JPS6366277B2 - - Google Patents

Info

Publication number
JPS6366277B2
JPS6366277B2 JP56105093A JP10509381A JPS6366277B2 JP S6366277 B2 JPS6366277 B2 JP S6366277B2 JP 56105093 A JP56105093 A JP 56105093A JP 10509381 A JP10509381 A JP 10509381A JP S6366277 B2 JPS6366277 B2 JP S6366277B2
Authority
JP
Japan
Prior art keywords
wastewater
nitrogen
imidodisulfate
flue gas
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56105093A
Other languages
Japanese (ja)
Other versions
JPS58196829A (en
Inventor
Hiroyuki Ichikawa
Tadashi Yamazaki
Tadashi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP56105093A priority Critical patent/JPS58196829A/en
Publication of JPS58196829A publication Critical patent/JPS58196829A/en
Publication of JPS6366277B2 publication Critical patent/JPS6366277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は排煙中のイオウ酸化物(以下SOxと記
す)及び窒素酸化物(以下NOxと記す)を湿式
脱硫及び脱硝により除去した際に生ずる排水を浄
化処理する方法に係り、特に排水中のアミド硫酸
及びその塩並びにイミド二硫酸塩などのアミド態
及びイミド態窒素化合物を分解除去する方法に関
する。 石炭、石油などの化石燃料の燃焼排煙中に含ま
れるSOx及びNOxによる大気汚染を防止するた
め、種々の脱硫及び脱硝方法が提案され、その一
部は工業的に実施されている。そして脱硫につい
てはかなり優れた方法が開発されているが、脱硝
については未だ解決されるべき問題点を多々残し
ている。例えば、亜硫酸塩を用いる脱硫脱硝法が
屡々採用されるが、その際生ずる排水中にはイミ
ド二硫酸塩などのイミド態窒素化合物やアミド硫
酸塩などのアミド態窒素化合物が含まれる。これ
らの形態の窒素化合物は化学的に極めて安定であ
り、分解し難い。 イミド二硫酸塩やアミド硫酸塩等の窒素化合物
を分解するため、特開昭51−23470号公報は、脱
硝工程の排出ガスに含まれる一酸化窒素をオゾン
により酸化して得られるNO2/NOのモル比1の
ガス混合物を用いる方法を開示している。しかし
ながら、このモル比の調節は極めて煩雑である。 また、これらの窒素化合物を亜硝酸または亜硝
酸塩を用いて窒素ガスに分解する方法も提案され
ているが、亜硝酸や亜硝酸塩はいずれも劇物に指
定されており、致死量2gと人体に対する毒性が
強い。従つて、この方法では、操作の安全性に大
きな問題点がある。 従つて、本発明は前記従来技術の欠点を解消
し、浄化処理剤として毒性のない薬品を用いて緩
和な条件下で、簡単にイミド態及びアミド態窒素
化合物を分解しうる排煙脱硫及び脱硝排水の処理
方法を提供することを目的とする。 この目的は本発明によれば、安全上問題がな
く、広く一般的に還元剤として使用されている亜
硫酸塩または重亜硫酸塩をイミド態及びアミド態
窒素化合物との反応に必要な当量の1.0〜5.0倍の
量で添加して、該窒素化合物を分解することによ
つて達成される。 使用する亜硫酸塩または重亜硫酸塩は、ナトリ
ウム、カリウムのようなアルカリ金属の塩、アン
モニウム塩等であつてよい。 分解反応は、PH3以上、好ましくはPH3.0〜
12.0で、10〜100℃の温度で行なわれる。本発明
によれば、分解反応がこのように広いPH範囲及び
温度範囲で行なわれるので、反応条件の調節にわ
ずらわされることはない。 次に実施例に基づいて本発明を詳述するが、本
発明はこれに限定されるものではない。 例 1 イミド二硫酸塩及びアミド硫酸塩を含有する排
水として、イミド二硫酸カリウム425mg/(窒
素含有量25mg/)及びスルフアミン酸174mg/
(窒素含有量25mg/)を1:1に混合調整し
た合成排水を用い、この排水に亜硫酸ナトリウム
をイミド二硫酸カリウムとスルフアミン酸の量に
対して下記の第1表に示した当量で添加し、更に
硫酸または水酸化ナトリウムでPHを3〜12に調整
し、温度15℃及び90℃でジヤテスターで2時間撹
拌反応させ、分解処理を行なつた。その後、分解
処理水の窒素濃度を測定した。
The present invention relates to a method for purifying wastewater generated when sulfur oxides (hereinafter referred to as SOx) and nitrogen oxides (hereinafter referred to as NOx) in flue gas are removed by wet desulfurization and denitration, and in particular, The present invention relates to a method for decomposing and removing amide and imide nitrogen compounds such as amide sulfuric acid, its salts, and imido disulfate. In order to prevent air pollution caused by SOx and NOx contained in the combustion flue gas of fossil fuels such as coal and oil, various desulfurization and denitrification methods have been proposed, and some of them have been implemented industrially. Although quite excellent methods have been developed for desulfurization, there are still many problems with denitrification that need to be solved. For example, desulfurization and denitrification methods using sulfites are often employed, but the wastewater produced during this process contains imide nitrogen compounds such as imidodisulfate and amide nitrogen compounds such as amide sulfate. These forms of nitrogen compounds are chemically extremely stable and difficult to decompose. In order to decompose nitrogen compounds such as imidodisulfate and amidosulfate, JP-A-51-23470 discloses NO 2 /NO obtained by oxidizing nitrogen monoxide contained in the exhaust gas of the denitrification process with ozone. A method using a gas mixture with a molar ratio of 1 is disclosed. However, adjusting this molar ratio is extremely complicated. Also, a method has been proposed to decompose these nitrogen compounds into nitrogen gas using nitrous acid or nitrites, but both nitrites and nitrites are designated as deleterious substances, and the lethal dose for humans is 2g. Highly toxic. Therefore, this method poses a major problem in operational safety. Therefore, the present invention overcomes the drawbacks of the prior art and provides flue gas desulfurization and denitrification that can easily decompose imide and amide nitrogen compounds under mild conditions using non-toxic chemicals as purification agents. The purpose is to provide a method for treating wastewater. According to the present invention, this purpose is achieved by using sulfite or bisulfite, which poses no safety problems and is widely used as a reducing agent, in an equivalent amount of 1.0 to 1.0 to This is achieved by adding 5.0 times the amount to decompose the nitrogen compound. The sulfites or bisulfites used may be salts of alkali metals such as sodium, potassium, ammonium salts, and the like. The decomposition reaction is carried out at a pH of 3 or higher, preferably at a pH of 3.0 or higher.
12.0 and is carried out at temperatures between 10 and 100 °C. According to the present invention, since the decomposition reaction is carried out in such a wide PH range and temperature range, there is no need to worry about adjusting the reaction conditions. Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto. Example 1 As wastewater containing imidodisulfate and amidosulfate, potassium imidodisulfate 425 mg/(nitrogen content 25 mg/) and sulfamic acid 174 mg/
(Nitrogen content 25 mg/) was mixed and adjusted at a ratio of 1:1, and sodium sulfite was added to this wastewater in the equivalent amount shown in Table 1 below based on the amount of potassium imidodisulfate and sulfamic acid. Further, the pH was adjusted to 3 to 12 with sulfuric acid or sodium hydroxide, and the mixture was reacted with stirring using a jar tester at temperatures of 15°C and 90°C for 2 hours to carry out decomposition treatment. Thereafter, the nitrogen concentration of the decomposed water was measured.

【表】 この表から判るように、イミド二硫酸カリウム
及びスルフアミン酸は、弱酸性のPH3において
は、窒素濃度として70〜80%除去され、アルカリ
性PHでは80〜90%除去された。即ち、亜硫酸ナト
リウムの還元作用はイミド二硫酸塩及びアミド硫
酸を分解することが認められた。 例 2 例1と同じ合成排水を、亜硫酸ナトリウムの代
わりに重亜硫酸ナトリウムを用いる以外は例1と
同様にして浄化処理した。結果及び処理条件を第
2表に示す。
[Table] As can be seen from this table, 70 to 80% of potassium imidodisulfate and sulfamic acid were removed in terms of nitrogen concentration at a weakly acidic pH of 3, and 80 to 90% at an alkaline pH. That is, it was confirmed that the reducing action of sodium sulfite decomposes imidodisulfate and amidosulfate. Example 2 The same synthetic wastewater as in Example 1 was purified in the same manner as in Example 1 except that sodium bisulfite was used instead of sodium sulfite. The results and processing conditions are shown in Table 2.

【表】 第2表に示したように、例1と同様にPH3にお
いてもPH12においても同様の結果が得られ、70%
以上の窒素化合物が分解除去される。即ち、重亜
硫酸塩を用いてもイミド二硫酸塩及びアミド硫酸
を分解することが確認された。 なお、第1表及び第2表において、処理水の窒
素濃度の欄には、回分法で数回実験したときの最
低値と最高値を示す。 前記のように、本発明方法によれば亜硫酸塩ま
たは重亜硫酸塩を用いることにより、人体に有害
な薬品を使用することなく、脱硫及び脱硝排水中
のイミド二硫酸塩及びアミド硫酸塩を分解するこ
とができ、その際煩雑な分解条件の調整操作を要
しないという利点もある。
[Table] As shown in Table 2, similar results were obtained for PH3 and PH12 as in Example 1, with 70%
The above nitrogen compounds are decomposed and removed. That is, it was confirmed that imidodisulfate and amidosulfate can be decomposed even when bisulfite is used. In addition, in Tables 1 and 2, the column for nitrogen concentration of treated water shows the lowest and highest values obtained when experiments were conducted several times using the batch method. As mentioned above, according to the method of the present invention, by using sulfite or bisulfite, imidodisulfate and amidosulfate in desulfurization and denitrification wastewater can be decomposed without using chemicals harmful to the human body. There is also the advantage that no complicated adjustment of decomposition conditions is required.

Claims (1)

【特許請求の範囲】 1 排煙中のイオウ酸化物及び窒素酸化物を湿式
法により除去することにより生ずる排水を浄化処
理するため、該排水に亜硫酸塩または重亜硫酸塩
を、排水中のイミド態及びアミド態窒素化合物と
の反応に必要な当量の1.0〜5.0倍の量で添加して
PH3.0以上で反応させ、イミド態及びアミド態窒
素化合物を分解することを特徴とする排煙脱硫及
び脱硝排水の処理方法。 2 PH3.0〜12.0で温度15〜90℃で反応を行なう
特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. In order to purify wastewater generated by removing sulfur oxides and nitrogen oxides from flue gas by a wet method, sulfite or bisulfite is added to the wastewater to remove the imide form in the wastewater. and 1.0 to 5.0 times the equivalent amount required for reaction with the amide nitrogen compound.
A method for treating flue gas desulfurization and denitrification wastewater, characterized by decomposing imide and amide nitrogen compounds by reacting at pH 3.0 or higher. 2. The method according to claim 1, wherein the reaction is carried out at a pH of 3.0 to 12.0 and a temperature of 15 to 90°C.
JP56105093A 1981-07-07 1981-07-07 Treatment of waste water generated in waste gas desulfurization and denitration Granted JPS58196829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56105093A JPS58196829A (en) 1981-07-07 1981-07-07 Treatment of waste water generated in waste gas desulfurization and denitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56105093A JPS58196829A (en) 1981-07-07 1981-07-07 Treatment of waste water generated in waste gas desulfurization and denitration

Publications (2)

Publication Number Publication Date
JPS58196829A JPS58196829A (en) 1983-11-16
JPS6366277B2 true JPS6366277B2 (en) 1988-12-20

Family

ID=14398292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56105093A Granted JPS58196829A (en) 1981-07-07 1981-07-07 Treatment of waste water generated in waste gas desulfurization and denitration

Country Status (1)

Country Link
JP (1) JPS58196829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127481U (en) * 1989-03-31 1990-10-19

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879403B (en) * 2010-07-02 2012-09-05 洛阳市天誉环保工程有限公司 Multifunctional reaction tank and purification process thereof for flue gas desulfurization and denitrification
CN104437059A (en) * 2014-12-10 2015-03-25 江汉大学 Flue gas absorbent of desulfurization and denitrification, and desulfurization and denitrification method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127481U (en) * 1989-03-31 1990-10-19

Also Published As

Publication number Publication date
JPS58196829A (en) 1983-11-16

Similar Documents

Publication Publication Date Title
CA1068879A (en) Method for removing nitrogen oxides from exhaust gases
CA1086921A (en) Exhaust gas scrubbing process
US20040005262A1 (en) Process for reducing NOx in waste gas streams using chlorine dioxide
DE3361559D1 (en) Process for the purification of exhaust gases
EP0008488A1 (en) Process of removing nitrogen oxides from gaseous mixtures
ATE74532T1 (en) PROCESS FOR REMOVAL OF NITROUS OXIDES FROM A FLUE GAS STREAM.
US4372832A (en) Pollution control by spray dryer and electron beam treatment
JPH0156816B2 (en)
KR920002210A (en) Simultaneous Desulfurization and Denitrification in Furnace
JPH01164422A (en) Removal of acidic component and nitrogen oxide from waste gas of industrial furnace apparatus
JPS6366277B2 (en)
JPH0117434B2 (en)
JPH0127796B2 (en)
DK353287D0 (en) PROCEDURE FOR THE REMOVAL OF NITROGEN OXIDES FROM EXHAUST GAS
JPH0679708B2 (en) Treatment method of desulfurization waste liquids
SU1080838A1 (en) Method of cleaning waste gases from phenol,formaldehyde and accompanying additives
RU2146168C1 (en) Method of cleaning effluent gases from nitrogen oxides
AT395683B (en) Exhaust gas cleaning agent - useful for removing sulphur- and nitrogen-oxide(s) also hydrochloric- and hydrofluoric- acids
RU2256603C1 (en) Method for treatment of smoke gas from sulfur dioxide
JPH0117430B2 (en)
US4294928A (en) Denitrification of a gas stream
JPS5855803B2 (en) Denitration method
SU1106530A1 (en) Method of removing nitric oxide from effluent gas
CA2218838C (en) Aqueous alkaline earth nitrate fertilizer composition and combustion process for making the same
JPS5938832B2 (en) Treatment method for waste liquid generated during wet flue gas desulfurization and denitrification