JPS6366365B2 - - Google Patents

Info

Publication number
JPS6366365B2
JPS6366365B2 JP5451883A JP5451883A JPS6366365B2 JP S6366365 B2 JPS6366365 B2 JP S6366365B2 JP 5451883 A JP5451883 A JP 5451883A JP 5451883 A JP5451883 A JP 5451883A JP S6366365 B2 JPS6366365 B2 JP S6366365B2
Authority
JP
Japan
Prior art keywords
phase
stainless steel
temperature
ferrite
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5451883A
Other languages
Japanese (ja)
Other versions
JPS59179714A (en
Inventor
Yasuhiro Maehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5451883A priority Critical patent/JPS59179714A/en
Publication of JPS59179714A publication Critical patent/JPS59179714A/en
Publication of JPS6366365B2 publication Critical patent/JPS6366365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、常温付近でフエライト相とオース
テナイト相の2相を呈する、Fe、Cr及びNiを主
成分とした2相ステンレス鋼の熱間加工方法に関
するものである。 一般に、2相ステンレス鋼は、耐食性に優れた
効果を発揮するのみならず、強度、靭性及び溶接
性等においても優れた性質を具備することが知ら
れており、各種の分野で幅広く使用されるように
なつてきた材料の1つであるが、これはまた、い
わゆる難加工材の部類に属するものとしても知ら
れているものでもあつた。そして、これまでの各
種研究や検討の結果、例えば熱間加工性に有害な
SやOを低減する等の対策がとられるようになつ
てきて、板や管のように形状の単純なものや、比
較的簡単な形状の鍛造品の製造は可能となつてき
ているけれども、複雑な形状の部品、例えば管継
手やバルブ等の製造は極めて困難であり、いまだ
に歩留りが悪く、切削性が劣るために能率の良く
ない機械加工に頼らざるを得ないのが現状であつ
た。 本発明者等は、上述のような観点から、耐食性
をはじめとして諸性質に優れている2相ステンレ
ス鋼の熱間加工性を改善することを目指して、該
2相ステンレス鋼の熱間加工性に及ぼす組織状態
や変形条件の影響について系統的に検討し、2相
ステンレス鋼に任意の形状を安定して付与し得る
熱間加工方法を提供すべく研究を行つた結果、 所定の組織をもたせた2相ステンレス鋼材に、
温度や歪速度を厳密に管理した状態で変形を与え
ると、その延性が飛躍的に向上する、いわゆる超
塑性を呈するようになる、 との知見を得るに至つたのである。 この発明は、上記知見に基づいてなされたもの
であり、2相ステンレス鋼の加工を、通常では考
えられないような大きな変形が可能となる超塑性
現象を利用して行う方法に関するもので、現在の
加工方法では製造できないような複雑な形状の製
品であつてもその製造を可能とし、また、切削工
程を伴なつて既に製造がなされているようなもの
であつても、その切削工程を不要として歩留りの
向上やコストの低減を図ろうとするものであつ
て、その特徴とするところは、 Fe、Cr及びNiを主成分とし、常温付近でフエ
ライト相とオーステナイト相の2相を呈する2相
ステンレス鋼を1000℃以上に加熱してから、700
℃以上の温度域にて加工率:30%以上の加工を加
えるか、又は少なくとも700℃以下の温度域にて
加工率:20%以上の加工を加え、その後、700℃
〜〔フエライト単相となる温度−200℃〕の温度
域にて再加熱して1×10-4/sec以上1×10-1
sec未満の歪速度で変形することにより、容易に
任意形状の物品とすること、 に存するものである。 次に、この発明の方法において、加工条件を上
記の如くに限定した理由を詳述する。 2相ステンレス鋼の主成分をFe、Cr及びNiと
限定したのは、他の元素を用いた組合せでもフエ
ライト相とオーステナイト相の2相混合組織を得
ることができるけれども、それによつて得られる
材料の性質とコストとを考慮した場合に、Fe−
Cr−Ni3元素を基本とした方が有利となるからで
あり、この発明の方法で対象となる2相ステンレ
ス鋼には、これらの成分の他に、必要に応じて、 Mo:5 %以下(以下、成分割合を表わす%は重
量%とする)、 Cu:1 %以下、Ti:0.5%以下、 Zr:0.5%以下、Nb:0.5%以下、 V:0.5%以下、W:1 %以下、 C:0.1%以下、N:0.2%以下、 を含有し、或いは更に、溶解時の脱酸剤として Si:2.5%以下、Mn:2.0%以下、 のうちの1種以上を含んだものや、更には、少量
のRe、La、Ce及びCaや、或いは不可避的不純物
を含んだものも入ることはもちろんのことであ
る。 加工の前処理として、鋼を1000℃以上に加熱す
るのは、それまでの工程において蓄積されていた
加工歪を除去したり、生成していた炭窒化物やσ
相等の金属間化合物をマトリツクス中へ溶体化
し、後の加工を容易にするためであり、かかる状
態の後で熱間加工或いは温間での加工を加えてか
ら超塑性域での変形温度に再加熱することによ
り、超塑性変形の条件であるフエライトとオース
テナイトの2相混合微細組織が得られるのであ
る。 微細組織を得るための加工は、700℃以上の温
度域では30%以上の加工率が必要であり、また
700℃以下の温度域では20%以上で十分である。
そして、このような加工を施した後に、直ちに、
或いは一旦冷却した後に超塑性変形を呈する温度
に再加熱し、変形を施す。 再加熱及び変形を施す温度域を700℃〜〔フエ
ライト単相となる温度−200℃〕としたのは、700
℃未満の温度では再結晶によつてフエライトとオ
ーステナイトの微細混合組織を得るのが困難であ
り、他方、〔フエライト単相となる温度−200℃〕
を越える場合にはフエライト或いはオーステナイ
ト粒が粗大化してしまうので、やはり微細混合組
織を得ることが困難となるからである。 なお、この場合、化学成分組成によつては変形
中のσ相の析出もありうるが、σ相の析出はオー
ステナイトやフエライトの粗大化を妨げ、組織の
微細化にも寄与するので何ら有害となるものでは
なく、超塑性変形に対してはむしろ好都合なこと
も判明した。 変形を施す直前の所定温度域での保持時間は、
1000℃以上の高温であれば1分間程度で良く、
700℃近辺の低温域では10〜60分間程度と長くす
る方が上述のフエライトとオーステナイトの微細
混合組織を得やすいので好ましい。 変形時の歪速度を1×10-4/sec〜1×10-1
secと定めたのは、歪速度が1×10-1/sec以上で
あると超塑性による大変形が望めなくなり、他
方、歪速度が1×10-4/secよりも小さいと延性
が低下するばかりでなく、作業能率も著しく低下
するので好ましくないからである。そして、この
ような超塑性領域での変形抵抗は極めて低いもの
であり、しかも上述したような特筆すべき延性の
向上と相俟つて、2相ステンレス鋼の大変形が極
めて容易となるのである。 次いで、この発明を実施例により比較例と対比
しながら説明する。 実施例 まず、第1表に示される如き成分組成の2相ス
テンレス鋼を通常の方法によつて溶製し、分解鍛
造、熱間圧延を経て、厚さ:30mmの板材とした。 この板材を使用して、第2表に示されるような
条件で圧延を行い、同じく第2表に示される温度
に再加熱してから、所定の歪速度で引張変形を施
し、伸びと、応力−歪速度における極大応力を求
めて超塑性現象による大変形が可能かどうかを評
価した。この結果を、第2表に併せて示した。 第2表に示される結果からも、本発明方法1〜
10によれば、各2相ステンレス鋼は、いずれも
The present invention relates to a method for hot working a duplex stainless steel mainly composed of Fe, Cr and Ni, which exhibits two phases, a ferrite phase and an austenite phase, at around room temperature. In general, duplex stainless steel is known not only to have excellent corrosion resistance but also to have excellent properties such as strength, toughness, and weldability, and is widely used in various fields. Although it is one of the materials that has become increasingly popular, it was also known as belonging to the category of so-called difficult-to-process materials. As a result of various studies and considerations to date, measures have been taken, such as reducing S and O, which are harmful to hot workability. Although it has become possible to manufacture forged products with relatively simple shapes, it is extremely difficult to manufacture parts with complex shapes, such as pipe fittings and valves, and still have low yields and poor machinability. The current situation is that we have no choice but to rely on inefficient machining. From the above-mentioned viewpoint, the present inventors aimed to improve the hot workability of duplex stainless steel, which has excellent properties including corrosion resistance. As a result of conducting research to provide a hot working method that can stably give any shape to duplex stainless steel, we systematically investigated the influence of the microstructure state and deformation conditions on the stainless steel. Duplex stainless steel material
They came to the knowledge that when deformation is applied under strict control of temperature and strain rate, the ductility of the material increases dramatically, resulting in so-called superplasticity. This invention was made based on the above knowledge, and relates to a method for processing duplex stainless steel using the superplastic phenomenon that enables large deformations that are normally unimaginable. This makes it possible to manufacture products with complex shapes that cannot be manufactured using conventional processing methods, and eliminates the need for cutting processes even for products that have already been manufactured with a cutting process. This is a two-phase stainless steel that is mainly composed of Fe, Cr, and Ni, and exhibits two phases: ferrite and austenite at room temperature. Heating the steel to over 1000℃, then heating it to 700℃
Add processing at a processing rate of 30% or more in a temperature range of ℃ or above, or add processing at a processing rate of 20% or more in a temperature range of at least 700℃, and then apply processing to 700℃.
~ [Temperature at which ferrite becomes single phase -200℃] is reheated to 1×10 -4 /sec or more 1×10 -1 /
The object of the present invention is to easily form an article into an arbitrary shape by deforming at a strain rate of less than sec. Next, the reason why the processing conditions are limited as described above in the method of the present invention will be explained in detail. The main components of duplex stainless steel are limited to Fe, Cr, and Ni, although it is possible to obtain a two-phase mixed structure of ferrite and austenite phases by combining other elements. Considering the properties and cost of Fe−
This is because it is more advantageous to use the Cr-Ni3 element as the base, and in addition to these components, Mo: 5% or less ( (Hereinafter, % representing the component ratio is expressed as weight %), Cu: 1% or less, Ti: 0.5% or less, Zr: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less, W: 1% or less, C: 0.1% or less, N: 0.2% or less, or further contains one or more of the following as a deoxidizing agent during dissolution: Si: 2.5% or less, Mn: 2.0% or less, Furthermore, it goes without saying that materials containing small amounts of Re, La, Ce, and Ca, or unavoidable impurities may also be present. Heating the steel to over 1000℃ as a pre-processing treatment is used to remove the processing strain accumulated in the previous process, and to remove the carbonitrides and σ that have been generated.
The purpose is to dissolve intermetallic compounds of the same phase into the matrix to facilitate subsequent processing, and after this state, hot working or warm working is applied, and then the deformation temperature is returned to the superplastic region. By heating, a two-phase mixed microstructure of ferrite and austenite, which is a condition for superplastic deformation, can be obtained. Machining to obtain a microstructure requires a processing rate of 30% or more in the temperature range of 700℃ or higher, and
In the temperature range below 700℃, 20% or more is sufficient.
Immediately after such processing,
Alternatively, after being cooled once, the material is reheated to a temperature at which it exhibits superplastic deformation, thereby deforming it. The temperature range for reheating and deformation was set to 700℃ ~ [temperature at which ferrite becomes single phase - 200℃] was set at 700℃.
At temperatures below ℃, it is difficult to obtain a fine mixed structure of ferrite and austenite through recrystallization;
This is because, if it exceeds 20%, the ferrite or austenite grains will become coarse, making it difficult to obtain a fine mixed structure. In this case, depending on the chemical composition, precipitation of the σ phase may occur during deformation, but the precipitation of the σ phase prevents the coarsening of austenite and ferrite and contributes to the refinement of the structure, so it is not harmful. It was also found that this is not a problem, but is rather favorable for superplastic deformation. The holding time in the specified temperature range immediately before deformation is
If it is a high temperature of 1000℃ or more, about 1 minute is enough.
In the low temperature range of around 700°C, it is preferable to extend the heating time to about 10 to 60 minutes because it is easier to obtain the above-mentioned fine mixed structure of ferrite and austenite. The strain rate during deformation is 1×10 -4 /sec to 1×10 -1 /
sec was determined because if the strain rate is 1×10 -1 /sec or more, large deformation due to superplasticity cannot be expected, whereas if the strain rate is less than 1×10 -4 /sec, ductility decreases. Not only that, but the work efficiency is also significantly lowered, which is undesirable. The deformation resistance in such a superplastic region is extremely low, and combined with the above-mentioned remarkable improvement in ductility, duplex stainless steel becomes extremely easy to undergo large deformations. Next, the present invention will be explained by examples and in comparison with comparative examples. Example First, duplex stainless steel having the composition shown in Table 1 was melted by a conventional method, decomposed forged, and hot rolled to form a plate material with a thickness of 30 mm. This plate material was rolled under the conditions shown in Table 2, reheated to the temperature also shown in Table 2, and then subjected to tensile deformation at a predetermined strain rate to determine the elongation and stress. -We evaluated whether large deformations due to superplastic phenomena are possible by determining the maximum stress at strain rate. The results are also shown in Table 2. From the results shown in Table 2, it is clear that methods 1 to 1 of the present invention
According to 10, each duplex stainless steel is

【表】【table】

【表】【table】

【表】 (注) *印は、本発明の条件を外れていることを示
すものである。
300%以上の極めて良好な伸びを示し、変形抵抗
の目安となる極大応力も低くなつており、この条
件での大変形が容易に可能であることが明らかで
ある。 これに対して、第2表中にて※印で示す条件が
本発明範囲から外れた比較法11〜16では、いずれ
も伸びは大きくなく、極大応力も一様に低くはな
つていないことも明白である。 これらのうちの、比較法12〜16では超塑性現象
の発生に必要な微細組織を得ることができなかつ
たが、これは、変形温度又は歪速度のうちのいず
れかが適当でなかつたことに起因するものであ
る。そして、比較法11では、前処理時に加熱温度
が900℃と低く、σ相が多量に析出して脆化を来
たしたため、圧延中に著しい割れが発生してその
後の試験が不能となつたものである。 上述のように、この発明によれば、耐食性等の
諸性質が優れているにもかかわらず難加工材とさ
れていた故に、その適用分野が今一つ制限されて
いた2相ステンレス鋼に、塑性加工のみによつて
極めて複雑な形状を簡単・容易に付与することが
可能となり、その応用分野を一層拡大することが
できるなど、工業上有用な効果がもたらされるの
である。
[Table] (Note) * indicates that the conditions of the present invention are not met.
It shows an extremely good elongation of over 300%, and the maximum stress, which is a measure of deformation resistance, is also low, and it is clear that large deformations are easily possible under these conditions. On the other hand, in Comparative Methods 11 to 16, in which the conditions marked with * in Table 2 are outside the scope of the present invention, the elongation is not large, and the maximum stress is not uniformly low. It's obvious. Among these methods, Comparative Methods 12 to 16 were unable to obtain the microstructure necessary for the occurrence of superplastic phenomena, but this was due to the fact that either the deformation temperature or the strain rate was inappropriate. It is caused by In Comparative Method 11, the heating temperature during pretreatment was as low as 900°C, and a large amount of σ phase precipitated, causing embrittlement, resulting in significant cracking during rolling, making subsequent tests impossible. It is something. As mentioned above, according to the present invention, it is possible to apply plastic processing to duplex stainless steel, which has been considered to be a difficult-to-process material despite its excellent properties such as corrosion resistance, and whose field of application has been somewhat limited. By chiseling, extremely complex shapes can be formed simply and easily, and the field of application can be further expanded, which brings about industrially useful effects.

Claims (1)

【特許請求の範囲】 1 Fe、Cr及びNiを主成分とし、常温付近でフ
エライト相とオーステナイト相の2相を呈する2
相ステンレス鋼を1000℃以上に加熱してから、
700℃以上の温度域にて加工率:30%以上の加工
を加え、その後、700℃〜〔フエライト単相とな
る温度−200℃〕の温度域に再加熱して1×
10-4/sec以上1×10-1/sec未満の歪速度で変形
することを特徴とする、2相ステンレス鋼の熱間
加工方法。 2 Fe、Cr及びNiを主成分とし、常温付近でフ
エライト相とオーステナイト相の2相を呈する2
相ステンレス鋼を1000℃以上に加熱してから、少
なくとも700℃以下の温度域にて加工率:20%以
上の加工を加え、その後、700℃〜〔フエライト
単相となる温度−200℃〕の温度域に再加熱して
1×10-4/sec以上1×10-1/sec未満の歪速度で
変形することを特徴とする、2相ステンレス鋼の
熱間加工方法。
[Claims] 1. The main components are Fe, Cr and Ni, and exhibit two phases, a ferrite phase and an austenite phase, at around room temperature. 2.
After heating phase stainless steel to over 1000℃,
Processing rate: 30% or more in a temperature range of 700°C or higher, and then reheated to a temperature range of 700°C to [temperature at which ferrite becomes single phase - 200°C] to 1x
A method for hot working duplex stainless steel, characterized by deforming at a strain rate of 10 -4 /sec or more and less than 1×10 -1 /sec. 2 Mainly composed of Fe, Cr and Ni, it exhibits two phases: ferrite phase and austenite phase at around room temperature.
After heating phase stainless steel to 1000℃ or higher, processing is performed at a processing rate of 20% or higher in a temperature range of at least 700℃ or lower, and then from 700℃ to [temperature at which ferrite becomes single phase - 200℃]. A method for hot working duplex stainless steel, which comprises reheating to a temperature range and deforming at a strain rate of 1×10 -4 /sec or more and less than 1×10 -1 /sec.
JP5451883A 1983-03-30 1983-03-30 Hot working method of two-phase stainless steel Granted JPS59179714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5451883A JPS59179714A (en) 1983-03-30 1983-03-30 Hot working method of two-phase stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5451883A JPS59179714A (en) 1983-03-30 1983-03-30 Hot working method of two-phase stainless steel

Publications (2)

Publication Number Publication Date
JPS59179714A JPS59179714A (en) 1984-10-12
JPS6366365B2 true JPS6366365B2 (en) 1988-12-20

Family

ID=12972865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5451883A Granted JPS59179714A (en) 1983-03-30 1983-03-30 Hot working method of two-phase stainless steel

Country Status (1)

Country Link
JP (1) JPS59179714A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154703A (en) * 1984-12-26 1986-07-14 Kawasaki Steel Corp Manufacture of two-phase stainless steel stock
KR100419654B1 (en) * 1999-11-24 2004-02-25 주식회사 포스코 Method for plate rolling dual phase stainless steel

Also Published As

Publication number Publication date
JPS59179714A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
US4994118A (en) Process for the production of hot rolled steel or heavy plates
US3726723A (en) Hot-rolled low alloy steels
JPH0561344B2 (en)
JPH0571647B2 (en)
US3694271A (en) Method of producing articles of composite material,and resulting products
JPS6366365B2 (en)
JPS60228616A (en) Manufacture of hot rolled steel strip of ferrite stainless steel
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JPH0124206B2 (en)
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JP2682335B2 (en) Manufacturing method of ferritic stainless steel hot rolled strip
JPS63216946A (en) Shape-memory alloy
JP3004784B2 (en) High toughness ferritic stainless steel for high temperatures
JPS6366364B2 (en)
JPS585965B2 (en) The first and last day of the year.
JPH02240242A (en) Stainless steel wire having excellent high strength characteristics and its manufacture
JPS648046B2 (en)
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JP2000144244A (en) Production of steel having superfine structure
JPH08209244A (en) Production of pipe excellent in workability
JP3144572B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent corrosion resistance
JPS63219527A (en) Manufacture of ferritic stainless steel excellent in cold workability
JP3183880B2 (en) Method for producing Nb-containing heat-resistant ferritic stainless steel having excellent high-temperature strength
JPH0526847B2 (en)
JPS648047B2 (en)