JPS636571B2 - - Google Patents

Info

Publication number
JPS636571B2
JPS636571B2 JP5359784A JP5359784A JPS636571B2 JP S636571 B2 JPS636571 B2 JP S636571B2 JP 5359784 A JP5359784 A JP 5359784A JP 5359784 A JP5359784 A JP 5359784A JP S636571 B2 JPS636571 B2 JP S636571B2
Authority
JP
Japan
Prior art keywords
ions
exchange resin
epoxy
reaction
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5359784A
Other languages
Japanese (ja)
Other versions
JPS60199019A (en
Inventor
Ryuzo Nakatsuka
Masateru Sogabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP5359784A priority Critical patent/JPS60199019A/en
Publication of JPS60199019A publication Critical patent/JPS60199019A/en
Publication of JPS636571B2 publication Critical patent/JPS636571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳现な説明】 本発明ぱポキシ系化合物䞭に䞍玔物ずしお含
たれおいるクロル基の陀去方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing chlorine groups contained as impurities in epoxy compounds.

䞀般に゚ポキシ系化合物を埗る方法は、○む゚ピ
クロルヒドリンたたはこれず同効物質ず掻性氎玠
基を有する化合物ずの反応による方法、○ロ炭玠・
炭玠重結合の過酞酞化による方法、○ハその他で
ある。
In general, epoxy compounds are obtained by the reaction of epichlorohydrin or its equivalent substance with a compound having an active hydrogen group;
Methods based on peracid oxidation of carbon double bonds, ○C, and others.

これらの䞭○むの方法で埗られる゚ポキシ化合物
は熱硬化性暹脂の原料ずしお極めお有甚なもので
あり、実甚化されおいるものが倚い。しかし、副
反応により䞍玔物ずしお脂肪族の第玚クロル基
を含むものであり、通垞その倀は1000ppm以䞊に
も達するものでり、条件によ぀おは加氎分解しお
クロルむオンを遊離するので゚レクトロニクス甚
などの応甚分野に斌おはこの量を極力枛少させる
こずが氞幎望たれお来た。
The epoxy compounds obtained by these methods are extremely useful as raw materials for thermosetting resins, and many of them are in practical use. However, it contains aliphatic primary chlorine groups as impurities due to side reactions, and the value usually reaches 1000 ppm or more, and depending on the conditions, it can be hydrolyzed to liberate chloride ions, which can be used in electronics. It has long been desired to reduce this amount as much as possible in applications such as industrial use.

埓来はアルコヌル性苛性アルカリ溶液を凊理剀
ずしお゚ポキシ系化合物に埮量添加し、数乃至数
十分間、50〜100℃に加熱、反応させ䞀旊フリヌ
のクロルむオンずなし、次いで氎掗しお陀去する
方法がずられお来た。この方法では党クロル基の
うち、比范的少ない割合で存圚する易加氎分解性
クロル基のみが䞻ずしお陀去されるに過ぎず、倧
郚分を占める難加氎分解性クロル基はそのたゝ残
存するこずになり、これを曎に陀去しようずしお
より過酷な条件で凊理しようずするず同時に倧量
の゚ポキシ基が消費されおしたうので望たしくな
い。なお、゚レクトロニクス甚途に斌おはこの難
加氎分解性のものを含む加氎分解性クロル基の陀
去が必芁である。
Conventionally, a small amount of alcoholic caustic solution is added to the epoxy compound as a processing agent, heated at 50 to 100°C for several to several tens of minutes, and reacted to form free chlorine ions, which are then removed by washing with water. has been taken. In this method, of all the chlorine groups, only the easily hydrolyzable chlorine groups present in a relatively small proportion are mainly removed, and the hardly hydrolyzable chlorine groups, which account for the majority, remain as they are. This is undesirable since a large amount of epoxy groups will be consumed at the same time if the treatment is performed under harsher conditions in order to further remove the epoxy groups. In addition, in electronics applications, it is necessary to remove hydrolyzable chlorine groups, including those that are difficult to hydrolyze.

䞀方、゚レクトロニクス業界の最近の著しい発
展により、トランゞスタヌ、IC、LSI、超LSIず
進化し、これら半導䜓玠子における回路の集積床
が急激に増倧するず共に高信頌性に察する芁求に
応じお加氎分解性クロル基の量の芏制が順次厳し
くなり぀぀ある。この傟向は、その詊隓法ずしお
最初はメタノヌル性苛性アルカリ液で15分煮沞凊
理するこずによりクロルむオンを遊離するような
比范的易加氎分解性のクロル基のみが察象ずされ
おいたのが、最近ではゞオキサン溶液䞭゚タノヌ
ル性苛性アルカリで30分乃至60分煮沞凊理するこ
ずによりや぀ずむオン化するような、かなり難加
氎分解性のクロル基たで察象ずするようにな぀お
来たこずにより明らかである。
On the other hand, with the recent remarkable development of the electronics industry, it has evolved into transistors, ICs, LSIs, and VLSIs, and the degree of circuit integration in these semiconductor devices has rapidly increased. Regulations on the amount of alcohol are gradually becoming stricter. This trend is explained by the fact that the test method initially targeted only relatively easily hydrolyzable chloride groups, such as those that liberate chloride ions by boiling in methanolic caustic solution for 15 minutes, but recently it has changed. This is clear from the fact that chlorine groups, which are quite difficult to hydrolyze, are now being targeted, which can easily be ionized by boiling with ethanolic caustic alkali in dioxane solution for 30 to 60 minutes.

このようにかなり難加氎分解性のクロル基をも
含めお加氎分解性クロル基を陀去し、しかも共存
する゚ポキシ基は出来るだけ消費しないような粟
補する方法が必芁ずされるようにな぀お来た。
In this way, there has been a need for a purification method that removes hydrolyzable chlorine groups, including chlorine groups that are quite difficult to hydrolyze, while minimizing the consumption of coexisting epoxy groups. .

本発明者らは、埓来暹脂及び反応性垌釈剀を含
む゚ポキシ化合物ず倉質させる事なしには有害な
䞍玔物を十分に陀去するこずが出来なか぀た粟補
方法を改善しようずしお皮々研究した結果、先ず
OH型陰むオン亀換暹脂のような固圢の凊理剀に
よる凊理が有効であるこずを知぀た。参照特願
昭58−159040号曎に詳现な怜蚎により䞭でも
OHむオンたたはこれず同じ効力を有する陰むオ
ンを保持する匷塩基性むオン亀換暹脂を十分に也
燥凊理したものが特に有効であるずの知芋を埗、
これらの知芋に基づき皮々研究を進めお本発明を
完成するに至぀たものである。
The present inventors conducted various researches in an attempt to improve the conventional purification method, which has not been able to sufficiently remove harmful impurities without altering the epoxy compound containing resin and reactive diluent.
We learned that treatment with a solid treatment agent such as OH-type anion exchange resin is effective. (Reference Patent Application No. 58-159040) Through further detailed study,
We found that a sufficiently dried strongly basic ion exchange resin that retains OH ions or anions with the same efficacy is particularly effective.
Based on these findings, various studies have been carried out and the present invention has been completed.

その目的ずするずころぱポキシ化合物の䞍玔
物であり、難加氎分解性のものをも含む有機クロ
ル基を陀去する有効な手段を提䟛するこずによ
り、゚レクトロニクス工業分野で甚いられる゚ポ
キシ暹脂組成物の信頌性の倧幅な向䞊を蚈ろうず
するものである。
The objective is to improve the reliability of epoxy resin compositions used in the electronics industry by providing an effective means for removing organic chlorine groups, including impurities in epoxy compounds, including those that are difficult to hydrolyze. The aim is to significantly improve the

埓来゚ポキシ系化合物はクロル基を䞍玔物ずし
お少くずも1000ppmは含有しおおり、反応条件の
怜蚎でこれを枛少せしめるこずは困難ずされおい
たのであるが、本発明の粟補方法を適甚するこず
により、600ppm以䞋、奜たしくは300ppm以䞋に
たで倧幅に高玔床化するこずが出来る。
Conventionally, epoxy compounds contain at least 1000 ppm of chloro groups as impurities, and it has been difficult to reduce this by examining reaction conditions, but by applying the purification method of the present invention, Purity can be significantly increased to 600 ppm or less, preferably 300 ppm or less.

゚レクトロニクス業界に斌おは、゚ポキシ暹脂
䞭のクロル基が少なければ少ない皋信頌性の面よ
り有利であり、本発明の方法はそのためには極め
お有甚なものである。
In the electronics industry, the fewer chloro groups in an epoxy resin, the more advantageous it is in terms of reliability, and the method of the present invention is extremely useful for this purpose.

本発明の党クロルの定量法は、゚ポキシ化合物
を酞玠オヌブン䞭で完党燃焌させおクロルむオン
ずなし、次にこれを硝酞銀による通垞の定量法に
よ぀お求めようずするものである。党クロル量よ
りクロルむオン量を差匕いたものが有機クロル基
の量である。なおクロルむオン量は暹脂より氎で
抜出し、抜出氎を垞法により定量する。䞀般にク
ロルむオンなどのむオン性䞍玔物は氎掗により容
易に10ppm以䞋にするこずが出来るので、䞀般に
゚レクトロニクス甚に甚いる暹脂䞭には殆んど含
たれおいないものである。
The method for quantifying total chlorine of the present invention involves completely burning an epoxy compound in an oxygen oven to form chlorine ions, which are then determined by a conventional quantitative method using silver nitrate. The amount of organic chlorine groups is obtained by subtracting the amount of chlorine ions from the total amount of chlorine. The amount of chlorine ion is extracted from the resin with water, and the extracted water is determined by a conventional method. In general, ionic impurities such as chloride ions can be easily reduced to 10 ppm or less by washing with water, so they are generally hardly contained in resins used for electronics.

本発明は、゚ポキシ化合物を有機溶剀に溶解し
匷塩基性陰むオン亀換暹脂ず接觊反応させ、その
䞍玔物ずしお含たれおいるクロル基を陀去する方
法に斌お、該゚ポキシ化合物、有機溶剀及び陰む
オン亀換暹脂は䜕れも予め氎分0.5重量、以
䞋同じずなるように調敎されたものであるこず
を特城ずする゚ポキシ化合物の粟補方法である。
The present invention provides a method for removing chloro groups contained as impurities by dissolving an epoxy compound in an organic solvent and contacting it with a strongly basic anion exchange resin. This is a method for purifying an epoxy compound, characterized in that each exchange resin has been adjusted in advance to have a water content of 0.5% (by weight, the same hereinafter).

なお、この堎合䞊蚘陰むオン亀換暹脂はOHã‚€
オンの代りにたたはこれず共にこれず同じ効力を
有する陰むオン類、䟋えばCNむオン、SCNむオ
ン、OCNむオンなどを皮たたはそれ以䞊含ん
でいおもよい。たた、この堎合䞊蚘の陰むオン亀
換暹脂ず共に型陜むオン亀換暹脂を䜵甚しおも
よい。このように倚皮のむオン亀換暹脂を䜵甚す
るこずはその粟補の䜜甚効果をより広く匷くする
こずが可胜ずなるので奜たしい。
In this case, the anion exchange resin may contain one or more anions having the same effect as OH ions, such as CN ions, SCN ions, OCN ions, etc., instead of or in addition to OH ions. Further, in this case, an H-type cation exchange resin may be used in combination with the above-mentioned anion exchange resin. It is preferable to use various types of ion exchange resins in combination in this way because it is possible to further enhance the purification effect.

本発明に甚いる匷塩基性むオン亀換性暹脂は、
架橋ポリスチレン暹脂の骚栌を有しプニル栞に
第玚アンモニりム基が盎接結合しおいるもので
ある。
The strongly basic ion exchange resin used in the present invention is
It has a skeleton of crosslinked polystyrene resin, and a quaternary ammonium group is directly bonded to a phenyl nucleus.

むオン結合により吞着しおいる陰むオンの皮類
によりOH型、CN型などず称しおいる。
They are called OH type, CN type, etc. depending on the type of anion adsorbed by ionic bond.

本発明のためには、゚ポキシ化合物䞭のクロル
基をOH型及びたたはOH型ず同じ効力を有す
る陰むオンを保持するタむプの匷塩基性陰むオン
亀換暹脂ず接觊せしめ、むオン亀換暹脂䞭のOH
むオンたたはこれず同じ効力を有する陰むオンず
眮換反応を行わせるこずにより、有害なクロル基
を無害なOH基及びたたはこれず同じように無
害な基に亀換せんずするものである。
For the purpose of the present invention, the chloro group in the epoxy compound is brought into contact with a strongly basic anion exchange resin of the type that retains the OH type and/or anion with the same potency as the OH type, and the chlor group in the ion exchange resin is
The purpose is to exchange the harmful chloro group with a harmless OH group and/or an equally harmless group by carrying out a substitution reaction with an ion or an anion having the same potency.

本発明の粟補反応は暡匏的にあらわすず次匏の
ようである。
The purification reaction of the present invention is schematically represented by the following formula.

−X−Cl→−Cl− 䜆し −OH及びたたはこれず同じ効力を有する
基 むオン亀換暹脂本䜓 ゚ポキシ化合物本䜓 この反応の機構は次のようである。
-X+-Cl→-Cl+-X However, X: -OH and/or a group having the same effect as this: Ion exchange resin body: Epoxy compound body The mechanism of this reaction is as follows.

非可逆反応、 固液間の䞍均䞀系反応、 間のXむオン−Cl基の亀換反応 埓぀お次のような条件調敎が必芁である。 irreversible reaction, Heterogeneous reactions between solid and liquid, Exchange reaction of X ion/−Cl group between / Therefore, the following condition adjustments are required.

â—‹ã‚€ −間が安定であり、加氎分解及びむオン
の遊離が起り難いものであるこず。そのために
ははOH、CN、OCN、SCN、SH、など
が適しおいる。
○The relationship between A and X is stable, and hydrolysis and release of ions are unlikely to occur. For this purpose, OH, CN, OCN, SCN, SH, S, etc. are suitable for X.

○ロ むオン亀換暹脂の安定性が−X
−Clであるこず。そのためにもXはOH、
CN、OCN、SCN、SH、Sなど
が適しおいる。
○B The stability of the ion exchange resin is -X<
- Must be Cl. For that reason, X is OH,
CN, OCN, SCN, SH, S etc. are suitable.

○ハ −X−Clのモル比が倧過剰、即
ち、〜30であるこず。
○C The molar ratio of -X/-Cl is in large excess, that is, from 2/1 to 30/1.

○ニ H2O、−OHなどの掻性氎玠を有する化合
物を含たぬこず。
○D Do not contain compounds with active hydrogen such as H 2 O and R-OH.

○ホ −Xが溶剀で適宜湿最乃至浞透されお
いるこず。
○E-X must be properly moistened or penetrated with solvent.

○ヘ −Clが溶剀で十分に垌釈され䜎粘床である
こず。
○F −Cl must be sufficiently diluted with a solvent and have a low viscosity.

○ト 系が十分に撹拌され、䞡者の接觊が十分であ
るこず。
○G The system is sufficiently stirred and there is sufficient contact between the two.

即ち、゚ポキシ系化合物に含たれおいるクロル
基を眮換反応によりOH基及びたたはこれず同
じ効力を有する基に倉える堎合、この反応を円滑
に進めるためには䞊蚘のような条件を充しおいる
こずが奜たしい。そのためにはむオン亀換暹脂に
むオン的に結合したOHむオン及びたたは
OHむオンず同じ効力を有する陰むオンの総
和、即ち党亀換容量ず゚ポキシ化合物䞭に含たれ
た陀去すべきクロル基ずのモル比はたたは
それ以䞊の倧きいものであるこずが必芁である。
これより少ないず反応が極床におそくなり、眮換
率が䜎䞋するので奜たしくない。たた30より
も倧きいず反応は倚少速くなるが、むオン亀換暹
脂に吞着され゚ポキシ化合物の損倱が増倧した
り、甚いる溶剀量が過倧ずな぀たり、高䟡なむオ
ン亀換暹脂の損倱が増倧するので奜たしくない。
甚いるむオン亀換性暹脂は完党に脱氎されおいる
こずが必芁である。即ちアセトン、ゞオキサン、
メタノヌルなどの芪氎性溶剀䞭に長時間浞挬埌、
溶剀を過し、真空デシケヌタヌ䞭宀枩乃至50℃
たでの加枩䞋長時間攟眮しお十分に也燥するこず
が望たしい。含氎量は0.5重量、以䞋同じ
以䞋、奜たしくは0.1以䞋であるこずが望たし
い。これより氎分が倚いず䞊蚘の亀換反応がやや
おこり難くなり、凊期の有機クロル基の陀去が若
干達成され難くなるので奜たしくない。この堎合
反応の系の氎分も同氎準たで也燥されおいるこず
が必芁であるから、゚ポキシ暹脂、溶剀は䜕れも
0.5以䞋、奜たしくは0.1以䞋の氎分になるた
で十分に脱氎凊理されおいるこずが必芁である。
䟋ずしお゚ポキシ暹脂を脱氎した芳銙族炭化氎
玠に溶かしこれを蒞留しお共沞させお埮量の氎分
を陀去するこずが出来る。このように系の氎分を
陀去するこずにより、䞊蚘の限界倀より氎分の倚
い堎合に比し、クロル基の陀去率は少くずも10〜
30は向䞊させるこずが可胜である。たた反応は
固液の界面のみでおこる䞍均䞀系の反応であるの
で、互の接觊を容易ならしめるように、むオン亀
換暹脂の粒床を小にしお衚面積を倧ずし、溶媒を
甚いお゚ポキシ暹脂の粘床を䞋げ、撹拌をはげし
くするこずにより反応を促進するこずが奜たし
い。反応条件は緩和な方が反応の遞択性が倧きく
なる傟向があるので奜たしい。即ち宀枩乃至50℃
のやや䜎い枩床で10乃至100時間の反応が適圓で
ある。50℃以䞊の高枩では副反応がおこり易くな
るので奜たしくない。10℃以䞋では反応がおそく
なるので奜たしくない。
That is, when converting a chloro group contained in an epoxy compound into an OH group and/or a group having the same effect through a substitution reaction, the above conditions must be met in order for this reaction to proceed smoothly. Preferably. For this purpose, OH ions and/or
The molar ratio between the sum of anions having the same potency as OH ions, that is, the total exchange capacity, and the chlorine groups to be removed contained in the epoxy compound needs to be as large as 2/1 or more. .
If the amount is less than this, the reaction becomes extremely slow and the substitution rate decreases, which is not preferable. If the ratio is greater than 30/1, the reaction will be somewhat faster, but the loss of the epoxy compound that is adsorbed to the ion exchange resin will increase, the amount of solvent used will be excessive, and the loss of the expensive ion exchange resin will increase. Undesirable.
The ion exchange resin used must be completely dehydrated. i.e. acetone, dioxane,
After being immersed in a hydrophilic solvent such as methanol for a long time,
Filter the solvent and store it in a vacuum desiccator between room temperature and 50℃.
It is desirable to leave it for a long time under heating until it dries thoroughly. Moisture content is 0.5% (weight, same below)
The content below is preferably 0.1% or less. If the water content is higher than this, the above-mentioned exchange reaction becomes somewhat difficult to occur, and the desired removal of organic chlorine groups becomes somewhat difficult to achieve, which is not preferable. In this case, the moisture in the reaction system must be dried to the same level, so both the epoxy resin and the solvent must be
It is necessary that the water be sufficiently dehydrated to a moisture content of 0.5% or less, preferably 0.1% or less.
As an example, trace amounts of water can be removed by dissolving an epoxy resin in a dehydrated aromatic hydrocarbon and distilling the resulting azeotrope. By removing water from the system in this way, the removal rate of chlorine groups is at least 10 to
It is possible to improve by 30%. Furthermore, since the reaction is a heterogeneous reaction that occurs only at the solid-liquid interface, in order to facilitate mutual contact, the particle size of the ion exchange resin is made small to increase the surface area, and a solvent is used to bind the epoxy resin. It is preferable to accelerate the reaction by lowering the viscosity and increasing the agitation. Mild reaction conditions are preferable because the selectivity of the reaction tends to be greater. i.e. room temperature to 50℃
A reaction time of 10 to 100 hours at a slightly lower temperature is suitable. High temperatures of 50° C. or higher are not preferred because side reactions tend to occur. Temperatures below 10°C are not preferred because the reaction becomes slow.

埓぀お本発明の粟補反応の特長は次のようであ
る。
Therefore, the features of the purification reaction of the present invention are as follows.

陀去すべきクロルむオンは遊離の状態にはな
くおむオン亀換性暹脂に結合しお固䜓化しおい
るので、過により容易に確実に陀去可胜であ
るこず。
Since the chlorine ions to be removed are not in a free state but are solidified by binding to the ion exchange resin, they can be easily and reliably removed by filtration.

反応詊薬ずしおのOHむオン、CNむオ
ン、OCNむオン、SCNむオンなどは遊離
の状態ではなくお固圢のむオン亀換性暹脂を担
䜓ずしお結合しおいるので、氎、アルコヌルな
どを殆んど含たない疎氎性の有機溶剀の系でも
有効に䜜甚し埗るこず。
OH ions, CN ions, OCN ions, SCN ions, etc. as reaction reagents are not in a free state but are bound to solid ion exchange resin as a carrier, so they are hydrophobic and contain almost no water or alcohol. It can work effectively even in organic solvent systems.

緩和な条件䞋で長時間反応させるこずによ
り、反応を遞択的にCl基の眮換反応䞻䜓に進行
させるように調敎可胜であるこず。
By reacting for a long time under mild conditions, it is possible to adjust the reaction so that it selectively proceeds with the substitution of Cl groups as the main reaction.

本発明に甚いる溶剀ずしおは疎氎性のものが含
氎し難くしかも陰むオン亀換性暹脂自䜓が完党に
也燥しおいおこれずなじみ易いので奜たしい。し
かも゚ポキシ基ず反応し易い掻性氎玠を有しない
溶剀であるこずが奜たしい。
Hydrophobic solvents are preferred for use in the present invention because they are difficult to absorb water and are easily compatible with the anion exchange resin itself since it is completely dry. Moreover, it is preferable that the solvent does not contain active hydrogen that easily reacts with epoxy groups.

即ち、ベンれン、トル゚ン、キシレン、シクロ
ヘキサン、テトラリン、デカリンなどの炭化氎玠
系溶剀が適圓である。しかし、゚ステルやケトン
など、匷アルカリにより倉質し易い溶剀は望たし
くない。なお、甚いる溶剀は䞍玔物ずしおハロゲ
ン化合物やハロゲンむオンを含たない高玔床のも
のであるこずが必芁である。
That is, hydrocarbon solvents such as benzene, toluene, xylene, cyclohexane, tetralin, and decalin are suitable. However, solvents that are easily deteriorated by strong alkalis, such as esters and ketones, are undesirable. Note that the solvent used needs to be of high purity and does not contain halogen compounds or halogen ions as impurities.

本発明の゚ポキシ系化合物ずは、゚ピクロルヒ
ドリンず掻性氎玠化合物ずを苛性アルカリの存圚
䞋で瞮合させるこずにより埗られるものである。
このタむプの゚ポキシ系化合物ずしおは、゚ポ
キシ基の数分子がケの単官胜性のものずケ
たたはそれ以䞊の倚官胜性のものずに分けるこ
ず、掻性氎玠化合物の皮類、即ちアルコヌル
類、プノヌル類、カルボン酞類、アミン類、メ
ルカプタン類などによ぀お分ける぀の分け方が
ある。その䞭、倚官胜性のものが䞀般に゚ポキシ
暹脂ずしお甚いられおいるものであり、単官胜性
のものが゚ポキシ暹脂の反応性垌釈剀ずしお甚い
られおいるものである。これらのうち゚ポキシ暹
脂ずしお代衚的なものは、ポリプノヌル類のポ
リグリシゞヌル゚ヌテル型のものである。なお、
倚官胜性のものであ぀おも液状、䜎粘床、䜎揮発
性のもの、䟋えばグリコヌル、グリセリン、ペン
トヌルなどのポリオヌルのポリグリシゞヌル゚ヌ
テル、アゞピン酞、セバチン酞、ダむマヌ酞など
のポリ酞のポリグリシゞヌル゚ステルなどは反応
性垌釈剀ずしおも甚いられおいる。反応性垌釈剀
ずしお甚いる単官胜のものずしおは宀枩で䜎粘床
の液䜓でありしかも䜎揮発性、即ち、沞点200℃
以䞊のものが望たしく、高玚脂肪族炭化氎玠系の
グリシゞヌル゚ヌテル型、同゚ステル型の䜕れで
も同等に甚いられる。
The epoxy compound of the present invention is obtained by condensing epichlorohydrin and an active hydrogen compound in the presence of caustic alkali.
This type of epoxy compound can be divided into monofunctional ones with one epoxy group/molecule and polyfunctional ones with two or more epoxy groups, and the type of active hydrogen compound, i.e., alcohols. There are two classifications based on phenols, carboxylic acids, amines, mercaptans, etc. Among them, polyfunctional ones are generally used as epoxy resins, and monofunctional ones are used as reactive diluents for epoxy resins. Among these, typical epoxy resins are polyglycidyl ether type polyphenols. In addition,
Even if they are multifunctional, they are liquid, low viscosity, and low volatile, such as polyglycidyl ethers of polyols such as glycol, glycerin, and pentol, and polyglycidyl ethers of polyacids such as adipic acid, sebacic acid, and dimer acid. Diel esters and the like are also used as reactive diluents. Monofunctional reactive diluents are liquids with low viscosity at room temperature and have low volatility, i.e. boiling point of 200°C.
The above are preferable, and both higher aliphatic hydrocarbon-based glycidyl ether type and glycidyl ester type are equally usable.

䞊蚘タむプの゚ポキシ系化合物は特に゚ポキシ
暹脂の分野で重芁なものが倚い。その理由の぀
はすぐれた硬化性及び硬化埌の物性がすぐれおい
る点にある。
Many of the above types of epoxy compounds are particularly important in the field of epoxy resins. One of the reasons for this is that it has excellent curability and physical properties after curing.

しかし䞊蚘のタむプの゚ポキシ系化合物は本質
的に副反応により脂肪族系第玚クロル基を含む
ものである。このクロル基は苛性アルカリたたは
高圧氎煮沞するず埐々に分解しおクロルむオンを
遊離するものである。このようにしお発生するク
ロルむオンはLSIや超LSIなどのアルミニりム配
線郚を腐食するおそれがあり、高湿䞋長時間通電
テストを行぀た際に異垞を発生する等信頌性を䜎
䞋させる原因ずなるものであり、発生するクロル
むオンの量は出来るだけ少ないこずがのぞたれお
いる。そのためにはその原因ずなる有機クロル基
を䞻䜓ずする党クロル基の量もできるだけ少ない
こずが必芁である。なお党クロル基には芳銙族系
の栞眮換のハロゲン基は含たれおはいない。たた
クロルむオンは氎掗で容易に10ppm以䞋たで陀去
出来る。
However, the above-mentioned type of epoxy compound essentially contains an aliphatic primary chloro group due to a side reaction. When this chlorine group is boiled with caustic alkali or high-pressure water, it gradually decomposes to liberate chloride ions. The chlorine ions generated in this way may corrode the aluminum wiring of LSIs and VLSIs, and may cause abnormalities to occur during long-term energization tests under high humidity, reducing reliability. It is desired that the amount of chlorine ions generated be as small as possible. To this end, it is necessary to minimize the amount of all chloro groups, mainly organic chlorine groups, which cause this. Note that all the chloro groups do not contain aromatic nuclear-substituted halogen groups. In addition, chlorine ions can be easily removed to less than 10 ppm by washing with water.

本発明の方法はこのような芁望に察応しお、゚
ポキシ暹脂のその他の性胜は出来るだけ倉化させ
ないで䞍玔物ずしおのクロル基の量を倧幅に枛少
させ高玔床化するのに有効なものである。
In response to such demands, the method of the present invention is effective in greatly reducing the amount of chloro groups as impurities and increasing the purity of the epoxy resin while keeping the other properties of the epoxy resin as unchanged as possible.

以䞋実斜䟋に぀き説明する。 Examples will be explained below.

実斜䟋  ゚ポキシ化ノボラツククロル基、1000ppm、
゚ポキシ圓量、190、粘床75ポむズ25℃、数平
均分子量、680200を無氎トル゚ン800に溶
解し枛圧䞋400のトル゚ンを留去する氎分
0.02。次にOH型匷塩基性陰むオン亀換性暹脂
粉末亀換容量ミリ圓量ml、粒埄30乃至
300ミクロン、氎分0.2100mlを䞊蚘゚ポキ
シ暹脂溶液に加え、50℃20時間撹拌する。
Example 1 Epoxidized novolac (chlor group, 1000 ppm,
Epoxy equivalent, 190, viscosity 75 poise/25℃, number average molecular weight, 680) is dissolved in 800 g of anhydrous toluene, and 400 g of toluene is distilled off under reduced pressure (moisture
0.02%). Next, OH-type strongly basic anion exchange resin powder (exchange capacity: 1 milliequivalent/1 ml, particle size 30 to
300 microns, moisture: 0.2%) was added to the above epoxy resin solution and stirred at 50°C for 20 hours.

次に亀換性暹脂粉末を別し、トル゚ンで掗
い、真空脱溶剀を行う。埗られた゚ポキシ化ノボ
ラツクはクロル基の含有量450ppm、゚ポキシ圓
量210、粘床100ポむズ25℃、数平均分子量780、
収量96重量であり、暹脂の倖芳、色調も殆んど
倉化はなか぀た。
Next, the exchangeable resin powder is separated, washed with toluene, and desolventized in vacuum. The obtained epoxidized novolac had a chlorine group content of 450 ppm, an epoxy equivalent of 210, a viscosity of 100 poise/25°C, a number average molecular weight of 780,
The yield was 96% by weight, and there was almost no change in the appearance or color tone of the resin.

なお、この゚ポキシ暹脂のクロル基をこのよう
な氎準たで枛少させるこずはその反応条件のみの
調敎では極めお因難である。埓぀お埗られた高玔
床化された゚ポキシ化ノボラツクは未凊理のもの
ず比范し銀粉ず組合せ導電性マりント暹脂組成物
ずしお甚いた堎合、信頌性に斌お顕著な盞違が認
められた。
Note that it is extremely difficult to reduce the chloro groups in this epoxy resin to such a level by adjusting only the reaction conditions. Therefore, when the obtained highly purified epoxidized novolak was combined with silver powder and used as a conductive mount resin composition, a remarkable difference in reliability was observed compared to the untreated one.

参考䟋  実斜䟋の゚ポキシ化ノボラツク200に察し
お、・1N−アルコヌル性苛性カリ溶液10ml、
トル゚ン400mlを加え、還流反応15分行う。系を
氎掗埌、曎に・1N−アルコヌル性苛性カリ溶
液mlを加え15分間還流反応させる。系を氎掗、
脱溶剀を行う。埗られた゚ポキシ化ノボラツクは
クロル基の量が920ppm、その他の物性はもずの
レゞンず倧差はなか぀た。この凊理により易加氎
分解性のクロル基は殆んど完党に加氎分解されお
おり、しかも゚ポキシ暹脂の分子量、゚ポキシ圓
量、数平均分子量、粘床などは元のものず倧差は
なか぀た。なおこの皋床のクロル基の陀去でぱ
レクトロニクス甚ずしおは䞍充分である。
Reference Example 1 For 200 g of epoxidized novolac of Example 1, 10 ml of 0.1N alcoholic potassium hydroxide solution,
Add 400 ml of toluene and carry out reflux reaction for 15 minutes. After washing the system with water, 4 ml of 0.1N alcoholic potassium hydroxide solution was added and the mixture was refluxed for 15 minutes. Rinse the system with water,
Remove solvent. The obtained epoxidized novolac had a chloro group content of 920 ppm, and other physical properties were not significantly different from the original resin. By this treatment, the easily hydrolyzable chlorine groups were almost completely hydrolyzed, and the molecular weight, epoxy equivalent, number average molecular weight, viscosity, etc. of the epoxy resin were not significantly different from the original. It should be noted that this level of removal of chlorine groups is insufficient for use in electronics.

参考䟋  実斜䟋の゚ポキシ化ノボラツク200に察し
お1N−アルコヌル性苛性カリ20ml、ゞオキサン
400mlを加え、還流䞋30分反応させ、次いで枛圧
䞋脱溶剀を行う。
Reference Example 2 For 200 g of epoxidized novolac of Example 1, 20 ml of 1N-alcoholic caustic potassium and dioxane
Add 400 ml and react under reflux for 30 minutes, then remove the solvent under reduced pressure.

埗られた゚ポキシ化ノボラツクはクロル基の量
が650ppm、゚ポキシ圓量1130、軟化点102℃、数
平均分子量1210であ぀た。クロル基の量はほゞ満
足すべき倀にたで䜎䞋しおいるが、゚ポキシ基が
倧量に消費されおおり奜たしくない。
The obtained epoxidized novolak had a chloro group content of 650 ppm, an epoxy equivalent of 1130, a softening point of 102°C, and a number average molecular weight of 1210. Although the amount of chloro groups has been reduced to an almost satisfactory value, a large amount of epoxy groups are consumed, which is not desirable.

実斜䟋  C12の脂肪族モノカルボン酞のグリシゞヌル゚
ステルクロル基1800ppm、゚ポキシ圓量245、
粘床7.0センチポむズ25℃、沞点280℃、数平均
分子量250、氎分0.3200に察し、SCN型匷
塩基性むオン亀換性暹脂ビヌズ80モルが
SCN型でのこりがOH型のたたのもの䞡者のむ
オンの合蚈の亀換容量ミリ圓量ml、粒埄0.1
〜0.4mm、氎分0.0520を加え、80時間、30
℃で撹拌する。
Example 2 Glycidyl ester of C12 aliphatic monocarboxylic acid (chloro group 1800 ppm, epoxy equivalent 245,
Viscosity 7.0 centipoise/25℃, boiling point 280℃, number average molecular weight 250, water 0.3%), SCN type strong basic ion exchange resin beads: 80 mol%
SCN type with residual OH type (total exchange capacity of both ions 4 milliequivalents/ml, particle size 0.1
~0.4mm, moisture 0.05%) 20g was added, 80 hours, 30
Stir at °C.

次に亀換性暹脂ビヌズを別し、トル゚ンで数
床掗い、真空脱溶剀を行う。埗られたモノ゚ポキ
シ゚ステルはクロル基の含有量が320ppm、゚ポ
キシ圓量265、粘床7.3センチポむズ25℃、沞点
275℃、数平均分子量255、収量95重量であり、
暹脂の色調がやゝ淡色にな぀た以倖は倖芳的に殆
んど倉化はなか぀た。
Next, the exchangeable resin beads are separated, washed several times with toluene, and desolventized in vacuum. The obtained monoepoxy ester has a chloro group content of 320 ppm, an epoxy equivalent of 265, a viscosity of 7.3 centipoise/25°C, and a boiling point.
275℃, number average molecular weight 255, yield 95% by weight,
There was almost no change in appearance except that the color tone of the resin became slightly lighter.

なお、この゚ポキシ暹脂のクロル基をこのよう
な氎準たで枛少させるこずはその反応条件のみの
調敎では極めお困難である。埓぀お埗られた高玔
床化された゚ポキシ化合物は未凊理のものに比
し、高玔床の反応性垌釈剀ずしお極めお有甚であ
る。即ち、実斜䟋の高玔床化された゚ポキシ暹
脂ず䜵甚しお半導䜓封入甚、チツプマりント甚な
ど半導䜓加工甚暹脂ずしお信頌性の面で極めお高
いものである。
Note that it is extremely difficult to reduce the chloro groups in this epoxy resin to such a level by adjusting only the reaction conditions. Therefore, the highly purified epoxy compound obtained is extremely useful as a highly purified reactive diluent compared to an untreated epoxy compound. That is, when used in combination with the highly purified epoxy resin of Example 1, it is extremely reliable as a resin for semiconductor processing such as semiconductor encapsulation and chip mounting.

実斜䟋  ビスプノヌル型゚ポキシ暹脂クロル基
760ppm゚ポキシ圓量185粘床40ポむズ25
℃数平均分子量410200を無氎キシレン
氎分0.01800に溶かし、枛圧䞋400のキ
シレンを留去し脱氎する。系の氎分0.05
次にOCN型匷塩基性陰むオン亀換性暹脂ビヌズ
亀換容量1.5ミリ圓量ml粒埄0.1〜0.3mm、
氎分0.1200mlを䞊蚘゚ポキシ暹脂溶液に加
え、宀枩で95時間撹拌する。次に亀換性暹脂ビヌ
ズを去し、真空脱溶剀を行う。埗られた゚ポキ
シ暹脂はクロル基が270ppmである以倖はその他
の性質は倧差はなか぀た。なおこのように高玔床
の暹脂は埓来の方法で合成するこずは極めお困難
である。
Example 3 Bisphenol F type epoxy resin (chlor group:
760ppm; Epoxy equivalent: 185; Viscosity 40 poise 25
℃; Number average molecular weight: 410) is dissolved in 800 g of anhydrous xylene (moisture 0.01%), and 400 g of xylene is distilled off under reduced pressure to dehydrate. (Moisture in the system: 0.05%)
Next, OCN type strongly basic anion exchange resin beads (exchange capacity: 1.5 milliequivalents/ml; particle size 0.1 to 0.3 mm,
Add 200 ml (water content 0.1%) to the above epoxy resin solution and stir at room temperature for 95 hours. Next, the exchangeable resin beads are removed and the solvent is removed in vacuum. The obtained epoxy resins had no major differences in other properties except that the chloro groups were 270 ppm. Note that it is extremely difficult to synthesize such a highly pure resin using conventional methods.

Claims (1)

【特蚱請求の範囲】  ゚ポキシ化合物を有機溶剀に溶解しOH型匷
塩基性陰むオン亀換暹脂ず接觊反応させ、その䞍
玔物ずしお含たれおいるクロル基を陀去する方法
に斌お、該゚ポキシ化合物、有機溶剀及び陰むオ
ン亀換暹脂は䜕れも予め氎分0.5重量、以䞋
同じ以䞋ずなるように調敎されたものであるこ
ずを特城ずする゚ポキシ化合物の粟補方法。  該陰むオン亀換暹脂はOHむオン、CNむオ
ン、SCNむオン、OCNむオンの矀より遞ばれた
少くずも皮の陰むオンを保持しおいるものであ
る特蚱請求の範囲第項蚘茉の粟補方法。  反応枩床は10乃至50℃、反応時間は乃至
100時間である特蚱請求の範囲第項たたは第
項蚘茉の粟補方法。  陰むオン亀換暹脂の䜿甚量は、その保有する
陰むオンの総和に察し、゚ポキシ化合物のクロル
基のモル比が〜30ずなるような割合で
ある特蚱請求の範囲第項、第項たたは第項
蚘茉の方法。  反応に斌お型陜むオン亀換暹脂をも䜵甚す
るものである特蚱請求の範囲第項第項、第
項たたは第項蚘茉の方法。
[Claims] 1. A method for removing chloro groups contained as impurities by dissolving an epoxy compound in an organic solvent and contacting it with an OH-type strongly basic anion exchange resin, the method comprising: A method for purifying an epoxy compound, characterized in that the organic solvent and anion exchange resin are both adjusted in advance to have a water content of 0.5% (by weight, the same hereinafter) or less. 2. The purification method according to claim 1, wherein the anion exchange resin retains at least one anion selected from the group of OH ions, CN ions, SCN ions, and OCN ions. . 3 Reaction temperature is 10 to 50℃, reaction time is 5 to 50℃.
Claim 1 or 2 which is 100 hours
Purification method described in section. 4. The amount of the anion exchange resin used is such that the molar ratio of the chloro group of the epoxy compound to the total amount of anions it possesses is 2/1 to 30/1. , the method according to item 2 or 3. 5 Claims 1, 2, and 3 in which an H-type cation exchange resin is also used in the reaction.
or the method described in paragraph 4.
JP5359784A 1984-03-22 1984-03-22 Purification of epoxy compound Granted JPS60199019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5359784A JPS60199019A (en) 1984-03-22 1984-03-22 Purification of epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5359784A JPS60199019A (en) 1984-03-22 1984-03-22 Purification of epoxy compound

Publications (2)

Publication Number Publication Date
JPS60199019A JPS60199019A (en) 1985-10-08
JPS636571B2 true JPS636571B2 (en) 1988-02-10

Family

ID=12947284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5359784A Granted JPS60199019A (en) 1984-03-22 1984-03-22 Purification of epoxy compound

Country Status (1)

Country Link
JP (1) JPS60199019A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107002A (en) * 1990-12-06 1992-04-21 Arco Chemical Technology, L.P. Lower alkylene oxide purification
US5106458A (en) * 1991-07-26 1992-04-21 Texaco Chemical Company Method for the purification of propylene oxide
DE102005048954A1 (en) * 2005-10-13 2007-04-19 Bayer Materialscience Ag Production and use of polycarbonates with special purified, oligomeric epoxy resins

Also Published As

Publication number Publication date
JPS60199019A (en) 1985-10-08

Similar Documents

Publication Publication Date Title
JPH1176807A (en) Manufacture of cesium separation material
US4379931A (en) Metal extraction from solution and novel compounds used therefor
JPS60112812A (en) Manufacture of epoxy novolak resin containing low hydrolyticchlorine atom and low ionic chloride
US4421654A (en) Metal extraction from solution and novel compounds used therefor
JPS636571B2 (en)
JP2540401B2 (en) Method for precipitating and separating radioactive iodine compounds
JPS636570B2 (en)
CA1204597A (en) Process for recovering noble metals from solutions
JPH0324476B2 (en)
JP4122589B2 (en) Method for producing epoxy compound
US6211408B1 (en) Method of removing iodides from non-aqueous organic media utilizing silver or mercury exchanged macroporous organofunctional polysiloxane resins
JP2787067B2 (en) Method for purifying organosilicon compound
JP2007277498A (en) Process for purification of epoxy resin
JP4846078B2 (en) Method for producing epoxy resin with low hydrolyzable chlorine content
JPS61127721A (en) Method of purifying epoxy resin
JP2694163B2 (en) Method for producing high-purity silica
JPH013139A (en) Method for purifying tetrabromubisphenol A
JPH05331155A (en) Production of glycidyl ether
JP4874494B2 (en) Production method of epoxy resin
JPH0312088B2 (en)
JPS60203623A (en) Method for purifying epoxy compound
EP0011484B1 (en) Removal of metals from solution
JPH01108219A (en) Purification of epoxy resin
JP3484734B2 (en) How to remove silica
KR100339702B1 (en) Method for purifying epoxy resin