な
どの機械的要因による断線もアーク発生などの電気的要
因による断線も同時にほとんど解消できた。
(Function) As a result of research, the present inventor discovered that it is possible to maintain the S voltage of the light bulb to the necessary limit without significantly reducing the mechanical strength of the filament in a limited narrow temperature range6. By limiting the number of wires as described above, it is possible to almost eliminate wire breaks caused by mechanical factors such as vibration and WI strike, as well as wire breaks caused by electrical factors such as arcing.

(実施例) 以下、本発明を図示のJ I S C7501に定める
定格100V 19WC;C白熱電球を例にして詳細に
説明する6図中、■は最大径55mの涙滴形ガラスバル
ブ、■はこのバルブ■の内面にシリカ微粉末を静電塗装
してなる散光膜、■はバルブ(ト)の基端を閉塞したス
テム、(イ)、(イ)はこのステムからバルブ■内に延
在した1対の内導線、■はこれら内導線に)。
(Example) Hereinafter, the present invention will be explained in detail using a rated 100V 19WC; A light-diffusing film made by electrostatically coating the inner surface of this bulb ■ with fine silica powder, ■ is a stem that closes off the base end of the bulb (G), and (A) and (A) extend from this stem into the bulb ■. 1 pair of inner conductors, ■ indicates these inner conductors).

■間に装架されてバルブ■の中心部に配設された二重コ
イル形タングステンコイルフィラメント。
■Double coil type tungsten coil filament installed in the center of the valve ■.

■はバルブ■の基部に装着されて内導B(イ)、(イ)
を介してフィラメント■に給電する口金である。そうし
て、バルブ(ト)内にはアルゴン90容量%、窒素10
容量%からなる混合不活性ガスが通常の圧力で封入され
ている。
■ is attached to the base of the valve ■ and the inner guide B (a), (a)
This is a cap that supplies power to the filament ■ through the filament ■. Then, inside the valve (g), 90% by volume of argon and 10% by volume of nitrogen were added.
A mixed inert gas consisting of % by volume is enclosed at normal pressure.

上記フィラメント■は線径0.024 amのタングス
テン素線を2重に巻回して定格100V 19W形の直
線状コイルフィラメントに形成したもので、通常の方法
で内心線@)、■に断線したものである。
The above filament (■) is a tungsten wire with a wire diameter of 0.024 am wound twice to form a linear coil filament with a rating of 100V and 19W, and the inner core wire (@) and (■) are broken using the usual method. It is.

そうして、本CC白熱電球は上述の構成に組立てたのち
、口金0から給電して後述するようにフィラメント0に
各種電圧で約4秒間通電し、そのジュール熱によって熱
処理を施しである。そうして、この熱処理において、フ
ィラメント■は印加された電圧にほぼ対応した温度に加
熱され、この結果フィラメント■を構成するタングステ
ンに結晶変化を生じ後述するように機械的強度やS電圧
が変化した。
After the present CC incandescent lamp was assembled in the above-described configuration, power was supplied from the cap 0, and the filament 0 was energized at various voltages for about 4 seconds as described later, and heat treated by the Joule heat. In this heat treatment, the filament (■) was heated to a temperature that approximately corresponds to the applied voltage, and as a result, the tungsten constituting the filament (■) underwent a crystal change, resulting in changes in mechanical strength and S voltage as described below. .

つぎに、上述の熱処理条件と得られた電球のフィラメン
トの機械的強度およびS電圧との相関を調査した。熱処
理条件は印加電圧を除々に上昇させてフィラメントが溶
断したときの電圧(以後溶断電圧と称する。)の倍数で
表わし、フィラメントの機械的強度は二次コイルの降伏
点で表わし、さらにS電圧は50&の種々の電圧を口金
にしゅん目的に印加して最初の印加でフィラメントが線
間アークによって溶断したときの電圧で表わした。
Next, the correlation between the above-mentioned heat treatment conditions and the mechanical strength and S voltage of the obtained light bulb filament was investigated. The heat treatment conditions are expressed as a multiple of the voltage at which the filament melts by gradually increasing the applied voltage (hereinafter referred to as the melting voltage), the mechanical strength of the filament is expressed as the yield point of the secondary coil, and the S voltage is Various voltages of 50°C were applied to the cap for purpose, and the voltage was expressed as the voltage when the filament was fused by an inter-line arc at the first application.

この結果を第2図に示す。図は横軸に印加電圧をVを単
位とする溶断電圧の倍数をとり、縦軸にフィラメントコ
イルの降伏点(gfを単位とする。)およびS電圧(V
を単位とする。)を並設したもので、実線は降伏点、破
線は、S電圧の相間をそれぞれ示す。この第2図から明
らかなとおり、印加電圧を高くすると加熱温度が高くな
り、印加電圧が溶断電圧の0.4倍を越えると降伏点が
急激に低下し、衝撃に弱くなり、二次再結晶したことを
示す。これに対し、印加電圧を高くするに従ってS電圧
も高くなり、アークによるフィラメント溶断のおそれが
少なくなることを示す。そうして、この第2図で降伏点
の曲線とSff、圧の曲線とが交差していることは成る
適当な印加電圧において衝撃による断線とアークによる
断線とが共に少なくなることを推開させる。
The results are shown in FIG. In the figure, the horizontal axis shows the applied voltage as a multiple of the fusing voltage in units of V, and the vertical axis shows the breakdown point of the filament coil (in units of gf) and the S voltage (in units of V).
The unit is ) are arranged in parallel, the solid line indicates the yield point, and the broken line indicates the phase-to-phase of the S voltage. As is clear from Fig. 2, as the applied voltage increases, the heating temperature increases, and when the applied voltage exceeds 0.4 times the fusing voltage, the yield point decreases rapidly, becoming susceptible to impact, and secondary recrystallization. Show what you did. On the other hand, as the applied voltage increases, the S voltage also increases, indicating that the risk of filament melting due to arc decreases. The fact that the yield point curve intersects with the Sff and pressure curves in Figure 2 suggests that both shock-induced wire breakage and arc-induced wire breakage are reduced at an appropriate applied voltage. .

そこで、本発明者らは印加電圧によって衝撃による断線
とアークによる断線とがどのように変化するか調査した
。この調査方法は当業界における一般的な基準によるこ
ととし、衝撃試験は70anの高さから木製床に自由降
下させてフィラメント断線の発生率を調査し、アーク試
験は501(z170V の交流電圧をしゅん間約に1
回だけ印加してそのときのフィラメント溶断の発生率を
調査した。この調査結果を第3図に示す。図は横軸に前
述の印加電圧を溶断電圧の倍数でとり、断線発生率を%
の単位でとったもので、実線は衝撃による断線発生率、
破線(・・・・・・)はアークによる断線発生率、鎖線
(−・−)は両者を合計した断線発生率を示す。
Therefore, the present inventors investigated how wire breakage due to impact and wire breakage due to arc change depending on the applied voltage. The investigation method was based on the standard in the industry, and the impact test was conducted by dropping the filament freely onto a wooden floor from a height of 70 AN to investigate the incidence of filament breakage.The arc test was conducted by dropping an AC voltage of 501 (z170V) 1 in between
The incidence of filament melting was investigated by applying the voltage only once. The results of this investigation are shown in Figure 3. In the figure, the horizontal axis shows the applied voltage as a multiple of the fusing voltage, and the disconnection occurrence rate is expressed as a percentage.
The solid line is the occurrence rate of wire breakage due to impact,
The broken line (...) shows the occurrence rate of wire breakage due to arc, and the chain line (-.-) shows the wire breakage occurrence rate that is the sum of both.

この第3図から明らかなとおり、合計断線発生率は印加
電圧が溶断電圧の0.4倍であるとき最低であった。
As is clear from FIG. 3, the total disconnection occurrence rate was lowest when the applied voltage was 0.4 times the fusing voltage.

上述の実施例では封装したフィラメントが直線状の二重
コイル形であったが、本発明はこれに限らずフィラメン
トが一重コイル形であってもよく、また張設形状は環状
でもW字形でもよい。ただし、フィラメントの形状構造
が異ると、同じ加熱状態を得る場合でも溶断電圧の倍数
で表した最適値が異なるので、得られたフィラメントの
特性で示すのが適当である。そうして、実験によればフ
ィラメントがコイル形であればその形状構造を問わず、
フィラメントコイルの降伏点と、S電圧の好ましい範囲
は上述のとおりであった。
In the above-described embodiment, the sealed filament was in the form of a linear double coil, but the present invention is not limited to this, and the filament may be in the form of a single coil, and the stretched shape may be annular or W-shaped. . However, if the shape and structure of the filament differs, the optimal value expressed as a multiple of the fusing voltage will differ even when the same heating state is obtained, so it is appropriate to express it in terms of the characteristics of the obtained filament. Experiments have shown that as long as the filament is coil-shaped, regardless of its shape and structure,
The yield point of the filament coil and the preferable range of the S voltage were as described above.

なお、本発明において、電球中に封入されるガスはアル
ゴンが85〜95%の範囲で残余が窒素であわばよい。
In the present invention, the gas sealed in the light bulb may contain 85 to 95% argon and the remainder may be nitrogen.

〔発明の効果〕〔Effect of the invention〕

このように、本発明の白熱電球の製造方法はタングステ
ンコイルフィラメントを封装しアルゴンを主成分とする
不活性ガスを封入した白熱電球に通電してフィラメント
の封処理を行なう工程において、このフィラメントを二
次再結晶処理した場合のフィラメントコイルの降伏点を
越える値でかつ電球のS電圧が150v以上になるよう
に加熱したので、振動や衝撃などの機械的要因によるフ
ィラメント断線とアーク放電などの電気的要因によるフ
ィラメント断線とが同時に少なくなり、合計断線発生率
が最少になった。
As described above, the method for manufacturing an incandescent light bulb of the present invention involves sealing a tungsten coil filament and sealing the filament by applying electricity to an incandescent light bulb filled with an inert gas containing argon as a main component. Since the heating was performed to a value that exceeds the yield point of the filament coil when subjected to the next recrystallization treatment and the S voltage of the bulb is 150V or more, the filament may break due to mechanical factors such as vibration or impact, and electrical problems such as arc discharge may occur. At the same time, the number of filament breakages due to various factors was reduced, and the total breakage rate was minimized.

【図面の簡単な説明】 第1図は本発明の白熱電球の製造方法の一実施例によっ
て得られた電球の断面図、第2図は同じく熱処理条件と
フィラメント特性との相関を示すグラフ、第3図は同じ
く熱処理条件とフィラメントの断線発生率との相関を示
すグラフである。
[Brief Description of the Drawings] Figure 1 is a cross-sectional view of a light bulb obtained by an embodiment of the incandescent light bulb manufacturing method of the present invention, and Figure 2 is a graph showing the correlation between heat treatment conditions and filament characteristics. FIG. 3 is a graph similarly showing the correlation between heat treatment conditions and filament breakage incidence.

Claims (2)

【特許請求の範囲】[Claims] (1)タングステンコイルフィラメントを封装し、アル
ゴンなどの不活性ガスを封入した白熱電球に通電して上
記フィラメントの熱処理を行なう工程において、上記フ
ィラメントの熱処理はこのフィラメントを二次再結晶処
理した場合のフィラメントコイルの降伏点を越え、かつ
電球のS電圧が150V以上になるように加熱すること
を特徴とする白熱電球の製造方法。
(1) In the process of heat-treating the filament by enclosing a tungsten coil filament and applying electricity to an incandescent lamp filled with an inert gas such as argon, the heat treatment of the filament is similar to that when the filament is subjected to secondary recrystallization treatment. A method for manufacturing an incandescent light bulb, which comprises heating the light bulb so that the S voltage of the light bulb exceeds the breakdown point of the filament coil and becomes 150V or more.
(2)フィラメントが二重コイル形であるときこのフィ
ラメントの溶断電圧の0.35〜0.45倍の電圧を印
加して熱処理することを特徴とする特許請求の範囲第1
項記載の白熱電球の製造方法。
(2) When the filament is in the form of a double coil, the heat treatment is performed by applying a voltage 0.35 to 0.45 times the fusing voltage of the filament.
2. Method for manufacturing an incandescent light bulb as described in Section 1.
JP21070486A 1986-09-09 1986-09-09 Manufacture of incandescent bulb Pending JPS6366844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21070486A JPS6366844A (en) 1986-09-09 1986-09-09 Manufacture of incandescent bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21070486A JPS6366844A (en) 1986-09-09 1986-09-09 Manufacture of incandescent bulb

Publications (1)

Publication Number Publication Date
JPS6366844A true JPS6366844A (en) 1988-03-25

Family

ID=16593716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21070486A Pending JPS6366844A (en) 1986-09-09 1986-09-09 Manufacture of incandescent bulb

Country Status (1)

Country Link
JP (1) JPS6366844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796003A (en) * 1980-11-14 1982-06-15 El Paso Polyolefins Propylene polymerization and product
JP2006216292A (en) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd Incandescent lamp and lighting system using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796003A (en) * 1980-11-14 1982-06-15 El Paso Polyolefins Propylene polymerization and product
JPH0345087B2 (en) * 1980-11-14 1991-07-10 Rekusen Purodakutsu Co
JP2006216292A (en) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd Incandescent lamp and lighting system using it

Similar Documents

Publication Publication Date Title
US5883469A (en) Halogen lamp with an inherent safety effect
US3211943A (en) Electric incandescent lamp
EP0168874B1 (en) Electric incandescent lamp
JPS6366844A (en) Manufacture of incandescent bulb
CN100435266C (en) Metal halide lamp with abnormal discharging suppressing function
US3210589A (en) Electric incandescent lamp having filament of partially recrystallized fibrous structure
EP0801812B1 (en) High-pressure discharge lamp
CA1221726A (en) Halogen incandescent lamp
EP0160311B1 (en) High-pressure metal vapor discharge lamp
EP0549056A1 (en) Electric discharge lamp
US2877375A (en) Incandescent lamp mount structure
US3602761A (en) Explosion proof quartz-halogen lamp
US3275398A (en) Apparatus for heat treating lamp filaments
CN101527247B (en) Metal halide lamp having function for suppressing abnormal discharge
US2291952A (en) Quartz lamp
US3208811A (en) Process for flashing incandescent lamps
CA1278817C (en) Incandescent lamp having an improved axial mounting structure for a filament
US1617633A (en) Electric-arc lamp
US2145105A (en) Electric incandescent lamp and similar device
US1608267A (en) Arc device
US3330984A (en) Ballasted incandescent projection lamp
JP3942729B2 (en) Halogen bulb
US1188186A (en) Incandescent lamp.
US1617636A (en) Electric-arc lamp
JPH087846A (en) Tungsten halogen lamp