JPS6366333B2 - - Google Patents

Info

Publication number
JPS6366333B2
JPS6366333B2 JP5311381A JP5311381A JPS6366333B2 JP S6366333 B2 JPS6366333 B2 JP S6366333B2 JP 5311381 A JP5311381 A JP 5311381A JP 5311381 A JP5311381 A JP 5311381A JP S6366333 B2 JPS6366333 B2 JP S6366333B2
Authority
JP
Japan
Prior art keywords
electron beam
reflector
irradiated
cable
irradiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5311381A
Other languages
Japanese (ja)
Other versions
JPS57168923A (en
Inventor
Masae Numanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5311381A priority Critical patent/JPS57168923A/en
Publication of JPS57168923A publication Critical patent/JPS57168923A/en
Publication of JPS6366333B2 publication Critical patent/JPS6366333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays

Description

【発明の詳細な説明】 本発明は、絶縁電線、合成樹脂チユーブ等の長
尺体への電子線照射方法の改良に関し、長尺体の
円周方向に均一な電子線照射をするための方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for irradiating an elongated object with an electron beam, such as an insulated wire or a synthetic resin tube, and a method for uniformly irradiating an elongated object with an electron beam in the circumferential direction. Regarding.

一般に、ポリエチレン等のプラスチツクにより
構成された絶縁電線の絶縁被覆や、合成樹脂チユ
ーブ等に電子線を照射して架橋結合を導入せしめ
て耐熱性及び物理特性を向上させることが行なわ
れている。
Generally, insulating coatings of insulated wires made of plastic such as polyethylene, synthetic resin tubes, etc. are irradiated with electron beams to introduce crosslinking bonds to improve heat resistance and physical properties.

従来、プラスチツクを被覆した絶縁電線、プラ
スチツクチユーブ等の長尺体に電子線を照射する
方法として第1図に示す方法が知られている。第
1図において、1は電子線照射器であり、その照
射窓2からは電子線(破線で示す)が放射され
る。3a,3bは絶縁電線4を架け渡して走行さ
せるガイドホイールであり、該電線は矢印a,
b,c,d,e,fの順にガイドホイール3a,
3bを巡り、走行される。このようにして走行す
る絶縁電線4には、上記した電子線照射器から電
子線が照射されるが、絶縁電線4が例えば矢印
b,dのところを通過しているときに電子線が照
射されない絶縁電線の半面は、電線4が矢印c,
eのところを通過しているときに照射されるの
で、第2図に拡大して示す絶縁電線4における被
覆層5は矢印の方向から電子線を照射したときに
電子線が銅等の導電体6により部分的に遮蔽され
る部分(斜線部)を生じても結果的には全面が照
射を受けて架橋される。但し、この架橋のために
は、電子線の透過厚さとしてD=√22(ここ
でR:被覆電線4の半径、r:導電体6の半径)
を必要とする。このように透過厚さDの電子線を
得るには高加速電圧の電子線照射器を必要とす
る。
2. Description of the Related Art Conventionally, the method shown in FIG. 1 is known as a method of irradiating an elongated body such as an insulated wire covered with plastic or a plastic tube with an electron beam. In FIG. 1, 1 is an electron beam irradiator, and an electron beam (indicated by a broken line) is emitted from an irradiation window 2 of the electron beam irradiator. Reference numerals 3a and 3b are guide wheels for running an insulated wire 4 over which the wires are connected as indicated by arrows a,
Guide wheels 3a, b, c, d, e, f in order
It will be driven around 3b. The insulated wire 4 traveling in this manner is irradiated with an electron beam from the above-mentioned electron beam irradiator, but the electron beam is not irradiated when the insulated wire 4 is passing through arrows b and d, for example. On the half side of the insulated wire, wire 4 is indicated by arrow c,
Since the coating layer 5 of the insulated wire 4, which is shown enlarged in FIG. Even if a portion (hatched area) is partially shielded by 6, the entire surface is eventually irradiated and crosslinked. However, for this crosslinking, the transmission thickness of the electron beam is D = √ 2 - 2 (where R: radius of the covered wire 4, r: radius of the conductor 6).
Requires. In order to obtain an electron beam with a transmission thickness D as described above, an electron beam irradiator with a high acceleration voltage is required.

このように欠点を除去するものとして、第3図
の如く、電子線照射器1の照射窓2の下で絶縁電
線4を矢印のように回転させながら走行させて照
射することが考えられる。この場合には、電子線
の透過厚さとしてd=R−rでよく、低い加速電
圧の電子線照射器で効率良く照射できる。しか
し、絶縁電線4を矢印のように回転させるには、
この回転に同期してサプライ装置、巻取装置及び
キヤプスタン等を回転させつつ絶縁電線4を走行
させなければならず、設備が複雑かつ高価になる
という欠点があつた。
As a way to eliminate such defects, it is conceivable to irradiate by running an insulated wire 4 under the irradiation window 2 of the electron beam irradiator 1 while rotating it as shown by the arrow, as shown in FIG. In this case, the transmission thickness of the electron beam may be d=R−r, and efficient irradiation can be achieved using an electron beam irradiator with a low acceleration voltage. However, in order to rotate the insulated wire 4 as shown by the arrow,
It is necessary to run the insulated wire 4 while rotating the supply device, winding device, capstan, etc. in synchronization with this rotation, which has the disadvantage that the equipment becomes complicated and expensive.

又、第4図に示す如く、絶縁電線4に三方向か
ら電子線を照射することも考えられるが、そのた
めには三方向から電子線を照射するための3台の
電子線照射器1a,1b,1cを必要とするとい
う欠点がある。
It is also possible to irradiate the insulated wire 4 with electron beams from three directions as shown in FIG. , 1c is required.

上記した各欠点を除去するものとして、従来第
5図に示すものも知られている。第5図におい
て、7は反射板、8はマスクであり、電子線照射
器1の照射窓2からの電子線は反射板7で反射さ
れて電線4に照射され、又照射窓2からの電子線
はマスク8で弱められ、上記の反射された電子線
と同等の照射量で電線4に照射される。。このよ
うに反射された電子線を絶縁電線4に照射するこ
とにより、1パスで電線4の表裏を同時に照射す
ることができる。
As a device that eliminates each of the above-mentioned drawbacks, a device shown in FIG. 5 is also known. In FIG. 5, 7 is a reflector, 8 is a mask, the electron beam from the irradiation window 2 of the electron beam irradiator 1 is reflected by the reflector 7 and irradiated onto the electric wire 4, and the electrons from the irradiation window 2 are The beam is weakened by a mask 8 and is irradiated onto the electric wire 4 with a dose equivalent to that of the reflected electron beam. . By irradiating the insulated wire 4 with the electron beam reflected in this manner, the front and back sides of the wire 4 can be irradiated simultaneously in one pass.

ところで、第5図について説明した電子線照射
方法では照射器1の加速電圧を100〜125KVと
し、径が1.0mmφ、被覆厚40μ程度の、例えばエナ
メル線に適用することはできるが、導電体の径が
数mmφ以上、被覆厚1mm以上の絶縁電線或いは電
力ケーブルには適用することが困難である。即
ち、このような被覆厚をもつた絶縁電線或いは電
力ケーブルに放射線を照射して架橋する場合に
は、1MeV以上の電子線照射器を用いるのが普通
であり、この場合この照射器から放射され、上記
反射板7によつて反射される反射電子線により電
子線照射窓2が過熱され、トラブルを生ずる。
又、上記反射電子線及びマスク8で弱められた電
子線のいずれもが充分に至らない部分、すなわち
絶縁電線4における斜線部分では被覆層5に架橋
不足を生ずる。
By the way, in the electron beam irradiation method explained with reference to FIG. 5, the acceleration voltage of the irradiator 1 is set to 100 to 125 KV, and it can be applied to e.g. enamelled wire with a diameter of 1.0 mmφ and a coating thickness of about 40 μm, but It is difficult to apply this method to insulated wires or power cables with a diameter of several mmφ or more and a coating thickness of 1 mm or more. In other words, when insulated wires or power cables with such coating thickness are cross-linked by irradiating radiation, it is common to use an electron beam irradiator with a voltage of 1 MeV or more. The electron beam irradiation window 2 is overheated by the reflected electron beam reflected by the reflecting plate 7, causing trouble.
Further, in the portions where neither the reflected electron beam nor the electron beam weakened by the mask 8 reach sufficiently, that is, the hatched portions of the insulated wire 4, the coating layer 5 is insufficiently crosslinked.

本発明は、上記した従来の各欠点を除去し、電
子線照射窓の過熱の虞れがなく、絶縁電線(ケー
ブル)等の長尺体の被覆(絶縁層)を全周につい
て略均一に照射することができる長尺体の電子線
照射方法を提供するものである。
The present invention eliminates each of the above-mentioned conventional drawbacks, eliminates the risk of overheating of the electron beam irradiation window, and irradiates the covering (insulating layer) of a long object such as an insulated wire (cable) substantially uniformly over the entire circumference. The present invention provides a method for irradiating an elongated object with an electron beam.

以下に、本発明の方法を第6図乃至第8図の実
施例によつて詳細に説明する。図において、1は
電子線照射器であり、前記した如くその照射窓2
からは破線で示すように電子線が放射される。9
は被照射体であるケーブルであり、照射窓2の下
を走行される。10は反射体であり、半円筒状又
は放物線状等の凹面体からなり、上記照射器1か
らの電子線を反射してケーブル9に照射すべく、
該ケーブルの位置に焦点がくるように配設されて
いる。11はビームマスクであり、照射窓2とケ
ーブル9との間に介在され、該ケーブルに電子線
が照射され得る範囲X,Yにおける範囲Xのみ
を、上記ケーブル9に近接して覆つている。
In the following, the method of the present invention will be explained in detail with reference to the embodiments shown in FIGS. 6 to 8. In the figure, 1 is an electron beam irradiator, and as mentioned above, its irradiation window 2
An electron beam is emitted from the center as shown by the broken line. 9
is a cable which is the object to be irradiated, and is run under the irradiation window 2. Reference numeral 10 denotes a reflector, which is made of a semi-cylindrical or parabolic concave body, and is designed to reflect the electron beam from the irradiator 1 and irradiate it onto the cable 9.
It is arranged so that the focus is on the position of the cable. Reference numeral 11 denotes a beam mask, which is interposed between the irradiation window 2 and the cable 9, and covers only the range X in the ranges X and Y in which the cable can be irradiated with the electron beam, close to the cable 9.

上記第6図乃至第8図について説明した電子線
照射方法では、照射器1から放射され、反射体1
0で反射された電子線はケーブル9の側面及び裏
面に照射され、又照射器1からの直接の電子線が
ケーブル9の表面に照射され、該ケーブルは全面
に亘り電子線が照射されるので、前記従来例で説
明した未架橋を生ずる虞れがない。上記反射体1
0からの反射電子線は、直接探の電子線に比して
エネルギー及び強度共に低下するので、前記ビー
ムマスク11により直接の電子線を部分的に遮蔽
し、ケーブル9の表、裏、側面での電子線照射を
均一ならしめている。従つて均一性の要求されな
いときには、ビームマスク11は必要ない。又、
上記ビームマスク11は照射窓2から離して、ケ
ーブル9に近いところに配設されているので、ビ
ームマスク11からの反射電子線により照射窓2
の過熱される虞れはない。
In the electron beam irradiation method explained with reference to FIGS. 6 to 8 above, the electron beam is emitted from the irradiator 1 and the reflector 1
The electron beam reflected at 0 is irradiated onto the side and back surfaces of the cable 9, and the direct electron beam from the irradiator 1 is irradiated onto the surface of the cable 9, so that the entire surface of the cable is irradiated with the electron beam. , there is no risk of non-crosslinking as explained in the prior art example. The above reflector 1
Since the reflected electron beam from 0 has lower energy and intensity than the electron beam from direct detection, the direct electron beam is partially shielded by the beam mask 11, and the front, back, and side surfaces of the cable 9 are This makes the electron beam irradiation uniform. Therefore, the beam mask 11 is not required when uniformity is not required. or,
Since the beam mask 11 is placed away from the irradiation window 2 and close to the cable 9, the reflected electron beam from the beam mask 11 causes the irradiation window to
There is no risk of overheating.

上記したビームマスク11は中空のパイプ状と
なし、この中には冷却水を通して電子線直射によ
る発熱を吸収するようにすることが望ましい。
又、ビームマスク11はケーブルの径よりわずか
に大なる幅を有することが好ましい。更に、ビー
ムマスク11は直射電子線の吸収を良好にし、反
射電子線による照射窓2の過熱を防止するため
に、導電体により構成し、これを電気的に接地す
ることが望ましく、又反射電子線の強度はビーム
マスク11の材質の原子番号が小さい程、小であ
るから、ビームマスクの材質はAl,Ti等の原子
量の小さい金属であることが望ましい。
It is preferable that the beam mask 11 described above has a hollow pipe shape, and that cooling water is passed through the pipe to absorb heat generated by direct exposure to the electron beam.
Also, it is preferable that the beam mask 11 has a width slightly larger than the diameter of the cable. Further, in order to improve absorption of direct electron beams and prevent overheating of the irradiation window 2 due to reflected electron beams, the beam mask 11 is desirably made of a conductive material and electrically grounded. Since the intensity of the line decreases as the atomic number of the material of the beam mask 11 decreases, it is desirable that the material of the beam mask is a metal with a low atomic weight, such as Al or Ti.

上記反射体10は、該反射体からの散乱電子線
のエネルギー、強度が反射体10の原子番号が大
きい程、大であることから、鉛、タンタル、金、
タングステン等原子番号70以上の材質で作製する
と効果的である。反射体10の構造材としてステ
ンレス等を使用し、反射表面だけ前記鉛等の金属
をメツキ又はプレートにして配設することも可能
である。この場合、メツキ又はプレートの厚さは
1mm以下で充分である。上記反射体の形状として
は、半円筒状又は放物線状が好ましく、ケーブル
9を前記の如くその焦点近傍に配することによ
り、ケーブル9には効率良く均一に電子線が照射
され、ケーブル9は均一に架橋することができ
る。この反射体10もビームマスク11と同様に
水冷構造とすることが望ましい。
The reflector 10 is made of lead, tantalum, gold, etc., because the energy and intensity of the scattered electron beam from the reflector increases as the atomic number of the reflector 10 increases.
It is effective to use a material with an atomic number of 70 or higher, such as tungsten. It is also possible to use stainless steel or the like as the structural material of the reflector 10, and to arrange the metal such as lead as a plating or plate only on the reflective surface. In this case, it is sufficient for the thickness of the plating or plate to be 1 mm or less. The shape of the reflector is preferably semi-cylindrical or parabolic. By arranging the cable 9 near its focal point as described above, the cable 9 is efficiently and uniformly irradiated with the electron beam, and the cable 9 is uniformly irradiated with the electron beam. can be crosslinked. It is desirable that this reflector 10 also have a water-cooled structure like the beam mask 11.

次に、本発明の一具体例を第9図について説明
する。第9図において、1は電子線照射器、2は
照射窓、9は被照射体としての後述するポリエチ
レン被覆電線、10は反射体であり、これらは既
に説明したものである。反射体10はその構造材
としてステンレスが用いられ、該ステンレスによ
り中空のジヤケツト12が形成されている。13
はこのジヤケツト12に水冷用の水を送り込む入
口、14は水の出口を示すものである。15は鉛
よりなるプレートであり、上記ジヤケツト12の
凹面に配され、反射面が構成されている。この反
射面は深さ7cm、幅20cm、長さ140cmの断面形状
が略々放物線の凹面により構成されている。上記
ジヤケツト12を構成するステンレス板は2mmで
あり、又プレート15は1mmの厚さである。上記
反射面の中心軸上の高さ4cmのところ、即ち上記
放物線の焦点に相当するところには、600Vの、
導電体断面積100mm2、外径16mmφ、被覆厚2mmの
ポリエチレン被覆電線9を反射体10の長手方向
に走行させ、該被覆電線より10〜30cm上方から
1MeVの電子線照射器1により電子線を上記被覆
電線9上に照射した。この照射により、被覆電線
9のポリエチレン被覆層は全周に亘り略々均一に
架橋したことが確認できた。尚、反射体10を除
いた外は上記と同一条件でケーブル9に電子線を
照射した場合には、ケーブル9の裏側はほとんど
架橋していなかつた。
Next, a specific example of the present invention will be described with reference to FIG. In FIG. 9, 1 is an electron beam irradiator, 2 is an irradiation window, 9 is a polyethylene-coated electric wire as an irradiated object, which will be described later, and 10 is a reflector, which have already been described. Stainless steel is used as a structural material for the reflector 10, and a hollow jacket 12 is formed of the stainless steel. 13
14 is an inlet for feeding water for cooling into this jacket 12, and an outlet of the water. A plate 15 made of lead is arranged on the concave surface of the jacket 12 and forms a reflective surface. This reflective surface has a concave surface with a depth of 7 cm, a width of 20 cm, and a length of 140 cm, and its cross section is approximately parabolic. The stainless steel plate constituting the jacket 12 has a thickness of 2 mm, and the plate 15 has a thickness of 1 mm. At a height of 4 cm on the central axis of the reflecting surface, which corresponds to the focal point of the parabola, there is a 600V voltage.
A polyethylene-coated wire 9 with a conductor cross-sectional area of 100 mm 2 , an outer diameter of 16 mmφ, and a coating thickness of 2 mm is run in the longitudinal direction of the reflector 10, and a wire is inserted from 10 to 30 cm above the coated wire.
An electron beam was irradiated onto the covered electric wire 9 using a 1 MeV electron beam irradiator 1 . It was confirmed that by this irradiation, the polyethylene coating layer of the covered electric wire 9 was crosslinked almost uniformly over the entire circumference. Note that when the cable 9 was irradiated with an electron beam under the same conditions as above except for the reflector 10, the back side of the cable 9 was hardly crosslinked.

本発明は叙上のようであり、1台の電子線照射
器を用い、1パスで架橋ポリエチレンケーブル等
の長尺体を照射した場合でも、全周均一に架橋を
行うことができ、又通常の2方向照射方式では困
難とされている、大導電体の600VCVケーブルな
どの被覆を照射架橋することもできるものであ
る。
As described above, the present invention can uniformly crosslink the entire circumference even when a long body such as a crosslinked polyethylene cable is irradiated in one pass using one electron beam irradiator. It is also possible to irradiate and cross-link the coatings of large conductor 600 VCV cables, etc., which is difficult to do with the two-way irradiation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第4図及び第5図は従来方法
を説明するための構成図、第2図は電線の断面
図、第6図乃至第8図は本発明方法を説明するた
めの実施例の構成図であり、第6図は正面図、第
7図は縦断側面図、第8図は側面図、第9図は本
発明の一具体例を示す縦断側面図である。 1……電子線照射器、9……ケーブル、10…
…反射体、11……ビームマスク。
Figures 1, 3, 4 and 5 are configuration diagrams for explaining the conventional method, Figure 2 is a sectional view of an electric wire, and Figures 6 to 8 are for explaining the method of the present invention. FIG. 6 is a front view, FIG. 7 is a longitudinal side view, FIG. 8 is a side view, and FIG. 9 is a longitudinal side view showing a specific example of the present invention. 1...Electron beam irradiator, 9...Cable, 10...
...Reflector, 11...Beam mask.

Claims (1)

【特許請求の範囲】[Claims] 1 被照射長尺体に電子線照射器からの直接の電
子線と反射体により反射された電子線とを照射し
て長尺体の放射線架橋を行う電子線照射方法にお
いて、上記反射体として凹面体を用い、電子線照
射時には上記長尺体を上記凹面反射体の凹面が形
成する半円状の空間内部に位置させることを特徴
とする長尺体の電子線照射方法。
1. In an electron beam irradiation method in which the elongated object to be irradiated is irradiated with a direct electron beam from an electron beam irradiator and an electron beam reflected by a reflector to effect radiation crosslinking of the elongated object, the reflector is a concave surface. A method for irradiating an elongated body with an electron beam, characterized in that the elongated body is positioned inside a semicircular space formed by the concave surface of the concave reflector during electron beam irradiation.
JP5311381A 1981-04-10 1981-04-10 Electron beam irradiation of long body Granted JPS57168923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5311381A JPS57168923A (en) 1981-04-10 1981-04-10 Electron beam irradiation of long body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5311381A JPS57168923A (en) 1981-04-10 1981-04-10 Electron beam irradiation of long body

Publications (2)

Publication Number Publication Date
JPS57168923A JPS57168923A (en) 1982-10-18
JPS6366333B2 true JPS6366333B2 (en) 1988-12-20

Family

ID=12933735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5311381A Granted JPS57168923A (en) 1981-04-10 1981-04-10 Electron beam irradiation of long body

Country Status (1)

Country Link
JP (1) JPS57168923A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003089A (en) * 2010-06-17 2012-01-05 Hoya Corp Light irradiation device for lens
JP6540192B2 (en) * 2015-04-23 2019-07-10 日立金属株式会社 Cable coating crosslinking method and cable coating crosslinking apparatus

Also Published As

Publication number Publication date
JPS57168923A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
EP0386479B1 (en) Shock wave generator
US4710638A (en) Apparatus for treating coatings
US4019062A (en) Unit for treatment of substrate with ultraviolet radiation
US5166531A (en) Leaf-end configuration for multileaf collimator
JP2644008B2 (en) Multi-leaf collimator
CN107485801B (en) Collimation body and treatment head
JP2548108B2 (en) X-ray exposure device
US4849640A (en) Apparatus for exposing a UV-curable coating on a filamentary body
JPS598251A (en) Ultrafine focus x-ray tube and method of forming ultrafine focus of x-ray tube hot-cathode
US2139966A (en) X-ray apparatus
JPH0756000A (en) Micro x-ray target
JPH06154350A (en) Method and apparatus for treating affected part by high energy irradiation
JPS6366333B2 (en)
US4107562A (en) X-ray beam generator
GB2127173A (en) Thin fieldlight mirror for medical electron accelerators
US3480486A (en) Heating method for local annealing or stress relieving of parts of metal articles
US2748293A (en) Irradiation applicator for X-ray therapy
GB1599452A (en) Infra-red heating device
DE102005028439A1 (en) Variable IR wet room irradiation system
JPS6158840A (en) Curing device for clad layer of optical fiber
JPH07318698A (en) Electron beam emitter
JP2899718B2 (en) Radiation shielding vacuum duct
KR100737612B1 (en) Apparatus and method for crosslinking using infrared-ray heater
JPH0261600A (en) Electron beam irradiation crosslinking device
Bäuerlein et al. Irradiation methods and dose uniformity in radiation cross-linking of cable and wire insulation