JPH0312088B2 - - Google Patents

Info

Publication number
JPH0312088B2
JPH0312088B2 JP2804286A JP2804286A JPH0312088B2 JP H0312088 B2 JPH0312088 B2 JP H0312088B2 JP 2804286 A JP2804286 A JP 2804286A JP 2804286 A JP2804286 A JP 2804286A JP H0312088 B2 JPH0312088 B2 JP H0312088B2
Authority
JP
Japan
Prior art keywords
epoxy resin
chlorine
amount
hydroxide
sulfoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2804286A
Other languages
Japanese (ja)
Other versions
JPS62187718A (en
Inventor
Akihiro Izumi
Shigeru Wakagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Epoxy Co Ltd
Original Assignee
Asahi Ciba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Ciba Ltd filed Critical Asahi Ciba Ltd
Priority to JP2804286A priority Critical patent/JPS62187718A/en
Publication of JPS62187718A publication Critical patent/JPS62187718A/en
Publication of JPH0312088B2 publication Critical patent/JPH0312088B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はエポキシ樹脂中の塩素不純分を除去す
る方法に関するものである。さらに詳しくいえ
ば、本発明は、特に半導体素子などの電子部品の
封止用樹脂として好適な塩素不純分の少ないエポ
キシ樹脂を簡単に得るためのエポキシ樹脂中の塩
素不純分除去方法に関するものである。 従来の技術 エポキシ樹脂は優れた特性を有することから、
種々の応用分野において利用されているが、近
年、エクトロニクス分野の急速な発展に伴い、半
導体素子などの電子部品の封止材としても利用さ
れるようになつてきた。 ところがこの分野においては、半導体の集積回
路の密度が上がるに従つて、封止材料に対しても
より高度な品質が要求されるようになつてきた。 従来この目的に対してはノボラツクエポキシ樹
脂に各種無機フイラーとフエノール樹脂などの硬
化剤を混合した熱硬化性樹脂組成物が用いられて
いた。 しかしながら、近年、不良発生の原因となる集
積回路の金属の腐食が封止材として用いられるエ
ポキシ樹脂中の塩素に起因することが明らかとな
り、そのため、塩素含有量の少ないエポキシ樹脂
を得ようとする試みが種々なされている。 通常エポキシ樹脂はフエノール性水酸基を有す
るビスフエノールA又はノボラツク樹脂などとエ
ピクロルヒドリンなどのエピハロヒドリンとを酸
又は塩基性触媒の存在下にて反応せしめ、生成し
たハロヒドリンエーテルをさらに水酸化ナトリウ
ムなどの水酸化アルカリ金属を用いて脱ハロゲン
化水素を行うことにより製造されている。 ところが、フエノール性水酸基とエピハロヒド
リンとの反応において好ましくない副反応を生
じ、一部のハロゲンは、水酸化アルカリによつて
比較的容易に脱ハロゲン化しうるハロヒドリンエ
ーテルとはならず、エポキシ樹脂内に結合したハ
ロゲン不純物として残留する。このハロゲンは、
次の構造式に示すようにエポキシ樹脂内に結合し
ていることが知られている。 (ただしXはハロゲン原子である) このようなハロゲン不純分は、洗浄、吸着など
の物理的な処理方法によつて除去することは不可
能である。また、水酸化アルカリなどを用いて過
酷な条件下において脱ハロゲン化水素を行うこと
も可能であるが、この場合、エポキシ樹脂のグリ
シジル基にも作用し、開環重合反応の結果、ゲル
化や高分子化などを起こし、結果としてグリシジ
ル基の多くを失うことになる。 したがつて、エピクロロヒドリンを原料とする
一般に市販されているエポキシ樹脂は500〜
2000ppmの結合した塩素不純物を含んでおり、こ
のようなエポキシ樹脂を原料にして製造された封
止材で封止された半導体集積回路は、長期の使用
において水分の侵入を受け、遊離した塩素によつ
て集積回路の金属を腐食することになる。 発明が解決しようとする問題点 本発明は、このような事情のもとで、エピクロ
ロヒドリンを原料とするエポキシ樹脂中の結合塩
素をグリシジル基を損うことなく容易に除去しう
る方法を提供し、特に半導体素子などの電子部分
品の封止用樹脂として好適な塩素不純分の少ない
エポキシ樹脂を得ることを目的とするものであ
る。 問題点を解決するための手段 本発明者らは前記目的を達成するために鋭意研
究を重ねた結果、特定の溶媒中にエポキシ樹脂を
溶解させることにより、その結合塩素がグリシジ
ル基を損うことなく容易にアルカリと反応しうる
ことを見出し、この知見に基づいて本発明を完成
するに至つた。 すなわち、本発明は、塩素含有エポキシ樹脂か
ら塩素を除去するに当り、一般式 (式中のR1及びR2はそれぞれ炭素数1〜6のア
ルキル基、無置換若しくは置換アリール基又は無
置換若しくは置換アルアルキル基であつて、それ
らは同一であつてもよいし、たがいに異なつてい
てもよく、またR1とR2とはたがいに結合して環
構造を形成していてもよい) で表わされるスルホキシド化合物に該エポキシ樹
脂を溶解し、次いでこの溶液にアルカリを加えて
該エポキシ樹脂から塩素を離脱させたのち、該エ
ポキシ樹脂を回収することを特徴とするエポキシ
樹脂中の塩素除去方法を提供するものである。 本発明において用いるアルカリとしては、例え
ば水酸化リチウム、水酸化ナトリウム、水酸化カ
リウムなどのアルカリ金属水酸化物、水酸化バリ
ウム、水酸化カルシウムなどのアルカリ土類金属
水酸化物、テトラメチルアンモニウムヒドロオキ
シド、テトラエチルアンモニウムヒドロオキシ
ド、テトラプロピルアンモニウムヒドロオキシ
ド、テトラブチルアンモニウムヒドロオキシドな
どのテトラアルキルアンモニウムヒドロオキシド
類、テトラメチルホスホニウムヒドロオキシド、
テトラエチルホスホニウムヒドロオキシド、テト
ラプロピルホスホニウムヒドロオキシド、テトラ
ブチルホスホニウムオキシドなどのテトラアルキ
ルホスホニウムヒドロオキシド類、テトラメチル
アルセニウムヒドロオキシド、テトラエチルアル
セニウムヒドロオキシド、テトラプロピルアルセ
ニウムオキシド、テトラブチルアルセニウムヒド
ロオキシドなどのテトラアルキルアルセニウムヒ
ドロオキシド類、リチウムメトキシド、ナトリウ
ムメトキシド、カリウムメトキシド、リチウムエ
トキシド、ナトリウムエトキシド、カリウムエト
キシド、リチウムプロポキシド、ナトリウムプロ
ポキシド、カリウムプロポキシド、リチウムブト
キシド、ナトリウムブトキシド、カリウムブトキ
シドなどのアルコキシ異性体を含む、アルカリ金
属体アルコキシド類などが挙げられる。 本発明方法において、溶媒として用いるスルホ
キシド化合物は、一般式 (式中のR1及びR2は前記と同じ意味をもつ) で表わされるものであり、このようなものとして
は、例えばジメチルスルホキシド、ジエチルスル
ホキシド、ジプロピルスルホキシド、ジブチルス
ルホキシド、ジフエニルスルホキシド、ジベンジ
ルスルホキシド、メチルエチルスルホキシド、メ
チルプロピルスルホキシド、エチルプロピルスル
ホキシド、ジ−p−クロロフエニルスルホキシ
ド、ジ−トリルスルホキシド、エチルベンジルス
ルホキシドなどを挙げることができる。 本発明方法においては、塩素含有エポキシ樹脂
とスルホキシド化合物との使用割合は、通常重量
基準で1:50ないし10:1の範囲で選ばれる。ス
ルホキシド化合物の使用割合が多すぎるとエポキ
シ樹脂の回収が工業的に不利となり、また少なす
ぎると十分に脱塩素されない。したがつて、塩素
含有エポキシ樹脂とスルホキシド化合物との好ま
しい使用割合は、重量基準で1:10ないし5:1
の範囲で選ばれる。 アルカリの使用量は、エポキシ樹脂に含有する
塩素1モルに対し、通常0.5〜10モルの範囲で選
ばれるが、アルカリを多量に用いるとグリシジル
基が損われやすくなるので、好ましくは塩素1モ
ルに対し、0.5〜5モルの範囲で選ばれる。 溶媒として用いるスルホキシド化合物は単独で
用いてもよいし、2種以上組み合わせて用いても
よく、また他種溶媒と混合して用いてもよい。他
種溶媒としては、例えばベンゼン、トルエンなど
の芳香族炭化水素、アセトン、メチルエチルケト
ン、メチルイソブチルケトンなどのケトン類、ジ
エチルエーテル、ジイソプロピルエーテル、ジオ
キサンなどのエーテル類、メチルアルコール、エ
チルアルコール、プロピルアルコール、ブチルア
ルコールなどのアルコール類などが挙げられ、こ
れらは1種用いてもよいし、2種以上組み合わせ
て用いてもよい。 これらの他種溶媒の使用量が重量基準でスルホ
キシド化合物量に対し5倍以下であれば、本発明
の効果が損われることはない。 反応温度は通常10〜180℃の範囲で選ばれるが、
温度が高すぎるとグリシジル基が損われやすくな
るので、好ましくは10〜120℃の範囲で選ばれる。 反応液からエポキシ樹脂を回収分離する方法と
しては、反応液にベンゼン、トルエン、キシレ
ン、メチルエチルケトン、メチルイソブチルケト
ンなどの溶剤を加え、ろ過又は水洗あるいはその
両方により不純物を除去したのち、減圧やスチー
ムストリツピングなどによりエポキシ樹脂を回収
する方法、あるいは反応液を減圧下で加熱して、
スルホキシド化合物や他種溶媒を除去したのち、
ベンゼン、トルエン、キキシレン、メチルエチル
ケトン、メチルイソブチルケトン、ジオキキサン
などの溶剤に溶かし、次いで生成したアルカリ塩
をろ過したのち、減圧やスチームストリツピング
などによりエポキシ樹脂を回収する方法などが挙
げられる。 発明の効果 本発明方法によると、エポキシ樹脂中の結合塩
素をグリシジル基を損うことなく、容易に除去す
ることができ、この方法によつて得られた塩素含
量の少ないエポキシ樹脂は、特に半導体素子など
の電子部品の封止用樹脂として好適に用いられ
る。 実施例 次に実施例により本発明をさらに詳細に説明す
るが、本発明はこれらの例によつてなんら限定さ
れるものではない。 なお、本発明でいうエポキシ当量とは、エポキ
シ基を1g当量含むエポキシ樹脂のグラム重量と
して定義される。また、結合塩素の量は、全塩素
量から易加水分解性塩素量を差し引いた値で表わ
される。易加水分解塩素量及び全塩素量は次に示
す分析法によつて求めた。 (1) 易加水分解塩素の分析法 試料1gを50mlのトルエンに溶解し、これに
0.1NKOH−メタノール溶液20mlを加えて15分
間煮沸したのち、硝酸銀で滴定する。 (2) 全塩素の分析法 試料1gを25mlのエチレングリコールモノブ
チルエーテルに溶解し、これに1NKOH−プロ
ピレングリコール溶液25mlを加えて20分間煮沸
したのち、硝酸銀で滴定する。 (3) エポキシ当量の測定法 JIS K−7236に準拠して測定した。 実施例1〜16、比較例1〜6 温度計、かきまぜ装置、環流冷却器を付けた1
の四つ口フラスコを用いて、エポキシ樹脂の脱
塩素反応を行つた。 第1表に示すように溶媒にエポキシ樹脂を溶解
したのち、所定のアルカリ量、温度、時間の条件
下で反応を行い、次いでトルエン、キシレン又は
メチルイソブチルケトンを投入し、温水で5回洗
浄してエポキシ樹脂層を分離したのち、減圧下で
170℃に加熱して溶剤を除去し、エポキシ樹脂を
回収した。 このようにして回収されたエポキシ樹脂のエポ
キシ当量、易加水分解塩素量及び結合塩素量を求
めた。 第1表に各成分の種類、仕込量及び反応条件
を、第2表に反応前のエポキシ樹脂のエポキシ当
量、結合塩素量及び易加水分解性塩素量を、第3
表に処理後のエポキシ樹脂のエポキシ当量、結合
塩素量及び易加水分解性塩素量を示す。 第3表から明らかなように、比較例1、2及び
3で得られたエポキシクレゾールノボラツクの結
合塩素量はそれぞれ768ppm、735ppm及び
753ppmであるのに対し、実施例1〜10のそれは
187〜390ppmであり、結合塩素量を比較例の約1/
2〜1/4に低減することができた。また、グリシジ
ルエーテルビスフエノールAの結合塩素量は、比
較例4、5及び6でそれぞれ923ppm、898ppm及
び884ppmであるのに対し、実施例11〜16では82
〜268ppmであり、比較例の約1/3〜1/10に結合塩
素量を低減することができた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for removing chlorine impurities in epoxy resins. More specifically, the present invention relates to a method for removing chlorine impurities in an epoxy resin to easily obtain an epoxy resin with low chlorine impurities, which is particularly suitable as a sealing resin for electronic components such as semiconductor devices. . Conventional technology Because epoxy resin has excellent properties,
Although it is used in a variety of application fields, in recent years, with the rapid development of the electronics field, it has also come to be used as a sealing material for electronic components such as semiconductor devices. However, in this field, as the density of semiconductor integrated circuits increases, higher quality is required of the sealing material. Conventionally, for this purpose, thermosetting resin compositions have been used in which novolak epoxy resins are mixed with various inorganic fillers and curing agents such as phenolic resins. However, in recent years, it has become clear that the corrosion of metals in integrated circuits, which causes defects, is caused by chlorine in the epoxy resin used as a sealing material.Therefore, attempts have been made to obtain epoxy resins with low chlorine content. Various attempts have been made. Epoxy resins are usually produced by reacting bisphenol A or novolac resins having phenolic hydroxyl groups with epihalohydrin such as epichlorohydrin in the presence of an acid or basic catalyst, and then converting the resulting halohydrin ether to water such as sodium hydroxide. It is produced by dehydrohalogenation using an alkali metal oxide. However, undesirable side reactions occur in the reaction between phenolic hydroxyl groups and epihalohydrin, and some halogens do not become halohydrin ethers that can be relatively easily dehalogenated with alkali hydroxide, but instead become trapped within the epoxy resin. remains as a halogen impurity bound to This halogen is
It is known that it is bonded within epoxy resin as shown in the following structural formula. (However, X is a halogen atom.) Such halogen impurities cannot be removed by physical treatment methods such as washing and adsorption. It is also possible to perform dehydrohalogenation under harsh conditions using alkali hydroxide, but in this case, it also acts on the glycidyl groups of the epoxy resin, resulting in gelation and ring-opening polymerization. Polymerization occurs, resulting in the loss of many glycidyl groups. Therefore, generally commercially available epoxy resins made from epichlorohydrin are 500~
Semiconductor integrated circuits that contain 2000 ppm of bound chlorine impurities and are encapsulated with encapsulants made from such epoxy resins are subject to moisture intrusion during long-term use, and free chlorine This results in corrosion of the metal of the integrated circuit. Problems to be Solved by the Invention Under these circumstances, the present invention provides a method for easily removing bound chlorine in an epoxy resin made from epichlorohydrin without damaging glycidyl groups. The object of the present invention is to obtain an epoxy resin with low chlorine impurities, which is particularly suitable as a sealing resin for electronic components such as semiconductor devices. Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive research and found that by dissolving an epoxy resin in a specific solvent, the bound chlorine damages the glycidyl group. The inventors have found that they can easily react with alkali without any oxidation, and have completed the present invention based on this finding. That is, in removing chlorine from a chlorine-containing epoxy resin, the present invention utilizes the general formula (R 1 and R 2 in the formula are each an alkyl group having 1 to 6 carbon atoms, an unsubstituted or substituted aryl group, or an unsubstituted or substituted aralkyl group, and they may be the same or each The epoxy resin is dissolved in a sulfoxide compound represented by (R 1 and R 2 may be different from each other, or R 1 and R 2 may be bonded to each other to form a ring structure), and then an alkali is added to this solution. The present invention provides a method for removing chlorine from an epoxy resin, which is characterized in that the epoxy resin is recovered after removing chlorine from the epoxy resin. Examples of the alkali used in the present invention include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide; and tetramethylammonium hydroxide. , tetraalkylammonium hydroxides such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide, tetramethylphosphonium hydroxide,
Tetraalkylphosphonium hydroxides such as tetraethylphosphonium hydroxide, tetrapropylphosphonium hydroxide, tetrabutylphosphonium oxide, tetramethylarsenium hydroxide, tetraethylarsenium hydroxide, tetrapropylarsenium oxide, tetrabutylarsenium hydroxide, etc. Tetraalkylarsenium hydroxides, lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium propoxide, sodium propoxide, potassium propoxide, lithium butoxide, sodium butoxide , alkali metal alkoxides including alkoxy isomers such as potassium butoxide. In the method of the present invention, the sulfoxide compound used as a solvent has the general formula (In the formula, R 1 and R 2 have the same meanings as above.) Such compounds include, for example, dimethyl sulfoxide, diethyl sulfoxide, dipropylsulfoxide, dibutyl sulfoxide, diphenyl sulfoxide, and dimethyl sulfoxide. Examples include benzyl sulfoxide, methyl ethyl sulfoxide, methylpropylsulfoxide, ethylpropylsulfoxide, di-p-chlorophenyl sulfoxide, di-tolyl sulfoxide, and ethylbenzyl sulfoxide. In the method of the present invention, the ratio of the chlorine-containing epoxy resin to the sulfoxide compound is usually selected within the range of 1:50 to 10:1 on a weight basis. If the proportion of the sulfoxide compound used is too high, recovery of the epoxy resin will be industrially disadvantageous, and if it is too small, sufficient dechlorination will not be achieved. Therefore, the preferred ratio of the chlorine-containing epoxy resin to the sulfoxide compound is 1:10 to 5:1 on a weight basis.
selected within the range. The amount of alkali to be used is usually selected in the range of 0.5 to 10 moles per mole of chlorine contained in the epoxy resin, but if a large amount of alkali is used, the glycidyl group is likely to be damaged, so it is preferable to use less than 1 mole of chlorine. On the other hand, the amount is selected within the range of 0.5 to 5 moles. The sulfoxide compounds used as solvents may be used alone, in combination of two or more, or in combination with other solvents. Examples of other solvents include aromatic hydrocarbons such as benzene and toluene, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethers such as diethyl ether, diisopropyl ether, and dioxane, methyl alcohol, ethyl alcohol, propyl alcohol, Examples include alcohols such as butyl alcohol, and these may be used alone or in combination of two or more. As long as the amount of these other solvents used is at most 5 times the amount of the sulfoxide compound on a weight basis, the effects of the present invention will not be impaired. The reaction temperature is usually selected in the range of 10 to 180℃,
If the temperature is too high, the glycidyl group will be easily damaged, so it is preferably selected within the range of 10 to 120°C. To recover and separate the epoxy resin from the reaction solution, add a solvent such as benzene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, etc. to the reaction solution, remove impurities by filtration, washing with water, or both, and then apply vacuum or steam steam treatment. The epoxy resin can be recovered by ripping or by heating the reaction solution under reduced pressure.
After removing sulfoxide compounds and other solvents,
Examples include a method in which the epoxy resin is dissolved in a solvent such as benzene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, dioxane, etc., and then the generated alkali salt is filtered, and then the epoxy resin is recovered by reduced pressure or steam stripping. Effects of the Invention According to the method of the present invention, bound chlorine in an epoxy resin can be easily removed without damaging glycidyl groups, and the epoxy resin with a low chlorine content obtained by this method is particularly suitable for semiconductors. It is suitably used as a sealing resin for electronic components such as elements. Examples Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Note that the epoxy equivalent as used in the present invention is defined as the gram weight of an epoxy resin containing 1 g equivalent of epoxy groups. Further, the amount of combined chlorine is expressed as the value obtained by subtracting the amount of easily hydrolyzable chlorine from the total amount of chlorine. The amount of easily hydrolyzed chlorine and the total amount of chlorine were determined by the analytical method shown below. (1) Analysis method for easily hydrolyzed chlorine Dissolve 1 g of sample in 50 ml of toluene, and add
Add 20ml of 0.1NKOH-methanol solution and boil for 15 minutes, then titrate with silver nitrate. (2) Total chlorine analysis method Dissolve 1 g of sample in 25 ml of ethylene glycol monobutyl ether, add 25 ml of 1NKOH-propylene glycol solution, boil for 20 minutes, and titrate with silver nitrate. (3) Method for measuring epoxy equivalent It was measured in accordance with JIS K-7236. Examples 1 to 16, Comparative Examples 1 to 6 1 equipped with a thermometer, stirring device, and reflux condenser
Dechlorination reaction of epoxy resin was carried out using a four-necked flask. After dissolving the epoxy resin in a solvent as shown in Table 1, the reaction is carried out under the conditions of the specified amount of alkali, temperature, and time. Then, toluene, xylene, or methyl isobutyl ketone is added, and the mixture is washed with warm water five times. After separating the epoxy resin layer using
The epoxy resin was recovered by heating to 170°C to remove the solvent. The epoxy equivalent, amount of easily hydrolyzed chlorine, and amount of combined chlorine of the epoxy resin thus recovered were determined. Table 1 shows the type of each component, amount charged, and reaction conditions, Table 2 shows the epoxy equivalent of the epoxy resin before reaction, the amount of bound chlorine, and the amount of easily hydrolyzable chlorine.
The table shows the epoxy equivalent, amount of bound chlorine, and amount of easily hydrolyzable chlorine of the epoxy resin after treatment. As is clear from Table 3, the amount of bound chlorine in the epoxy cresol novolaks obtained in Comparative Examples 1, 2, and 3 was 768 ppm, 735 ppm, and 735 ppm, respectively.
753ppm, whereas that of Examples 1 to 10 was
187 to 390 ppm, reducing the amount of combined chlorine to approximately 1/1 of that of the comparative example.
It was possible to reduce the amount by 2 to 1/4. In addition, the amount of bound chlorine in glycidyl ether bisphenol A was 923 ppm, 898 ppm, and 884 ppm in Comparative Examples 4, 5, and 6, respectively, whereas it was 82 ppm in Examples 11 to 16.
~268 ppm, which was able to reduce the amount of bound chlorine to about 1/3 to 1/10 of that of the comparative example.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 塩素含有エポキシ樹脂から塩素を除去するに
当り、一般式 (式中のR1及びR2はそれぞれ炭素数1〜6のア
ルキル基、無置換若しくは置換アリール基又は無
置換若しくは置換アルアルキル基であつて、それ
は同一であつてもよいし、たがいに異なつていて
もよく、またR1とR2とはたがいに結合して環構
造を形成していてもよい) で表わされるスルホキシド化合物に該エポキシ樹
脂を溶解させ、次いでこの溶液にアルカリを加え
て該エポキシ樹脂から塩素を離脱させたのち、該
エポキシ樹脂を回収することを特徴とするエポキ
シ樹脂中の塩素除去方法。
[Claims] 1. In removing chlorine from a chlorine-containing epoxy resin, the general formula (R 1 and R 2 in the formula are each an alkyl group having 1 to 6 carbon atoms, an unsubstituted or substituted aryl group, or an unsubstituted or substituted aralkyl group, and they may be the same or different from each other. or R 1 and R 2 may be bonded to each other to form a ring structure.) The epoxy resin is dissolved in a sulfoxide compound represented by A method for removing chlorine from an epoxy resin, which comprises recovering the epoxy resin after removing chlorine from the epoxy resin.
JP2804286A 1986-02-13 1986-02-13 Method for removal of chlorine from epoxy resin Granted JPS62187718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2804286A JPS62187718A (en) 1986-02-13 1986-02-13 Method for removal of chlorine from epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2804286A JPS62187718A (en) 1986-02-13 1986-02-13 Method for removal of chlorine from epoxy resin

Publications (2)

Publication Number Publication Date
JPS62187718A JPS62187718A (en) 1987-08-17
JPH0312088B2 true JPH0312088B2 (en) 1991-02-19

Family

ID=12237685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2804286A Granted JPS62187718A (en) 1986-02-13 1986-02-13 Method for removal of chlorine from epoxy resin

Country Status (1)

Country Link
JP (1) JPS62187718A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785061A (en) * 1987-08-13 1988-11-15 The Dow Chemical Company Method for reducing the aliphatic halide content of epoxy resins using a solvent mixture including a polar aprotic solvent
JP2702515B2 (en) * 1988-08-10 1998-01-21 旭チバ株式会社 Purification method of epoxy resin
EP0441284A3 (en) * 1990-02-08 1992-11-25 The Dow Chemical Company Process for reducing the undesirable halide content of epoxyresins
KR20140121437A (en) * 2012-03-30 2014-10-15 아사히 가세이 케미칼즈 가부시키가이샤 Membrane module and process for producing same

Also Published As

Publication number Publication date
JPS62187718A (en) 1987-08-17

Similar Documents

Publication Publication Date Title
JP2003516399A (en) Method for removing materials containing hydrolyzable halides and other high molecular weight materials from epihalohydrin derived epoxy resins
JPS60112812A (en) Manufacture of epoxy novolak resin containing low hydrolyticchlorine atom and low ionic chloride
JP3315436B2 (en) Method for producing epoxy resin containing biphenol skeleton
JP5130728B2 (en) Epoxy resin purification method
JP2656953B2 (en) Method for reducing aliphatic halide content of epoxy resin
JPH0312088B2 (en)
JP2702515B2 (en) Purification method of epoxy resin
JPS61168617A (en) Production of high-purity brominated epoxy resin
JP3458465B2 (en) Manufacturing method of high purity epoxy resin
JPH1036484A (en) Method for purifying epoxy resin
JP3837667B2 (en) Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation
US4518762A (en) Process for making epoxy novolac resins with high epoxy values
JPS6226647B2 (en)
JP4846078B2 (en) Method for producing epoxy resin with low hydrolyzable chlorine content
JPS63174981A (en) Purification of epoxy compound
JPH055022A (en) Production of phenol polymer
JPH05331155A (en) Production of glycidyl ether
JPS62256821A (en) Production of epoxy resin of low halogen content
JP4874494B2 (en) Production method of epoxy resin
JP2865439B2 (en) Epoxy resin and its cured product
JPS58134112A (en) Reducing method for saponifiable chlorine content in polyglycidyl ether
JPH0730151B2 (en) Method for producing phenolic novolac composition
KR100339702B1 (en) Method for purifying epoxy resin
JPS61252222A (en) Removal of chlorine from epoxy resin
JPH1060068A (en) Production of phenolic resin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term