JPS6365608B2 - - Google Patents

Info

Publication number
JPS6365608B2
JPS6365608B2 JP1075884A JP1075884A JPS6365608B2 JP S6365608 B2 JPS6365608 B2 JP S6365608B2 JP 1075884 A JP1075884 A JP 1075884A JP 1075884 A JP1075884 A JP 1075884A JP S6365608 B2 JPS6365608 B2 JP S6365608B2
Authority
JP
Japan
Prior art keywords
libaf
welding
particle size
baf
lif
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1075884A
Other languages
Japanese (ja)
Other versions
JPS60155530A (en
Inventor
Toshisada Kashimura
Kazuo Ikemoto
Hiroshi Saida
Shigeo Nagaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1075884A priority Critical patent/JPS60155530A/en
Publication of JPS60155530A publication Critical patent/JPS60155530A/en
Publication of JPS6365608B2 publication Critical patent/JPS6365608B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はLiBaF3の製造方法に関し、詳細には
所望粒度のLiBaF3を簡単且つ安価に製造するこ
とのできる方法に関するものである。尚LiBaF3
の用途については特に制限はないけれどもとりわ
け溶接分野において有用であり且つ注目されてい
るので溶接分野に提供する場合を主体として以下
の説明を展開する。 LiFとBaF2の複合体であるLiBaF3は溶接用フ
ラツクス原料として使用され、スラグ形成剤、シ
ールド剤、アーク安定剤として極めて優れた特性
を発揮すると共に、固有水分量が少ない等の多く
の長所を有しており、溶接用フラツクス原料とし
て需要は今後ますます拡大していくものと予想さ
れる。 ところでLiBaF3は自然界に存在しない為現在
はLi化合物とBa化合物の各溶液を混合し、この
溶液中において反応させて得た生成物を沈殿させ
る方法(以下沈殿法という)等の湿式法によつて
製造されている。しかるに沈殿法は製造工程が煩
雑で製造コストが高くつき、しかも得られる
LiBaF3の粒度は数μm程度と極めて微細である
ので溶接分野等においては種々の不都合を招く。
即ちLiBaF3をセルフシールドアーク溶接用複合
ワイヤ用フラツクス原料として使用する場合、シ
ントロン性が非常に悪く金属製鞘内にフラツクス
を均一に充填することが困難となる。その結果該
複合ワイヤを用いて溶接を行なうと溶接作業性が
悪化し、溶接金属の機械的性能にばらつきを生じ
る。又LiBaF3を被覆アーク溶接棒用フラツクス
原料として使用すると、フラツクス塗装面に乾燥
割れが発生し易くなるという事実も確認されてい
る。 本発明はこうした事情に着目してなされたもの
であつて、所望粒度のLiBaF3を経済的に製造す
ることのできる方法を提供しようとするものであ
り、例えば溶接分野においては上記シントロン性
等を良好に保ち得る様な粒度のLiBaF3を経済的
に製造しようとするものである。 しかして上記目的を達成した本発明方法は、
800μm以下の粒度をLiF及びBaF2を混合し、酸
化性雰囲気中において焼成した後粉砕し粒度調整
する点に要旨が存在する。 以下本発明の構成並びに作用効果を順を追つて
説明する。 LiBaF3の製造原料となるLiF及びBaF2の粒度
は、焼成に当たり粒子同士の反応面積を大きくし
て両者の結合反応を迅速且つ十分に進行させる上
で800μm以下とする必要があり、反応効率を更
に向上させる為にはLiFとBaF2の粒度を同程度
に揃えることが望ましい。又LiFとBaF2の混合
比率は任意に設定することができるが、LiFある
いはBaF2のいずれかが多すぎる場合にはLiBaF3
の生成量に比べて未反応のLiFあるいはBaF2
残留量が過多となり、焼成物中に占めるLiBaF3
の割合は低くなる。一方これらの焼成混合物中か
らLiBaF3を単離することは極めて困難であると
共に実用上はLiFあるいはBaF2が少量混入して
も大きな影響がないので常に分離操作を行なわな
ければならない訳ではない。しかるに上記の如く
焼成物中のLiBaF3の割合が低下しすぎた場合に
はLiBaF3の特性が発揮されず最適の原料配合比
率を実験的に種々検討したところBaF2/LiF(重
量比)として1〜9とすることが望ましいことを
知つた。 次に上記混合物の焼成は酸化性雰囲気例えば大
気中において行なうが、焼成に当たつてはロータ
リーキルン等の連続式焼成炉やバツチ式焼成炉の
いずれを使用しても良い。尚焼成炉は高温に十分
に耐え且つ温度分布が均一な構成のものを使用す
ることが望ましいことは言う迄もない。又焼成条
件は、焼結状態の良好な成品焼結物が得られる様
に設定すべきであることは当然であり、例えば焼
結温度を650〜775℃、焼結時間を0.5時間以上と
することが望まれる。焼結温度が650℃未満では
焼結状態が不十分となり、未反応のLiF及び
BaF2が残留すると共に粉砕(後述)後の流動性
が悪くなる傾向がみられる。一方焼結温度が775
℃を超えると混合物が溶融状態となり、該溶融物
を冷却・凝固させた後粉砕する際に大きな粉砕力
と多くの時間を要すると共に、焼成炉自体も過度
の高温に曝されるので装置寿命が短かくなり、且
つ焼成炉のメンテナンス性からいつても不利であ
る。又焼成時間が短かすぎる場合には焼結が不十
分となるきらいがあるので0.5時間以上とするこ
とが望ましい。尚焼成時間を過度に長くすること
はエネルギーを無駄に消費することになるので好
ましくない。 上記で得られた焼成物を溶接用フラツクス原料
等として使用するに当たつては、粉砕後適当な粒
度に調整する必要があり、該操作を経ることによ
つて所望粒度のLiBaF3を得ることができる。尚
粉砕手段並びに粒度調整手段については特に制限
はなく常法に従えばよい。本発明方法によつて製
造したLiBaF3を溶接用フラツクス原料として使
用する場合には、粒度構成が500μm以下であつ
て74μm以下の成分量が90重量%以下となる様に
調整することが望まれる。しかして粒度が大き過
ぎると、例えばセルフシールドアーク溶接用複合
ワイヤの充填成分として使用する場合に、金属製
鞘内にフラツクスを均一に充填し難くなり、又被
覆アーク溶接棒においては心線に対するフラツク
スの塗装性が劣化する。一方粒度が小さ過ぎる場
合には前者にあつてはシントロン性が悪化して溶
接作業性や溶接金属の性質に悪影響が出ると共
に、後者にあつては塗装層に乾燥割れが発生し易
くなる。 尚前記湿式法によつて得た微粒子状のLiBaF3
に更に前記と同様の焼成、粉砕、粒度調整等の操
作を施すことによつても同様のLiBaF3を得るこ
とが可能ではある。しかしながらこの方法では工
程が一層増加する為湿式法以上に操作が煩雑とな
り工業的にみて実用価値は極めて乏しい。 本発明は以上の様に構成されており、800μm
以下の粒度のLiF及びBaF2を混合し酸化性雰囲
気中において焼成させるのでLiFとBaF2の結合
反応が迅速且つ十分に達成され複合生成物である
LiBaF3を効率良く得ることができる。又上記焼
成物を粉砕し粒度調整するに当たり粉砕の程度並
びに粒度整装置のメツシユを変れることによつて
所望粒度のLiBaF3を得るこができる。本発明方
法は乾式法であるので生成物等の取扱いが容易で
あり、工程も簡素であるので目的物を経済的に得
ることができる。 以下本発明の実施例について説明する。 実施例 第1表に示す配合比のLiFとBaF2の混合物A
〜H(20〜30g)をアルミナ製るつぼに入れて電
気炉へ装入し、第2、3表中に示す条件で焼成し
た後、焼成物を冷却後粉砕し粒度調整した。得ら
れた各焼成物の成分をX線回析法により同定し
た。焼成状態を第2表に、又同定結果を第3表に
示す。
The present invention relates to a method for producing LiBaF 3 , and more particularly to a method for producing LiBaF 3 of a desired particle size simply and inexpensively. ShoLiBaF 3
Although there are no particular restrictions on the use of this method, it is especially useful and attracts attention in the welding field, so the following explanation will be mainly focused on the case where it is applied to the welding field. LiBaF 3 , which is a composite of LiF and BaF 2 , is used as a raw material for welding flux, and exhibits extremely excellent properties as a slag forming agent, shielding agent, and arc stabilizer, and has many advantages such as low inherent moisture content. Demand as a raw material for welding flux is expected to continue to grow in the future. By the way, since LiBaF 3 does not exist in nature, it is currently being produced using wet methods such as mixing solutions of Li and Ba compounds and precipitating the product obtained by reacting in this solution (hereinafter referred to as precipitation method). It is manufactured by However, the precipitation method has a complicated manufacturing process and high manufacturing costs, and it is difficult to obtain
Since the grain size of LiBaF 3 is extremely fine, on the order of several μm, it causes various inconveniences in the field of welding and the like.
That is, when LiBaF 3 is used as a flux raw material for a composite wire for self-shielded arc welding, the syntron properties are very poor, making it difficult to uniformly fill the flux into the metal sheath. As a result, when welding is performed using the composite wire, welding workability deteriorates, and variations occur in the mechanical performance of the weld metal. It has also been confirmed that when LiBaF 3 is used as a flux raw material for coated arc welding rods, drying cracks are more likely to occur on the flux coated surface. The present invention has been made in view of these circumstances, and aims to provide a method that can economically produce LiBaF 3 with a desired particle size. For example, in the welding field, the above syntronic property etc. The purpose is to economically produce LiBaF 3 with a particle size that can be maintained well. The method of the present invention, which achieves the above object,
The gist is that LiF and BaF 2 are mixed to obtain a particle size of 800 μm or less, fired in an oxidizing atmosphere, and then crushed to adjust the particle size. Hereinafter, the configuration and effects of the present invention will be explained in order. The particle size of LiF and BaF 2 , which are the raw materials for producing LiBaF 3 , must be 800 μm or less in order to increase the reaction area between the particles during firing and allow the bonding reaction between the two to proceed quickly and sufficiently. For further improvement, it is desirable to make the particle sizes of LiF and BaF 2 similar. Also, the mixing ratio of LiF and BaF 2 can be set arbitrarily, but if either LiF or BaF 2 is too large, LiBaF 3
The residual amount of unreacted LiF or BaF 2 is excessive compared to the amount of LiBaF 3 produced, and LiBaF 3 occupies the fired product.
The percentage of On the other hand, it is extremely difficult to isolate LiBaF 3 from these fired mixtures, and in practice, even a small amount of LiF or BaF 2 mixed in does not have a big effect, so it is not always necessary to perform a separation operation. However, as mentioned above, if the ratio of LiBaF 3 in the fired product is too low, the characteristics of LiBaF 3 will not be exhibited, and we experimentally investigated various optimal raw material blending ratios and found that BaF 2 /LiF (weight ratio) I learned that it is desirable to set it to 1-9. Next, the above-mentioned mixture is fired in an oxidizing atmosphere, for example, in the air, but either a continuous firing furnace such as a rotary kiln or a batch-type firing furnace may be used for firing. It goes without saying that it is desirable to use a firing furnace that can sufficiently withstand high temperatures and has a uniform temperature distribution. It goes without saying that the firing conditions should be set so that a finished sintered product with good sintering condition can be obtained; for example, the sintering temperature should be 650 to 775°C and the sintering time should be 0.5 hours or more. It is hoped that If the sintering temperature is lower than 650℃, the sintering state will be insufficient and unreacted LiF and
As BaF 2 remains, there is a tendency for the fluidity to deteriorate after pulverization (described later). On the other hand, the sintering temperature is 775
If the temperature exceeds ℃, the mixture will become molten, and it will take a lot of time and a large crushing force to cool and solidify the molten material and then crush it, and the kiln itself will be exposed to excessively high temperatures, which will shorten the life of the equipment. This is always disadvantageous in terms of the length of the kiln and the ease of maintenance of the kiln. Furthermore, if the firing time is too short, sintering tends to be insufficient, so it is desirable to set the firing time to 0.5 hours or more. Incidentally, it is not preferable to make the firing time excessively long, as this results in wasteful consumption of energy. When using the fired product obtained above as a raw material for welding flux, etc., it is necessary to adjust the particle size to an appropriate size after crushing, and through this operation, LiBaF 3 of the desired particle size can be obtained. I can do it. There are no particular restrictions on the crushing means and particle size adjusting means, and conventional methods may be used. When using LiBaF 3 produced by the method of the present invention as a welding flux raw material, it is desirable to adjust the particle size composition so that it is 500 μm or less and the content of components of 74 μm or less is 90% by weight or less. . However, if the particle size is too large, it becomes difficult to uniformly fill the metal sheath with flux when used, for example, as a filling component in composite wire for self-shielded arc welding, and in coated arc welding rods, flux to the core wire becomes difficult to fill. Paintability deteriorates. On the other hand, if the particle size is too small, in the former case, the syntron properties will deteriorate, which will adversely affect welding workability and the properties of the weld metal, and in the latter case, dry cracking will easily occur in the coating layer. In addition, fine particulate LiBaF 3 obtained by the above-mentioned wet method
It is also possible to obtain similar LiBaF 3 by further performing operations such as calcination, pulverization, and particle size adjustment similar to those described above. However, since this method requires more steps, the operation is more complicated than the wet method, and its practical value is extremely poor from an industrial perspective. The present invention is configured as described above, and has a diameter of 800 μm.
Since LiF and BaF 2 with the following particle sizes are mixed and fired in an oxidizing atmosphere, the bonding reaction between LiF and BaF 2 is quickly and fully achieved, resulting in a composite product.
LiBaF 3 can be obtained efficiently. Furthermore, LiBaF 3 having a desired particle size can be obtained by changing the degree of pulverization and the mesh of the particle size control device when pulverizing the above-mentioned fired product and adjusting the particle size. Since the method of the present invention is a dry method, handling of the product is easy, and the process is simple, so the desired product can be obtained economically. Examples of the present invention will be described below. Example Mixture A of LiF and BaF 2 with the mixing ratio shown in Table 1
~H (20 to 30 g) was placed in an alumina crucible, charged into an electric furnace, and fired under the conditions shown in Tables 2 and 3. The fired product was cooled and pulverized to adjust the particle size. The components of each baked product obtained were identified by X-ray diffraction. The firing conditions are shown in Table 2, and the identification results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第2、3表からLiF及びBaF2の粒度が過大で
あるHにおいては焼成条件を650〜775℃と好まし
い条件に設定しても満足できる焼成状態を得るこ
とはできなかつた。これに対し適正な粒度構成を
有するA〜Gであれば焼成条件を調整することに
よつて良好な焼結状態が得られている。尚A〜H
のいずれの場合にも焼成温度が625℃と低いとき
には焼成反応が十分進行せず、未反応のLiF及び
BaF2が多量に残留している。一方焼成温度が800
℃と高すぎると混合物が溶融状態となり粉砕・粒
度調整に多大な労力を要した。又LiFの配合量が
過小であるEは未反応のLiFが大量に残留して焼
成物中のLiBaF3の含有割合が低下し、LiBaF3
の長所を十分に引き出せなかつた。一方BaF2
配合量が過少であるFにおいては未反応のBaF2
が大量に残留し焼成物中のLiBaF3の割合が低下
してその長所を生かせなかつた。 使用例 1 本発明方法によつて製造したLiBaF3を使用し
て下記第4表に示す成分組成のセルフシールドア
ーク溶接用複合ワイヤを製作した。これを用いて
下記溶接条件下にセルフシールドアーク溶接を行
なつた。ワイヤ製作時のシントロン性並びに溶接
時の作業性は第4表の通りであつた。 溶接条件 試験板:軟鋼(19mmt×125mmw×350mml) 試験方法:JIS Z 3313 溶接電流:250 A(DCSP) 溶接電圧:21〜22V 溶接速度:10〜23cm/min 溶接姿勢:下向き 鋼製鞘:2mmφ 〃成分:C…0.04、Si…0.01、(重量%)Mn…
0.35、P…0.017、S…0.008、Fe及び不可避不
純物…残部
[Table] Tables 2 and 3 show that in H in which the particle size of LiF and BaF 2 was excessive, a satisfactory firing state could not be obtained even if the firing conditions were set to the preferable range of 650 to 775°C. On the other hand, in the case of A to G having an appropriate particle size structure, a good sintered state was obtained by adjusting the firing conditions. Note A~H
In either case, when the firing temperature is as low as 625°C, the firing reaction does not proceed sufficiently, and unreacted LiF and
A large amount of BaF 2 remains. On the other hand, the firing temperature is 800
If the temperature is too high, the mixture becomes molten and requires a great deal of effort to grind and adjust the particle size. In addition, in E where the amount of LiF blended is too small, a large amount of unreacted LiF remains and the content ratio of LiBaF 3 in the fired product decreases.
I was not able to fully draw out the strengths of the company. On the other hand, in F where the amount of BaF 2 is too small, unreacted BaF 2
A large amount of LiBaF 3 remained, and the proportion of LiBaF 3 in the fired product decreased, making it impossible to take advantage of its advantages. Usage Example 1 Composite wires for self-shielded arc welding having the compositions shown in Table 4 below were manufactured using LiBaF 3 manufactured by the method of the present invention. Using this, self-shielded arc welding was performed under the following welding conditions. The syntron properties during wire production and workability during welding were as shown in Table 4. Welding conditions test plate: Mild steel (19mm t × 125mm w × 350mm l ) Test method: JIS Z 3313 Welding current: 250 A (DCSP) Welding voltage: 21~22V Welding speed: 10~23cm/min Welding position: Downwards steel Sheath: 2mmφ 〃Components: C…0.04, Si…0.01, (weight%) Mn…
0.35, P...0.017, S...0.008, Fe and unavoidable impurities...remainder

【表】【table】

【表】 第4表に示すNo.1〜3はいずれも本発明を満足
するものであるが、溶接分野に適用するに当たつ
てはNo.1以外は下記の理由で好ましくない。即ち
No.1は焼成条件及び粒度構成が良好であるのでシ
ントロン性及び溶接作業性は共に良好である。こ
れに対しNo.2はLiBaF3の粒度が過大である為鋼
製鞘内のフラツクス充填状態が不均一となりアー
クが不安定となると共に溶接作業性が悪い。一方
No.3はLiBaF3の粒度が過小である為シントロン
性が不良となりフラツクス充填状態が不均一とな
つて溶接作業性が不良となつた。又No.4は焼成温
度が低すぎる為に得られたLiBaF3は焼成不足と
なり、粉砕後の焼成物の流動性が悪化しシントロ
ン性、溶接作業性が不良であつた。 使用例 2 本発明方法によつて製造したLiBaF3等を使用
して下記第5表に示す成分組成の被覆アーク溶接
棒用フラツクスを調整し、これに固着剤を加える
と共に線の外周に塗布して被覆アーク溶接棒を製
造した。溶接棒製造時の塗装性及び耐乾燥割れ性
は第5表の通りであつた。 心線:4.0mm〓×400mmL(軟鋼) 固着剤:けい酸ソーダ+けい酸カリウム判定基準 塗装性:フラツクスを心線に塗装後フラツクス表
面に「かすれ」等の欠陥がない場合を「良」と
した(n=20) 耐乾燥割れ性:フラツクスを塗装した溶接棒20本
を自然乾燥し、24時間後に表面割れの有無を目
視で観察していずれの溶接棒にも割れが無い場
合を「良」とした。
[Table] All of Nos. 1 to 3 shown in Table 4 satisfy the present invention, but when applied to the welding field, none other than No. 1 are preferable for the following reasons. That is,
Since No. 1 has good firing conditions and grain size structure, both syntron properties and welding workability are good. On the other hand, in No. 2, the particle size of LiBaF 3 is too large, so the flux filling state inside the steel sheath is uneven, making the arc unstable and welding workability poor. on the other hand
In No. 3, the particle size of LiBaF 3 was too small, resulting in poor syntron properties and uneven flux filling, resulting in poor welding workability. In No. 4, the firing temperature was too low, so the LiBaF 3 obtained was insufficiently fired, and the fluidity of the fired product after pulverization deteriorated, resulting in poor syntron properties and welding workability. Usage Example 2 Using LiBaF 3 , etc. produced by the method of the present invention, a flux for coated arc welding rods having the composition shown in Table 5 below was prepared, a fixing agent was added to it, and the flux was applied to the outer periphery of the wire. A coated arc welding rod was manufactured. The coating properties and dry cracking resistance during manufacture of the welding rods were as shown in Table 5. Core wire: 4.0mm〓×400mm L (mild steel) Fixing agent: Sodium silicate + potassium silicate Judgment criteria Paintability: After applying flux to the core wire, if there are no defects such as "scratching" on the surface of the flux, it is judged as "good". (n=20) Dry cracking resistance: 20 welding rods coated with flux were naturally dried, and 24 hours later, visually inspected for surface cracks.If there were no cracks on any of the welding rods, it was evaluated as It was rated as "good".

【表】 第5表に示すNo.5〜7はいずれも本発明を満足
するものであるが、溶接分野に適用するに当たつ
てはNo.5以外は下記の理由で好ましくない。即ち
No.5は焼成条件及び粒度構成が適正である為塗装
性及び耐割れ性はいずれも良好であつた。これに
対しNo.6は粒度がやや過大である為に塗装性が悪
化した。一方No.7は微細な粒度のものが多すぎる
為に乾燥割れが発生した。
[Table] All of Nos. 5 to 7 shown in Table 5 satisfy the present invention, but when applied to the welding field, none other than No. 5 are preferable for the following reasons. That is,
In No. 5, the firing conditions and particle size composition were appropriate, so both paintability and cracking resistance were good. On the other hand, in No. 6, the particle size was slightly excessive, so the paintability deteriorated. On the other hand, No. 7 had too many fine grains, so drying cracks occurred.

Claims (1)

【特許請求の範囲】[Claims] 1 800μm以下の粒度のLiF及びBaF2を混合し、
酸化性雰囲気中において焼成した後粉砕し粒度調
整することを特徴とするLiBaF3の製造方法。
1 Mix LiF and BaF 2 with a particle size of 800 μm or less,
A method for producing LiBaF 3 , which comprises firing in an oxidizing atmosphere and then pulverizing to adjust the particle size.
JP1075884A 1984-01-23 1984-01-23 Production of libaf3 Granted JPS60155530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075884A JPS60155530A (en) 1984-01-23 1984-01-23 Production of libaf3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075884A JPS60155530A (en) 1984-01-23 1984-01-23 Production of libaf3

Publications (2)

Publication Number Publication Date
JPS60155530A JPS60155530A (en) 1985-08-15
JPS6365608B2 true JPS6365608B2 (en) 1988-12-16

Family

ID=11759223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075884A Granted JPS60155530A (en) 1984-01-23 1984-01-23 Production of libaf3

Country Status (1)

Country Link
JP (1) JPS60155530A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582601B2 (en) * 1988-02-19 1997-02-19 新日本製鐵株式会社 Composite wire for self-shielded arc welding

Also Published As

Publication number Publication date
JPS60155530A (en) 1985-08-15

Similar Documents

Publication Publication Date Title
CN111508676B (en) Small-size distribution network annular zinc oxide resistance card and preparation method thereof
JPS62100412A (en) Production of alumina-zirconia compound powder body
JPH08283073A (en) Kiln tool
WO2017183666A1 (en) Method for smelting oxide ore
CN111393174A (en) Method for manufacturing M47 refractory material by using fly ash
JP5071722B2 (en) Powder magnetic core and method for manufacturing the powder magnetic core
JPS5854108B2 (en) Castable Thai Kabutsu
CN110423100B (en) High-purity magnesia carbon brick added with magnesia carbon ultrafine powder and preparation method thereof
JPS6365608B2 (en)
CN109180205B (en) Chromite refractory material and preparation method thereof
US20120282130A1 (en) Method for producing permanent magnet materials and resulting materials
JP4390828B2 (en) Paint and planar heating element using the paint
CN102943185A (en) Preparation method of aluminum oxide dispersion-strengthened copper
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
CN108191414B (en) Process for improving volume density of tabular corundum
CN109081617B (en) A kind of carbon black/aluminous cement, preparation method and applications
KR20030025720A (en) Manufacture of heat reserving materials using Cu-making slag
JPH09227223A (en) Production of free-cutting combined ceramics
WO2024062742A1 (en) Method for producing hot metal using solid reducing furnace and submerged arc furnace
JP7477064B1 (en) Method for producing reduced iron
CN114836616B (en) Iron ore powder pellet and preparation method thereof
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JPH07188579A (en) Coated magnesium oxide powder
JP2022147014A (en) Manufacturing method of aluminum material with magnetism
Batenkova et al. Effect of Al addition on phase composition, microstructure, and microhardness of nanocrystalline WC ceramics