JPS6365853B2 - - Google Patents

Info

Publication number
JPS6365853B2
JPS6365853B2 JP21299083A JP21299083A JPS6365853B2 JP S6365853 B2 JPS6365853 B2 JP S6365853B2 JP 21299083 A JP21299083 A JP 21299083A JP 21299083 A JP21299083 A JP 21299083A JP S6365853 B2 JPS6365853 B2 JP S6365853B2
Authority
JP
Japan
Prior art keywords
combustion
radiation
heat
tube
combustion tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21299083A
Other languages
Japanese (ja)
Other versions
JPS60103236A (en
Inventor
Yoshitaka Koba
Yoshiki Hayashi
Kunikazu Torigoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP21299083A priority Critical patent/JPS60103236A/en
Priority to AU29095/84A priority patent/AU569888B2/en
Priority to US06/618,900 priority patent/US4586485A/en
Publication of JPS60103236A publication Critical patent/JPS60103236A/en
Publication of JPS6365853B2 publication Critical patent/JPS6365853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/24Radiant bodies or panels for radiation heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C5/00Stoves or ranges for liquid fuels
    • F24C5/02Stoves or ranges for liquid fuels with evaporation burners, e.g. dish type
    • F24C5/08Stoves or ranges for liquid fuels with evaporation burners, e.g. dish type with heat produced wholly or partly by a radiant body

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は放熱部全面にわたつて均一かつ高温の
ふく射熱放射が得られる燃焼ふく射ストーブに関
する。
The present invention relates to a combustion radiation stove that can provide uniform and high temperature radiation over the entire surface of the heat radiation section.

【従来技術】[Prior art]

従来のこの種ストーブで石油ストーブに属し、
一般に多用されてなるものが、例えば実公昭54−
44277号公報によつて開示されており、第5図に
略示しているが、燃焼筒5′内で燃焼部4′の上方
に配設した内筒としての触媒層21からのふく射
伝熱だけによる熱交換であることと、燃焼筒5′
表面からの周囲空気への自然放熱が盛んであるこ
ととによつて、外筒である燃焼筒5′の表面温度
が低くなり、従つて、ふく射放熱量が少く、ま
た、熱到達距離が短いのが問題であつた。 一方、強制給排気式の石油ストーブは第5図
イ,ロに略示しているように、燃焼筒5″の表面
は周囲空気への自然放熱が盛んであり、また、燃
焼部4″の火炎に近い部分と離れた部分とで、ま
た、燃焼ガス流の偏りがあることによつて均一に
加熱され難いため表面温度が約400〜500℃と低く
なる部分が多くなり、かつふく射熱の到達距離も
短かく例えば40℃温度域がせいぜい1〜1.5m離
れた個所まで位になる。 さらに第6図イに示したものは、燃焼筒5″の
全面が光を透過しない金属板からなつていて表面
は単なる耐熱塗装が施されているだけであるか
ら、人体に対し採暖に有効ときれる遠赤外線の放
射が少ない欠点が加わるものである。 一方、第6図ロに示したものは、燃焼筒5″の
うち火炎によつて赤熱されたスケレトン22の側
周部を耐熱透明ガラス筒23に形成した構造であ
るが、耐熱ガラスは人体の採暖に有効な遠赤外線
を透過し難いために、外力から赤熱部が目視し得
ても単なる視覚的な効果に止まるものであつて第
5図イに図示の装置と大同小異であるに過ぎない
ものである。
This type of traditional stove belongs to the oil stove,
For example, the one that is commonly used is
Although disclosed in Japanese Patent No. 44277 and shown schematically in FIG. 5, only radiation heat transfer from the catalyst layer 21 as an inner cylinder disposed above the combustion section 4' in the combustion cylinder 5' is possible. heat exchange by the combustion tube 5'
Due to the active natural heat radiation from the surface to the surrounding air, the surface temperature of the combustion cylinder 5', which is the outer cylinder, is low, and therefore the amount of radiant heat radiation is small, and the heat transfer distance is short. That was the problem. On the other hand, as shown schematically in Figure 5 A and B, in a forced air supply/exhaust kerosene stove, the surface of the combustion tube 5'' naturally radiates heat to the surrounding air, and the flame in the combustion section 4'' Due to the unevenness of the combustion gas flow, it is difficult to heat the surface uniformly, so there are many areas where the surface temperature is as low as about 400 to 500℃, and the distance that the radiant heat reaches For example, the temperature range of 40 degrees Celsius is at most 1 to 1.5 meters away. Furthermore, in the case shown in Fig. 6A, the entire surface of the combustion tube 5'' is made of a metal plate that does not transmit light, and the surface is simply coated with a heat-resistant coating, so it is effective in collecting heat from the human body. On the other hand, in the case shown in Fig. 6(b), the side periphery of the skeleton 22, which is heated by the flame, is covered with a heat-resistant transparent glass tube. However, since heat-resistant glass is difficult to transmit far-infrared rays that are effective for warming the human body, even if the red-hot part can be seen from an external force, it is only a visual effect. This device is only slightly different from the device shown in Figure A.

【発明の目的】[Purpose of the invention]

このように従来のこの種の燃焼ふく射ストーブ
が種々の欠陥を有している実状に対処して本発明
は上記欠陥の解消をはかるべく成されたものであ
り、簡単な構造ながら採暖に有効な高温ふく射熱
放射を多量かつ全面にわたつて均一に得さしめて
暖房効率の向上をはかることを主な目的とする。
In response to the fact that the conventional combustion radiation stoves of this type have various defects, the present invention has been made to eliminate the above-mentioned defects. The main purpose is to improve heating efficiency by uniformly obtaining a large amount of high-temperature radiation over the entire surface.

【発明の構成】[Structure of the invention]

しかして本発明は、特に小径部と大径部とが交
互かつ上下に配列していて、斜面部が前記小径
部・大径部間に連なつて存し、燃焼ガス放出用の
小孔が前記斜面部に分散して設けられてなる波型
筒により、燃焼ふく射ストーブにおける燃焼筒の
ふく射放熱部を形成せしめて、前記小孔を、各斜
面部における孔面積合計の比較ではバーナ部に近
い下方側が小となり、小径部を挾む両側に存して
燃焼筒の凹部側で対向する相互間ならびに大径部
を挾む両側に存して燃焼筒の凸部側で対向する相
互間のいずれもが互いに喰い違つた千鳥状配列と
なるように配設せしめた構成を特徴とするもので
あつて、燃焼ガスを各小孔から均等に放出するこ
とで接触伝熱がよくなると同時に周囲空気に対す
る自然放熱を減少することが可能であり、殊に小
孔を燃焼筒の凹部側で対向する相互間では千鳥配
列となるよう配設したことによつて、吹出し燃焼
ガスが対向する斜面部に吹き当つて凹部内での高
温ガス滞溜現象が促進されるために燃焼筒におけ
るふく射放熱部の高温保持作用が促進され、ま
た、小孔を燃焼筒の凸部側で対向する相互間でも
千鳥状配列となるよう配設したことによつて、燃
焼筒内の燃焼ガス流動が均等となつて接触伝熱作
用がより助長される結果、総合的にふく射熱量が
増大するものであつて、ここに所期の目的は十分
に達成されるに至る。
However, in the present invention, in particular, small diameter portions and large diameter portions are arranged alternately and vertically, a sloped portion is continuous between the small diameter portion and the large diameter portion, and small holes for releasing combustion gas are provided. The radiant heat radiation part of the combustion cylinder in the combustion radiant stove is formed by the corrugated cylinders provided dispersedly on the slope part, and the small holes are close to the burner part when comparing the total hole area in each slope part. The lower side is smaller, and the two sides are located on both sides of the small diameter part and face each other on the concave side of the combustion tube, and the two sides are located on both sides of the large diameter part and face each other on the side of the convex part of the combustion tube. It is characterized by a structure in which the small holes are arranged in a staggered arrangement, and the combustion gas is released evenly from each small hole, which improves contact heat transfer and at the same time reduces the impact on the surrounding air. It is possible to reduce natural heat radiation, and in particular, by arranging the small holes in a staggered arrangement between opposing sides on the concave side of the combustion tube, the blown combustion gas is blown onto the opposing slopes. This promotes the accumulation of high-temperature gas in the concave portion, which promotes the high-temperature retention effect of the radiation heat dissipation section in the combustion tube. By arranging the arrangement in such a way that the combustion gas flows in the combustion cylinder evenly and the contact heat transfer effect is further promoted, the amount of radiated heat increases overall. The intended purpose has been fully achieved.

【実施例】【Example】

以下、本発明の1実施例について添付図面を参
照しつつ詳細に説明する。 第1図及び第2図は燃焼ふく射ストーブに属す
るもののうちでガス化バーナ3を備えた石油スト
ーブを例示しているが、本発明に係るストーブと
しては、この他に芯上下式の汎用形石油ストー
ブ、ガスバーナを備えたガスストーブなども包含
されるものである。 図示の石油ストーブは、油タンクを兼ねる架台
1、バーナカバー2、ガス化バーナ3、安全ガー
ド4、燃焼筒5及び天板10を備え、さらに反射
形では反射板11
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 illustrate an oil stove equipped with a gasification burner 3 among combustion radiation stoves. It also includes stoves and gas stoves equipped with gas burners. The illustrated kerosene stove includes a pedestal 1 that also serves as an oil tank, a burner cover 2, a gasification burner 3, a safety guard 4, a combustion tube 5, and a top plate 10, and in the case of a reflective type, a reflector plate 11.

【破線示】を付加して備えてい
る。 ガス化バーナ3は、架台1の油タンク内に貯溜
中の石油
[Dotted line] is added. The gasification burner 3 collects oil stored in the oil tank of the mount 1.

【灯油】をフイルタ12を介して電磁ポ
ンプ13により汲上げてポンプ室15に送り込
み、ポンプ室15内のポンプによつてさらに気化
器16に送つてここで霧状に拡散させ、モータ1
4により付勢されるフアン17を経て気化器16
に送り込まれた空気と霧状の石油とを混合した
後、燃焼せしめることにより、直立する燃焼筒5
の下部中央に臨ませたバーナ炎口から火炎を勢い
良く、かつ火足の長い状態で燃焼筒5内に噴炎し
得るようになつている。 前記燃焼筒5は周囲の胴部を波型筒により形成
して、これをふく射放熱部となし、ガス化バーナ
3の上部に連結してバーナ炎口を囲繞した配置と
なしている。 この燃焼筒5は第3図に拡大示しているように
小径部6と大径部7とが交互に繰り返して上下方
向に配列していると共に燃焼ガス放出用の小孔
9,9を分散して有する斜面部8が前記小径部6
と大径部7との間に連なつて存しており、丸筒あ
るいは多角形筒に形成される。 そして断熱材18を遮熱板19と天板20とで
サンドイツチ状に挾持してなる断熱性頂板により
筒頂部を封塞する一方、下端部は図示しないがバ
ーナ保炎板との隙間を断熱処理して下方部への熱
放散を少なく得る構造となしている。 しかして、前記小孔9,9…は、燃焼ガス入力
に適合した孔径、孔数を有するよう設けられてい
て燃焼筒5全体としての総開口面積を規定してい
るが、さらにバーナ部3のバーナ炎口に近い下方
の斜面部8が前記断熱性頂板に近い上方の斜面部
8に比して孔面積合計が小となるようにガス9,
9を穿設せしめるものであつて、このように各斜
面部8,8における孔面積合計を一様でなく適当
に増減させることによつて、燃焼筒5内のガス流
損失に見合つた小孔配列とすることが可能であ
る。 上述するような孔面積の増減変化をとる手段と
しては、等径の小孔9,9…の数を増減するか、
各斜面部8,8…について同数でかつ孔径を大小
加減するかによつて簡単に行なえるものであり、
各斜面部8,8…を上、中、下などの上下数個の
グループに区分してグループ単位に小孔9,9…
の孔面積合計を変えるようにすることは好ましい
態様である。 なお、実用的には、燃焼筒5の頂部側において
全高さ寸法に対し略々1/3の範囲の斜面部8,8
に設ける小孔9,9の孔面積を他の部分の斜面部
8,8の孔面積の2倍とすれば目的に叶うことが
実験の結果明らかとなつた。 上記小孔9,9はさらに、小径部6を挾む両側
の斜面部8,8に存して燃焼筒5の凹部側で対向
する相互間では、上下に対向することがなく、互
いに喰い違つた配列となる千鳥状に配設せしめて
おり、上段の小孔9及び下段の小孔9から吹出し
た高温ガス気流が互いに行き違つた状態となつて
夫々相手方の斜面部8に吹き当つた後、乱流拡散
し得る如くなしている。 このように、小孔9から吹出した高温ガス気流
を、対向する斜面部8に確実に吹き当てるように
するには小孔9,9を斜面部8の円周方向に延び
る中心線に沿つて設けたとした場合に、小径部6
と大径部7との半径差△rを基準として大径部7
のピツチPが1.0〜2.5×△rとなり、かつ筒内側
で対向する斜面部8相互が交叉角θが10〜50゜と
なるようにすればよい。 また、前記小孔9,9は、大径部7を挾む両側
に存して燃焼筒5の凸部側で対向する相互間で
も、上下に揃わなくて互いに喰い違つた千鳥状の
配列となるように設けるものであつて、かかる配
列となしたことによつて燃焼筒5内の高温燃焼ガ
ス流で上段の小孔9と下段の小孔9とから夫々吹
出すものはガス流層が同じでなく隣り合つた状態
となるものである。 上述の構成を有する燃焼筒5を備えたストーブ
は、ガス化バーナ3を熱料供給下において燃焼運
転させるとバーナ炎口から昇る高温燃焼ガスによ
つて燃焼筒5は全周面が赤熱されて高温になる。 その際第3図及び第4図に示すように、燃焼ガ
スは前記小孔9,9を通して燃焼筒5の周りに放
出されるが、燃焼筒5の内側では上段の小孔9と
下段の小孔9とが千鳥状配列となつているので、
燃焼ガスが燃焼筒5内壁に沿つて上昇する流層は
均等なものとなる結果、接触及び伝導による伝熱
作用で燃焼筒5表面がほゞ均一な高温度となり、
ふく射熱量は増大する。 一方、燃焼筒5の外側では、上段の小孔9と下
段の小孔9とが同様に千鳥配列となつているの
で、それら小孔9,9から波型表面の凹部内に放
出されたガスは相手方の斜面部8に吹き当つた
後、乱流拡散することとなり、従つて凹部内に高
温ガスが滞溜して外気と接する境膜を形成するこ
とで、燃焼筒5表面が高温ガス雰囲気中に存し、
かつ外気による冷却作用を受けなくなるので、均
一した高温度となり、ふく射熱量を高めることと
なる。 燃焼筒5が発揮する作用は以上述べた通りであ
るが、該燃焼筒5を耐熱鋼板の外側表面にサンド
ブラスト処理を施した後に、セラミツクをコーテ
イング処理あるいは溶射処理することによつてセ
ラミツク薄層を形成してなる表面処理鋼板から作
製することが好ましく、これによつて遠赤外線の
放射効率を向上させ、伝熱到達距離が大で暖房性
能がさらに改善される。 また、上記例とは異なり、酸化皮膜をサンドブ
ラスト処理後の外側表面に形成してなる耐熱鋼板
によつて燃焼筒5を作製しても遠赤外線の放射効
率を高めることが可能であり、セラミツク薄層を
表面に有する上記例に比して材料コストの低減が
果せる点も実用面での利点として挙げられる。
[Kerosene] is pumped up by an electromagnetic pump 13 through a filter 12 and sent into a pump chamber 15, and further sent to a vaporizer 16 by a pump in the pump chamber 15, where it is diffused into a mist, and the motor 1
4 through a fan 17 energized by the carburetor 16.
After mixing the air sent into the tank and the atomized oil, the mixture is combusted to form an upright combustion tube 5.
The flame can be ejected into the combustion tube 5 vigorously and with a long flame from the burner nozzle facing the center of the lower part of the burner. The surrounding body of the combustion tube 5 is formed of a corrugated tube, which serves as a radiation heat radiation section, and is connected to the upper part of the gasification burner 3 so as to surround the burner nozzle. As shown in an enlarged view in FIG. 3, this combustion tube 5 has small diameter portions 6 and large diameter portions 7 arranged alternately in the vertical direction, and small holes 9, 9 for releasing combustion gas are dispersed. The slope portion 8 having the same shape as the small diameter portion 6
and the large-diameter portion 7, and is formed into a round or polygonal tube. Then, the top of the cylinder is sealed with a heat insulating top plate formed by sandwiching the heat insulating material 18 between a heat shield plate 19 and a top plate 20 in a sandwich shape, while the gap between the lower end and the burner flame holding plate is treated with insulation, although not shown. The structure is designed to reduce heat dissipation to the lower part. The small holes 9, 9, . The gas 9,
By appropriately increasing or decreasing the total area of the holes in each slope portion 8, 8, small holes are formed that are commensurate with the gas flow loss in the combustion tube 5. It can be an array. As a means of increasing or decreasing the hole area as described above, increasing or decreasing the number of small holes 9, 9, etc. having the same diameter,
This can be easily done by making the same number of holes for each slope part 8, 8... and adjusting the size of the holes.
Each slope portion 8, 8... is divided into several upper and lower groups such as upper, middle, and lower, and small holes 9, 9... are divided into groups.
It is a preferred embodiment to vary the total pore area of the pores. In addition, in practical terms, the slope portions 8, 8 are approximately 1/3 of the total height on the top side of the combustion tube 5.
As a result of experiments, it has become clear that the purpose can be achieved by making the hole area of the small holes 9, 9 provided in the groove twice as large as the hole area of the slope portions 8, 8 in the other portions. Furthermore, the small holes 9, 9 are located in the sloped portions 8, 8 on both sides sandwiching the small diameter portion 6, and are not vertically opposed to each other on the concave side of the combustion tube 5, but are spaced apart from each other. They are arranged in a staggered arrangement, and the high-temperature gas airflows blown out from the upper small holes 9 and the lower small holes 9 cross each other, and after each blows against the slope portion 8 of the other side. , so as to allow turbulent diffusion. In this way, in order to ensure that the high-temperature gas flow blown out from the small holes 9 hits the opposing slope portion 8, the small holes 9, 9 are arranged along the center line extending in the circumferential direction of the slope portion 8. If provided, the small diameter portion 6
The large diameter part 7 is based on the radius difference △r between the large diameter part 7 and the large diameter part 7.
It is sufficient that the pitch P is 1.0 to 2.5×Δr, and the intersecting angle θ of the slope portions 8 facing each other on the inside of the cylinder is 10 to 50°. Further, the small holes 9, 9 are arranged on both sides of the large diameter portion 7 and facing each other on the convex side of the combustion tube 5, but are not aligned vertically but are arranged in a staggered manner. With this arrangement, the high-temperature combustion gas flow in the combustion tube 5 blown out from the upper small hole 9 and the lower small hole 9, respectively, has a gas flow layer. They are not the same, but are adjacent to each other. In the stove equipped with the combustion tube 5 having the above-described configuration, when the gasification burner 3 is operated for combustion while supplying heat, the entire circumference of the combustion tube 5 is red-hot by the high-temperature combustion gas rising from the burner flame opening. It gets hot. At this time, as shown in FIGS. 3 and 4, combustion gas is released around the combustion tube 5 through the small holes 9, 9, but inside the combustion tube 5, the upper small hole 9 and the lower small hole Since the holes 9 are arranged in a staggered pattern,
As a result, the flow layer in which the combustion gas rises along the inner wall of the combustion tube 5 becomes uniform, and the surface of the combustion tube 5 becomes almost uniformly high in temperature due to heat transfer through contact and conduction.
The amount of heat radiated increases. On the other hand, on the outside of the combustion tube 5, the small holes 9 on the upper stage and the small holes 9 on the lower stage are similarly arranged in a staggered arrangement, so that the gas released from these small holes 9, 9 into the recesses of the corrugated surface After blowing against the opposing slope part 8, the gas diffuses turbulently, and the high-temperature gas accumulates in the recess and forms a film in contact with the outside air, causing the surface of the combustion tube 5 to become in a high-temperature gas atmosphere. resides within,
In addition, since it is no longer affected by the cooling effect of outside air, the temperature becomes uniformly high and the amount of heat radiated increases. The effect exerted by the combustion tube 5 is as described above, but after sandblasting the outer surface of the heat-resistant steel plate of the combustion tube 5, the ceramic thin layer is coated or sprayed with ceramic. It is preferable to manufacture the heating element from a surface-treated steel sheet, which improves the radiation efficiency of far-infrared rays, has a large heat transfer distance, and further improves the heating performance. Furthermore, unlike the above example, even if the combustion tube 5 is made of a heat-resistant steel plate with an oxide film formed on the outer surface after sandblasting, it is possible to increase the radiation efficiency of far infrared rays. Another practical advantage is that the material cost can be reduced compared to the above-mentioned example having a layer on the surface.

【発明の効果】【Effect of the invention】

つづいて本発明の効果を述べると下記の通りで
ある。 (イ) 小孔9,9から燃焼筒5の波型表面における
凹部内に放出されたガスは、対向する斜面部8
に吹き当つて斜面部8に沿いながら拡散するの
で凹部内に高温ガスが滞溜し易くなり、これが
外気との境膜を形成することによつて表面が高
温ガス雰囲気中にあり、かつ外気による冷却を
受けないので表面部の温度がより高値となり、
さらに凹部における斜面部8の相互反射によつ
てふく射効率が高められるので、ふく射熱量が
増えて同一加熱能力では高さ方向の寸法を縮減
してコンパクトな構造とすることができる。 (ロ) 燃焼筒5の波型裏面における凸部内では、上
段の小孔9と下段の小孔9とは千鳥状配列とな
つているので、筒壁に沿つて上昇する高温ガス
は均等な流れとなり、接触及び伝導による伝熱
作用で壁面がほゞ均一に高温となり、さらにふ
く射熱量の増大がはかれる。 (ハ) 小孔9,9から吹出す高温ガスが対向する斜
面部8に直接吹き当つても拡散して一様に加熱
がなされるので部分過熱のおそれがなく表面処
理剤の変出、劣化を防止して耐久性の向上が期
待される。 (ニ) 燃焼筒5の表面温度が高いので、ふく射熱の
到達距離が長くなり、例えば表面温度を500〜
600℃に保持して40℃温度域を1.5〜2mに延長
することが可能となり、人体への有効な暖房が
果される。
Next, the effects of the present invention will be described as follows. (b) The gas released from the small holes 9, 9 into the recesses in the corrugated surface of the combustion tube 5 is transferred to the opposing sloped surface 8.
Since the gas blows onto the surface and diffuses along the slope part 8, the high-temperature gas tends to accumulate in the concave part, and this forms a barrier film with the outside air, so that the surface is in a high-temperature gas atmosphere and is exposed to the outside air. Since it is not cooled, the surface temperature becomes higher,
Furthermore, since the radiation efficiency is increased by the mutual reflection of the slope portions 8 in the recessed portions, the amount of radiation heat is increased, and with the same heating capacity, the height dimension can be reduced and a compact structure can be achieved. (b) Inside the convex part on the corrugated back surface of the combustion tube 5, the upper small holes 9 and the lower small holes 9 are arranged in a staggered manner, so that the high temperature gas rising along the cylinder wall flows uniformly. As a result, the wall surface is almost uniformly heated to a high temperature due to heat transfer through contact and conduction, further increasing the amount of heat radiated. (c) Even if the high-temperature gas blowing out from the small holes 9, 9 directly hits the opposing slope portion 8, it diffuses and is heated uniformly, so there is no risk of local overheating, and the surface treatment agent does not evaporate or deteriorate. It is expected to prevent this and improve durability. (d) Since the surface temperature of the combustion tube 5 is high, the distance that the radiant heat reaches is longer.
It becomes possible to maintain the temperature at 600°C and extend the 40°C temperature range to 1.5 to 2 meters, providing effective heating for the human body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の1実施例に係る一
部断面示してなる正面図及び第1図の−矢視
線に沿う平面図、第3図は第1図における燃焼筒
の部分拡大図、第4図は本発明に係る燃焼筒の要
部示展開図、第5図、第6図イ,ロは従来のスト
ーブの各例の略示正面図である。 3……バーナ部、5……燃焼筒、6……小径
部、7……大径部、8……斜面部、9……小孔。
1 and 2 are a partially sectional front view and a plan view taken along the - arrow line in FIG. 1 according to an embodiment of the present invention, and FIG. 3 is a partially enlarged view of the combustion tube in FIG. 1. 4 are exploded views showing essential parts of a combustion tube according to the present invention, and FIGS. 5 and 6 are schematic front views of each example of a conventional stove. 3...Burner part, 5...Combustion cylinder, 6...Small diameter part, 7...Large diameter part, 8...Slope part, 9...Small hole.

Claims (1)

【特許請求の範囲】 1 小径部6と大径部7とが交互かつ上下に配列
していて、斜面部8が小径部6・大径部7間に連
なつて存し、燃焼ガス放出用の小孔9,9が前記
斜面部8に分散して設けられてなる波型筒により
燃焼筒5のふく射放熱部を形成せしめて、前記小
孔9,9を、各斜面部8,8における孔面積合計
の比較ではバーナ部3に近い下方側が小となり、
小径部6を挾む両側に存して燃焼筒5の凹部側で
対向する相互間、ならびに大径部7を挾む両側に
存して燃焼筒5の凸部側で対向する相互間のいず
れもが互いに喰い違つた千鳥配列となるように配
設せしめてなることを特徴とする燃焼ふく射スト
ーブ。 2 燃焼ガス放出用の小孔9,9が、燃焼ガス入
力に適合した孔径、孔数を存して各斜面部8,8
に設けられている特許請求の範囲第1項記載の燃
焼ふく射ストーブ。 3 波型筒により形成せしめた燃焼筒5のふく射
放熱部が、耐熱鋼板の外側表面にセラミツク薄層
を密着して有する表面処理鋼板からなる特許請求
の範囲第1項または第2項記載の燃焼ふく射スト
ーブ。 4 波型筒により形成せしめた燃焼筒5のふく射
放熱部が、酸化皮膜を外側表面に有する耐熱鋼板
からなる特許請求の範囲第1項または第2項記載
の燃焼ふく射ストーブ。
[Claims] 1. The small diameter portions 6 and the large diameter portions 7 are arranged alternately and vertically, and the slope portion 8 is continuous between the small diameter portions 6 and the large diameter portions 7, and is used for releasing combustion gas. The small holes 9, 9 are formed in the sloping portion 8 by a corrugated cylinder, which forms the radiating heat radiation portion of the combustion tube 5. Comparing the total hole area, the lower side near the burner part 3 is smaller;
Either between the two sides that sandwich the small diameter part 6 and face each other on the concave side of the combustion tube 5, and the one that exists on both sides that sandwich the large diameter part 7 and face each other on the convex side of the combustion tube 5. A combustion radiation stove characterized by being arranged in a staggered arrangement with different shapes. 2. The small holes 9, 9 for releasing combustion gas are arranged on each slope part 8, 8 with a hole diameter and number of holes suitable for the combustion gas input.
A combustion radiation stove according to claim 1, which is provided in a combustion radiation stove. 3. The combustion according to claim 1 or 2, wherein the radiation heat dissipation part of the combustion tube 5 formed by a corrugated tube is made of a surface-treated steel plate having a thin ceramic layer adhered to the outer surface of a heat-resistant steel plate. Radiation stove. 4. The combustion radiation stove according to claim 1 or 2, wherein the radiation heat radiation part of the combustion tube 5 formed by a corrugated cylinder is made of a heat-resistant steel plate having an oxide film on its outer surface.
JP21299083A 1983-11-11 1983-11-11 Radiation combustion stove Granted JPS60103236A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21299083A JPS60103236A (en) 1983-11-11 1983-11-11 Radiation combustion stove
AU29095/84A AU569888B2 (en) 1983-11-11 1984-06-05 Heating drum for radiant heater and method of manufacture thereof
US06/618,900 US4586485A (en) 1983-11-11 1984-06-08 Heating drum for radiant heater and method of manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21299083A JPS60103236A (en) 1983-11-11 1983-11-11 Radiation combustion stove

Publications (2)

Publication Number Publication Date
JPS60103236A JPS60103236A (en) 1985-06-07
JPS6365853B2 true JPS6365853B2 (en) 1988-12-19

Family

ID=16631633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21299083A Granted JPS60103236A (en) 1983-11-11 1983-11-11 Radiation combustion stove

Country Status (1)

Country Link
JP (1) JPS60103236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291473A (en) * 1989-04-11 1990-12-03 Siemens Ag Fuel pressure regulation valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137613U (en) * 1989-04-24 1990-11-16
JP7012346B2 (en) * 2017-10-25 2022-01-28 株式会社千石 Cassette gas cylinder type stove

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291473A (en) * 1989-04-11 1990-12-03 Siemens Ag Fuel pressure regulation valve

Also Published As

Publication number Publication date
JPS60103236A (en) 1985-06-07

Similar Documents

Publication Publication Date Title
EP0261639B1 (en) Far-infrared radiating system
US7631640B2 (en) Radiant burner
JP3437190B2 (en) Heating device with catalytic burner
JPS6365853B2 (en)
JPS6365852B2 (en)
JPS6347781Y2 (en)
JPH0518429U (en) Cooker for omelet
JPS6347779Y2 (en)
JP3715256B2 (en) Oil burning appliance burning cylinder
JPS6347780Y2 (en)
JPS644013Y2 (en)
JPS58127010A (en) Burner utilizing catalyst
JPS6347782Y2 (en)
JP3498531B2 (en) Far-infrared radiation hot air heater
JPH0740894Y2 (en) heater
JPS61246512A (en) Burner
JPH024132A (en) Heating appliance
JP2528600Y2 (en) Oil hot air heater
JPH024321Y2 (en)
JPH0120511Y2 (en)
JPS6146328Y2 (en)
JPS644012Y2 (en)
JPS6018745Y2 (en) water heater
JP2523815B2 (en) Baking cooker
JPH02562Y2 (en)