JPS6365895B2 - - Google Patents

Info

Publication number
JPS6365895B2
JPS6365895B2 JP6795782A JP6795782A JPS6365895B2 JP S6365895 B2 JPS6365895 B2 JP S6365895B2 JP 6795782 A JP6795782 A JP 6795782A JP 6795782 A JP6795782 A JP 6795782A JP S6365895 B2 JPS6365895 B2 JP S6365895B2
Authority
JP
Japan
Prior art keywords
wave
time
water temperature
depth
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6795782A
Other languages
Japanese (ja)
Other versions
JPS58184520A (en
Inventor
Tokiaki Yamamoto
Yasuhiko Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP6795782A priority Critical patent/JPS58184520A/en
Publication of JPS58184520A publication Critical patent/JPS58184520A/en
Publication of JPS6365895B2 publication Critical patent/JPS6365895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、超音波を用いて水中所定深度域の水
温を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring water temperature in a predetermined depth underwater using ultrasonic waves.

この発明は、水中に放射された超音波ビームが
その全ての通過点において体積残響エコーを発生
するという現象を利用したものである。従来、係
る現象を利用したものとしてそのエコーを検出し
且つその内に含まれるドプラー分を抽出して潮流
速度等を測定する装置があることは知られてい
る。すなわち、上記エコーは充分に検出し得る程
度のレベルを有するものである。
This invention utilizes the phenomenon that an ultrasonic beam radiated into water generates volume reverberant echoes at all of its passing points. Conventionally, it is known that there is a device that utilizes this phenomenon and detects the echo and extracts the Doppler component contained therein to measure the tidal current speed and the like. That is, the echo has a level that is sufficiently detectable.

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第1図は水温測定のための基本原理を示すもの
で、1は船、2及び3は該船1の船底部に所定の
間隔lを有して配設された超音波送波器及び超音
波受波器である。尚、送波器2及び受波器3は電
子的若しくは機械的手段により各指向方向が連続
的に対照可変され且つ指向方向は共に同一平面上
となる如くなされている。又、送波器2及び受波
器3は検出精度及び体積残響エコーレベルの確保
の点から狭巾指向ビーム及び高周波(例えば、
200kHz)が好ましい。
Figure 1 shows the basic principle for water temperature measurement, in which 1 is a ship, 2 and 3 are ultrasonic transmitters and It is a sound wave receiver. The wave transmitter 2 and the wave receiver 3 are configured so that each pointing direction can be continuously varied by electronic or mechanical means, and the pointing directions are both on the same plane. In addition, the transmitter 2 and the receiver 3 are equipped with a narrow directional beam and a high frequency (for example,
200kHz) is preferred.

さて、送波及び受波は図示の如く、指向角θ及
びθ+Δθ(但し、Δθは微小角)の方向でなされ
る。以下、幾何学的に説明する。尚、説明上、送
波器2の位置をA点、受波器3の位置をC点と表
わす。
Now, as shown in the figure, wave transmission and reception are performed in directions of directivity angles θ and θ+Δθ (where Δθ is a minute angle). This will be explained geometrically below. For the sake of explanation, the position of the transmitter 2 will be referred to as point A, and the position of the receiver 3 will be referred to as point C.

(1) 第1過程 音波送波はAB方向になされる。この時、受
波器3の指向方向はCB方向に設定してある。
従つて、送波音波のB点における体積残響エコ
ーのみが受波器3で受波される。すなわち、送
波から受波に要する時間t1は音波が行路ABC
を通過するに要する時間となる。
(1) First process Sound waves are transmitted in the AB direction. At this time, the directivity direction of the receiver 3 is set to the CB direction.
Therefore, only the volume reverberation echo at point B of the transmitted sound wave is received by the receiver 3. In other words, the time t 1 required from wave transmission to wave reception is the time the sound wave travels ABC
This is the time required to pass through.

(2) 第2過程 音波送波はAB′方向になされる。この時、受
波器3の指向方向はCB′方向に設定してある。
従つて、送波音波のB′点における体積残響エ
コーのみが受波器3で受波される。すなわち、
送波から受波に要する時間t2は音波が行路
AB′Cを通過するに要する時間となる。
(2) Second process Sound waves are transmitted in the AB' direction. At this time, the directivity direction of the receiver 3 is set in the CB' direction.
Therefore, only the volume reverberation echo at point B' of the transmitted sound wave is received by the receiver 3. That is,
The time t 2 required from sending to receiving waves is the time the sound wave travels.
This is the time required to pass AB′C.

(3) 第3過程 上記及び図において、AB=AD1、BC=D2C
であるから、音波が行程D1B′D2を通過するに
要する時間はt2−t1で表わされる。
(3) Third process In the above and figures, AB=AD 1 , BC=D 2 C
Therefore, the time required for the sound wave to pass through the path D 1 B′D 2 is expressed as t 2 −t 1 .

ところで、上記D1B′D2すなわち2D1B′は、l=
AC、θ=∠ACB=∠CAB、θ+Δθ=∠ACB′=
∠CAB′より以下のようにして求められる。
By the way, the above D 1 B′D 2 , that is, 2D 1 B′, is l=
AC, θ=∠ACB=∠CAB, θ+Δθ=∠ACB′=
It can be obtained from ∠CAB′ as follows.

すなわち AB=l/2cosθ=BC、AB′=l/2cos(θ+Δθ)= B′C より 2D1B′=2(AB′−AB)=l(1/cos(θ+Δθ)
− 1/cosθ) ……(1) 又、海水中、T℃における音速vは実験式より v(T)=1448.6+4.618T(m/s) 従つて、 2D1B′=(t2−t1)(1448.6+4.618T) ……(2) と表わされ、これをTについて整理すれば、(1)、
(2)式より T=1/4.618{l/t2−t1(1/cos(θ+Δθ)−
1/cosθ) −1448.6} (3) と求まる。
That is, AB=l/2cosθ=BC, AB'=l/2cos(θ+Δθ)=B'C, so 2D 1 B'=2(AB'-AB)=l(1/cos(θ+Δθ)
- 1/cosθ) ...(1) Also, the sound velocity v at T℃ in seawater is from the experimental formula: v(T) = 1448.6 + 4.618T (m/s) Therefore, 2D 1 B' = (t 2 - t 1 ) (1448.6 + 4.618T) ...(2) If we rearrange this regarding T, we get (1),
From equation (2), T=1/4.618{l/t 2 −t 1 (1/cos(θ+Δθ)−
1/cosθ) −1448.6} (3)

以上はBB′間が比較的短い距離であることから
(Δθは微小)、BB′間の水温を一定と見做すこと
ができることから導かれたもので、その深度Lは 1/2(l/2tan(θ+Δθ)+l/2tanθ)=l
/4(tan (θ+Δθ)+tanθ) ……(4) と表わせる。
The above was derived from the fact that since the distance between BB' is relatively short (Δθ is minute), the water temperature between BB' can be regarded as constant, and the depth L is 1/2 (l /2tan(θ+Δθ)+l/2tanθ)=l
It can be expressed as /4(tan (θ+Δθ)+tanθ)...(4).

尚、正確には海面4からの深度で表わすことが
必要であるから、この分を後処理で加味すれば良
い。
It should be noted that since it is necessary to accurately represent the depth from the sea surface 4, this can be taken into account in post-processing.

第2図は、叙上の水温測定方法を具現するため
の回路図の一例を示すものである。
FIG. 2 shows an example of a circuit diagram for implementing the water temperature measuring method described above.

図において、5は送波器2及び受波器3の各指
向方向を連動的に可変し、その時の指向角のデー
タを後述する演算回路6に導く指向角設定回路で
ある。7は送信トリガ発生回路、8は該送信トリ
ガに基づいて送波器2に励振用パルスを送出する
送信パルス発生回路である。9は指向角設定に基
づく特定深度位置からの体積残響エコーの受波信
号を増幅検波する増幅検波回路である。10は該
増幅検波信号を整形等して上記体積残響エコーに
基づく信号を抽出する検出回路である。11は送
信トリガ発生回路7からの送信トリガ発生時点
(正確には超音波送波時点)から、検出回路10
による体積残響エコーに基づく信号の抽出時点ま
での時間を計測するタイマーで、該時間データは
演算回路6に導かれる。
In the figure, reference numeral 5 denotes a directivity angle setting circuit which varies the directivity directions of the transmitter 2 and the receiver 3 in conjunction with each other, and guides the data of the directivity angle at that time to an arithmetic circuit 6, which will be described later. 7 is a transmission trigger generation circuit, and 8 is a transmission pulse generation circuit that sends an excitation pulse to the transmitter 2 based on the transmission trigger. Reference numeral 9 denotes an amplification and detection circuit that amplifies and detects a received signal of a volume reverberation echo from a specific depth position based on the setting of the directivity angle. 10 is a detection circuit that shapes the amplified detection signal and extracts a signal based on the volume reverberation echo. Reference numeral 11 indicates the detection circuit 10 from the transmission trigger generation time point (more precisely, the ultrasonic wave transmission time point) from the transmission trigger generation circuit 7.
This is a timer that measures the time until the time when the signal based on the volume reverberation echo is extracted.The time data is led to the calculation circuit 6.

演算回路6は、前記第1過程における時間デー
タt1及び指向角θ及び第2過程における時間デー
タt2及び指向角θ+Δθに基づいて、前記(3)式及
び(4)式を演算する。
The calculation circuit 6 calculates the equations (3) and (4) based on the time data t 1 and the directivity angle θ in the first process and the time data t 2 and the directivity angle θ+Δθ in the second process.

以上説明した如く、本発明によれば、従来測定
し得なかつた海中の水温を極めて簡単に測定する
ことができ、又、指向角を任意に設定することに
より所望の深度における水温データを得ることが
できる。
As explained above, according to the present invention, it is possible to extremely easily measure underwater water temperature, which could not be measured conventionally, and it is also possible to obtain water temperature data at a desired depth by arbitrarily setting the pointing angle. I can do it.

尚、音速が水圧により100m当り1.75m/s増
加することが知られていることから、深度Lにお
ける音波速度として上記増加分を加えて補正する
ことにより、より正確な水温測定が可能となる。
It is known that the sound speed increases by 1.75 m/s per 100 m due to water pressure, so by correcting the sound speed by adding the above increase to the sound speed at depth L, more accurate water temperature measurement becomes possible.

又、本実施例では指向角を共に等しく対照的に
設定したが、一般的には等しく設定する根拠はな
い。係る場合は行路差D1B′D2に相当する距離を
幾何学的に計算するのみで良い。
Further, in this embodiment, the directivity angles are set to be equal and symmetrical, but there is generally no basis for setting them to be equal. In such a case, it is only necessary to geometrically calculate the distance corresponding to the path difference D 1 B′D 2 .

更に、船速による指向角への影響も水中音速と
船速とからベクトル的に交点(実施例でB,
B′に相当)を計算することができ、これより深
度L及び行路差が幾何学的に求まる。但し、水中
音速の速いことから実際上の影響はない。
Furthermore, the influence of ship speed on the pointing angle is also determined by the vectorial intersection of underwater sound speed and ship speed (B, in the example).
B') can be calculated, and from this the depth L and path difference can be determined geometrically. However, since the speed of sound underwater is high, there is no practical effect.

最後に、前述の如く、指向角は連動的に相等し
く又は連動ではあるが限らずしも相等しくなくと
も良いと説明したが、更に送波器2(若しくは受
波器3)を固定的とし、受波器3(送波器2)の
みを可変的としても、前述同様幾何学的に深度及
び行路差を求めることができる。
Finally, as mentioned above, it was explained that the directivity angles may be linked to each other to be equal, or although they may be linked to each other, they do not necessarily have to be equal to each other. Even if only the receiver 3 (transmitter 2) is variable, the depth and path difference can be determined geometrically as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の水温測定方法の原理を説明
するための図である。第2図は、上記第1図の原
理を利用する本発明に係る水温計の一実施例を示
す回路図である。
FIG. 1 is a diagram for explaining the principle of the water temperature measuring method of the present invention. FIG. 2 is a circuit diagram showing an embodiment of a water temperature meter according to the present invention, which utilizes the principle shown in FIG. 1 above.

Claims (1)

【特許請求の範囲】 1 超音波の送波方向と受波方向がその延長線上
で交わる如く船底一定距離を隔てて配設される超
音波を送波する送受波器及び上記送波に基づいて
発生する上記交点からの体積残響エコーを受波す
る受波器と、 送波時から受波時までの時間を計測する時計
と、 上記送波、受波方向の少くとも一方を微少角だ
け変更させる変更手段と、 該変更手段による変更の前後における各送波、
受波により上記時計にて得られる各計測時間、上
記変更及び上記一定距離に基づく音波伝搬行路差
及び両交点の中間付近深度とから上記深度付近の
水温を演算する演算回路とから成る超音波水温
計。
[Claims] 1. A transducer for transmitting ultrasonic waves, which is disposed at a certain distance from the bottom of a ship so that the transmitting direction and the receiving direction of the ultrasonic waves intersect on an extension line thereof, and based on the above-mentioned transmitting wave. A receiver that receives the generated volumetric reverberation echo from the above intersection point, a clock that measures the time from the time of wave transmission to the time of wave reception, and a device that changes at least one of the above-mentioned wave transmission and wave reception directions by a small angle. a changing means for changing, and each wave transmission before and after the change by the changing means,
Ultrasonic water temperature consisting of an arithmetic circuit that calculates the water temperature near the depth from each measurement time obtained by the clock by receiving waves, the difference in the sound wave propagation path based on the change and the fixed distance, and the depth near the middle of both intersection points. Total.
JP6795782A 1982-04-21 1982-04-21 Ultrasonic wave water thermometer Granted JPS58184520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6795782A JPS58184520A (en) 1982-04-21 1982-04-21 Ultrasonic wave water thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6795782A JPS58184520A (en) 1982-04-21 1982-04-21 Ultrasonic wave water thermometer

Publications (2)

Publication Number Publication Date
JPS58184520A JPS58184520A (en) 1983-10-28
JPS6365895B2 true JPS6365895B2 (en) 1988-12-19

Family

ID=13359942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6795782A Granted JPS58184520A (en) 1982-04-21 1982-04-21 Ultrasonic wave water thermometer

Country Status (1)

Country Link
JP (1) JPS58184520A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061630U (en) * 1983-10-05 1985-04-30 海上電機株式会社 Ultrasonic water temperature measuring device

Also Published As

Publication number Publication date
JPS58184520A (en) 1983-10-28

Similar Documents

Publication Publication Date Title
US4104912A (en) System for taking current-metering measurements
CN104133217A (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
RU2659710C1 (en) Vessel speed measuring method by the doppler log
JPS6365895B2 (en)
RU2510608C1 (en) Method of measuring thickness of ice from underwater vehicle
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JPS6365897B2 (en)
JPH0126496B2 (en)
JPS6365896B2 (en)
RU2795577C1 (en) Multi-frequency correlation method for measuring current velocity
RU2702696C1 (en) Ship speed measurement method with doppler log
JPS6365898B2 (en)
JPS59230165A (en) Measuring method of current speed and current direction by ultrasonic current and direction meter
JPS6239336Y2 (en)
JP2820311B2 (en) Acoustic navigation measurement system for submersibles
SU718787A1 (en) Method of determining flow rate components of liquid or gas
JPS5821129A (en) Measuring apparatus for temperature of water
JPH0374778B2 (en)
JPS60181625A (en) Underwater temperature measuring apparatus
JPH0611452Y2 (en) Ultrasonic transducer
JPS622182A (en) Underwater position measuring instrument
JP3040614B2 (en) Ultrasonic tidal current distribution measuring device
JPH05240719A (en) Ultrasonic remote water temperature measuring device
Appleyard et al. Sonar Navigation
JPH02655B2 (en)