JPS6365506B2 - - Google Patents

Info

Publication number
JPS6365506B2
JPS6365506B2 JP53146348A JP14634878A JPS6365506B2 JP S6365506 B2 JPS6365506 B2 JP S6365506B2 JP 53146348 A JP53146348 A JP 53146348A JP 14634878 A JP14634878 A JP 14634878A JP S6365506 B2 JPS6365506 B2 JP S6365506B2
Authority
JP
Japan
Prior art keywords
heat
polyvinyl chloride
acrylic resin
resin layer
chloride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53146348A
Other languages
Japanese (ja)
Other versions
JPS5573548A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14634878A priority Critical patent/JPS5573548A/en
Publication of JPS5573548A publication Critical patent/JPS5573548A/en
Publication of JPS6365506B2 publication Critical patent/JPS6365506B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐候性に優れた熱収縮性合成樹脂フイ
ルムの製造方法に関するものである。 加熱により収縮する性質を有するフラツト状又
はチユーブ状のいわゆる熱収縮性合成樹脂フイル
ムは、安価で機械的物性、加工適性に優れるポリ
塩化ビニル樹脂を原料樹脂とするものが、一般的
である。しかし、このポリ塩化ビニル樹脂は耐候
性に劣り、特に長時間屋外に放置すると表面が変
色してしまうので、従来のポリ塩化ビニル樹脂か
らなる熱収縮フイルムは、屋外で使用する物品の
被覆、包装用途には不適当であるという欠点があ
つた。 本発明者らは上記欠点を克服し耐候性に優れた
熱収縮フイルムを開発せんと、耐候性に優れるこ
とが知られているアクリル系樹脂に着目し、アク
リル系樹脂単層の熱収縮フイルムを検討したがア
クリル系樹脂は高価である上延伸加工性が悪く熱
収縮フイルムの製造が極めて困難であり、しかも
得られる熱収縮フイルムは機械的強度が低くて収
縮温度が高く実用性に乏しいものであつた。しか
しながら本発明者らはさらに鋭意検討を重ねた結
果、アクリル系樹脂層とポリ塩化ビニル樹脂層と
を有する複合シートを延伸してなる熱収縮フイル
ムは、その耐候性が極めて優れているばかりでな
く延伸温度範囲が広く、収縮特性、引裂強度など
の熱収縮フイルムとしての基本的な特性も優れて
おり従来のポリ塩化ビニル樹脂からなる熱収縮フ
イルムと遜色ないことを見い出し本発明に到達し
たものでその要旨は少なくともアクリル系樹脂層
とポリ塩化ビニル樹脂層とを、少なくとも一面が
アクリル系樹脂層となるよう積層して複合シート
とし、該複合シートを80℃〜130℃の温度におい
て延伸することを特徴とする耐候性熱収縮フイル
ムの製造方法に存する。 以下、本発明を詳細に説明する。(なお、以下
の説明において、シートとは延伸前のもの、フイ
ルムとは延伸後のものを指し、これらはいずれも
フラツト状のもの及びチユーブ状のものを含むも
のとする。) 本発明におけるアクリル系樹脂層とはメチルア
クリレート、エチルアクリレート、ブチルアクリ
レート、メチルメタアクリレート又はこれらの共
重合体、あるいはこれらに少量のスチレン、アク
リロニトリル、塩化ビニル等を含むような重合体
などのアクリル系樹脂を押出成形するなどして得
られる。また、ポリ塩化ビニル樹脂層に紫外線が
到達するのを防ぐためにアクリル系樹脂層に紫外
線吸収剤を添加すれば、耐候性向上の上でさらに
好ましい。この場合の紫外線吸収剤としては、メ
チルサリチレート、フエニルサリチレートなどの
サリチル酸エステル系、2,4ジヒドロキシベン
ゾフエノン、2ヒドロキシ―4メトキシベンゾフ
エノンなどのベンゾフエノン系、2―(2′ヒドロ
キシ―5′メチルフエニル)ベンゾトリアゾールな
どのベンゾトリアゾール系などのものが挙げられ
る。紫外線吸収効果を得るためには0.02g/m2
上の添加が望ましく、また添加量が多すぎるとフ
イルム表面への吹き出しが生ずるので2重量パー
セント以下の濃度で添加するのが望ましい。 次にポリ塩化ビニル樹脂層は、ポリ塩化ビニル
樹脂、塩化ビニルと酢酸ビニルとの共重合体樹脂
などを押出成形、カレンダー成形などによりシー
ト状に成形したものであり、必要に応じこれに、
可塑剤、紫外線吸収剤、充填剤等の添加剤を添加
してもよい。 本発明における複合シートは、少なくともアク
リル系樹脂層とポリ塩化ビニル樹脂層とを積層、
密着してなるものであり、例えばアクリル系樹脂
層とポリ塩化ビニル樹脂層との2層、あるいはポ
リ塩化ビニル樹脂層をアクリル系樹脂層によりサ
ンドイツチした3層など適宜の構造を採用できる
が、少なくとも一面側(本発明の熱収縮フイルム
を屋外等で使用する際に光線に暴露される側の
面)がアクリル系樹脂層でなくてはならない。ま
たその形状はチユーブ状でもフラツト状でもよ
い。またこの複合シートの厚み構成は、アクリル
系樹脂層が複合シートの全厚さの50%以下である
ことが望ましい。50%を越えると、複合シート全
体として極めて高価となるほか、延伸加工が困難
となりたとえ延伸できたとしても極めてもろく、
引裂強度に弱いものとなる。また、光線に暴露さ
れるべき面側のアクリル系樹脂層の厚さは一概に
は言えないが、アクリル系樹脂の酸素遮断性がポ
リ塩化ビニル樹脂層の変色防止に効果を奏するた
めには、延伸して熱収縮フイルムとした場合に
10μ以上であることが望ましい。そのためには、
例えば2×2倍に2軸延伸する予定の複合シート
の場合は、上記アクリル系樹脂層の厚みは40μ以
上が好ましい。アクリル系樹脂層とポリ塩化ビニ
ル樹脂層とを積層密着する場合、両者が極めて相
溶性に富むことを利用して、例えば両層シートを
140℃〜190℃の温度条件で熱圧着したり、あるい
は両樹脂を共押出法によるダイ内接着法などによ
り行うのが、接着剤、接着用樹脂等を使用する必
要がなく経済的であり好ましい。もちろん接着剤
を用いた通常のドライラミネート法、接着用樹脂
を介した押出サンドイツチラミネート等によるこ
ともできる。 次に、本発明により上記複合シートから耐候性
熱収縮フイルムを得るためには、上記の如きアク
リル系樹脂層とポリ塩化ビニル樹脂層とを有する
複合シートを、ロール、テンター等を用いる延伸
あるいは、空気圧、拡径装置を用いるチユーブラ
ー延伸などにより、延伸すれば良い。延伸温度条
件としては80℃〜130℃、特に80℃〜120℃が好ま
しい。80℃より低温では不均一延伸が生じ、130
℃より高温ではシートの引裂強度が低下するので
いずれも延伸中にシートの破断が発生し、また
120℃より高温ではポリ塩化ビニル樹脂のフロー
延伸が起り、得られる延伸フイルムの収縮率が低
下するので上記範囲が好ましい。また、100℃以
下で延伸して得られる延伸フイルムは、100℃の
熱水という極めて得やすい加熱手段によりその有
する極限収縮率の大部分まで収縮せしめることが
でき例えば2倍延伸で40%以上の収縮率をしめす
など、実用上特に好ましい。延伸倍率は、そのフ
イルムの用途に要求される熱収縮率との関連で決
めるが、一般的には少なくとも1方向に1.5倍以
上延伸するのがよい。 こうして本発明により得られる耐候性熱収縮フ
イルムは、耐候性に劣るポリ塩化ビニル樹脂をア
クリル系樹脂で覆つているので、極めて耐候性に
優れており、かつ、熱収縮フイルムとしての基本
的な収縮特性および引裂強度等に優れているばか
りでなく、本発明の製造方法によれば単体延伸が
極めて困難なアクリル系樹脂シートを安定して延
伸することができしかもポリ塩化ビニル樹脂シー
ト単独の延伸温度条件よりも広範囲で延伸可能な
ので、極めて能率的に耐候性熱収縮フイルムを製
造することができるものである。 以下、実施例を挙げて本発明をさらに詳述す
る。 実施例 1 平均重合度が800のポリ塩化ビニル樹脂100重量
部にジブチルスズマレート3重量部とバリウムス
テアレート1.1重量部とを添加しカレンダー成形
した厚さ400μのポリ塩化ビニルシートと、メチ
ルメタアクリレート系アクリル樹脂(三菱レイヨ
ン社製アクリペツトIRH50)100部に2―(2′ヒ
ドロキシ―5メチルフエニルベンゾトリアゾー
ル)1部を添加し押出成形した厚さ100μのアク
リル樹脂シートとをプレス温度150℃にて熱圧着
して厚さ500μの複合シートとし、これをテスト
ストレツチヤーを用いて表―1の各温度で2×2
倍に2軸延伸を行い延伸加工性を評価した結果を
第1表に示す。また、こうして得られた熱収縮フ
イルムについてその収縮特性を評価した結果を第
1図に実線で示す。さらにこの熱収縮フイルムを
東洋理化工業製スタンダードサンシヤインウエザ
ーメーターによりアクリル樹脂層側から光線照射
して耐候促進試験を行なつたところ、1000時間経
過後もその表面色調の変化がほとんどなく、極め
て優れた耐候性を有することが判明した。さら
に、80℃で延伸したサンプルについて、JIS
Z1702により引裂強度を測定した結果を表―2に
示す。 比較例 1〜2 実施例1で使用したと同様のアクリル樹脂及び
ポリ塩化ビニル樹脂を各々比較例1及び比較例2
として厚さ500μの単層シートに成形し、実施例
1と同様に延伸性を評価した結果を第1表に示
す。またこうして得られた熱収縮フイルムの収縮
特性を第1図に、アクリル樹脂(比較例1)は点
線でポリ塩化ビニル樹脂(比較例2)は破線でそ
れぞれ示す。さらに120℃で延伸したアクリル樹
脂及び80℃で延伸したポリ塩化ビニル樹脂の単層
フイルムの引裂強度を第2表に示す。またポリ塩
化ビニル樹脂フイルム(比較例2)について、実
施例1と同様にして耐候性を評価したところ、
1000時間経過後には表面色調がかつ色に変化し、
実用になるものではなかつた。
The present invention relates to a method for producing a heat-shrinkable synthetic resin film with excellent weather resistance. So-called heat-shrinkable synthetic resin films in the form of flats or tubes that shrink when heated are generally made from polyvinyl chloride resin, which is inexpensive and has excellent mechanical properties and processability. However, this polyvinyl chloride resin has poor weather resistance, and the surface will discolor especially if left outdoors for a long time, so conventional heat-shrinkable films made of polyvinyl chloride resin are not suitable for covering or packaging items used outdoors. The drawback was that it was unsuitable for this purpose. In order to overcome the above drawbacks and develop a heat-shrinkable film with excellent weather resistance, the present inventors focused on acrylic resin, which is known to have excellent weather resistance, and developed a heat-shrinkable film with a single layer of acrylic resin. Although we have considered acrylic resins, they are expensive, have poor stretching processability, and are extremely difficult to manufacture into heat-shrinkable films.Furthermore, the resulting heat-shrinkable films have low mechanical strength and high shrinkage temperatures, making them impractical. It was hot. However, as a result of further intensive studies, the present inventors found that a heat-shrinkable film made by stretching a composite sheet having an acrylic resin layer and a polyvinyl chloride resin layer not only has extremely excellent weather resistance, but also The present invention was achieved by discovering that it has a wide stretching temperature range, has excellent basic properties as a heat-shrinkable film such as shrinkage characteristics and tear strength, and is comparable to conventional heat-shrinkable films made of polyvinyl chloride resin. The gist is that at least an acrylic resin layer and a polyvinyl chloride resin layer are laminated so that at least one side is an acrylic resin layer to form a composite sheet, and the composite sheet is stretched at a temperature of 80°C to 130°C. The present invention resides in a method for manufacturing a weather-resistant heat-shrinkable film. The present invention will be explained in detail below. (In the following explanation, the term "sheet" refers to the product before stretching, and the term "film" refers to the product after stretching, and both of these include flat and tube-shaped products.) Acrylic resin in the present invention The layer is made by extrusion molding an acrylic resin such as methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, or a copolymer thereof, or a polymer containing a small amount of styrene, acrylonitrile, vinyl chloride, etc. It can be obtained by Further, it is more preferable to add an ultraviolet absorber to the acrylic resin layer in order to prevent ultraviolet rays from reaching the polyvinyl chloride resin layer in order to improve weather resistance. In this case, the UV absorbers include salicylic acid esters such as methyl salicylate and phenyl salicylate, benzophenones such as 2,4 dihydroxybenzophenone and 2hydroxy-4methoxybenzophenone, and 2-(2 Examples include benzotriazole-based compounds such as 'hydroxy-5'methylphenyl)benzotriazole. In order to obtain an ultraviolet absorption effect, it is desirable to add 0.02 g/m 2 or more, and since too much addition causes blistering on the film surface, it is desirable to add at a concentration of 2 weight percent or less. Next, the polyvinyl chloride resin layer is made by molding polyvinyl chloride resin, copolymer resin of vinyl chloride and vinyl acetate, etc. into a sheet shape by extrusion molding, calendar molding, etc.
Additives such as plasticizers, ultraviolet absorbers, and fillers may be added. The composite sheet in the present invention comprises laminating at least an acrylic resin layer and a polyvinyl chloride resin layer,
For example, an appropriate structure can be adopted, such as a two-layer structure consisting of an acrylic resin layer and a polyvinyl chloride resin layer, or a three-layer structure in which a polyvinyl chloride resin layer is sandwiched between an acrylic resin layer, but at least One side (the side that is exposed to light when the heat-shrinkable film of the present invention is used outdoors) must be an acrylic resin layer. Moreover, the shape may be a tube shape or a flat shape. Further, regarding the thickness structure of this composite sheet, it is desirable that the acrylic resin layer accounts for 50% or less of the total thickness of the composite sheet. If it exceeds 50%, the composite sheet as a whole becomes extremely expensive, and it becomes difficult to stretch, and even if it can be stretched, it becomes extremely brittle.
It has low tear strength. In addition, although the thickness of the acrylic resin layer on the side that should be exposed to light cannot be definitively determined, in order for the oxygen barrier properties of the acrylic resin to be effective in preventing discoloration of the polyvinyl chloride resin layer, When stretched into a heat-shrinkable film
It is desirable that the thickness is 10μ or more. for that purpose,
For example, in the case of a composite sheet that is planned to be biaxially stretched 2×2 times, the thickness of the acrylic resin layer is preferably 40 μm or more. When laminating an acrylic resin layer and a polyvinyl chloride resin layer in close contact with each other, the extremely high compatibility between the two can be used, for example, to form a double-layer sheet.
It is preferable to carry out thermocompression bonding at a temperature of 140°C to 190°C, or by in-die adhesion using coextrusion of both resins, as it is economical and does not require the use of adhesives or adhesive resins. . Of course, it is also possible to use a conventional dry lamination method using an adhesive, extrusion sandwich lamination using an adhesive resin, or the like. Next, in order to obtain a weather-resistant heat-shrinkable film from the composite sheet according to the present invention, the composite sheet having the acrylic resin layer and the polyvinyl chloride resin layer as described above is stretched using a roll, tenter, etc. Stretching may be performed by air pressure, tubular stretching using a diameter expanding device, or the like. The stretching temperature condition is preferably 80°C to 130°C, particularly 80°C to 120°C. Non-uniform stretching occurs at temperatures lower than 80°C, and 130°C
At temperatures higher than ℃, the tear strength of the sheet decreases, causing the sheet to break during stretching, and
If the temperature is higher than 120°C, flow stretching of the polyvinyl chloride resin occurs and the shrinkage rate of the resulting stretched film decreases, so the above range is preferable. In addition, a stretched film obtained by stretching at 100°C or lower can be shrunk to most of its ultimate shrinkage rate by heating with hot water at 100°C, which is extremely easy to obtain. It is particularly preferable for practical reasons such as showing the shrinkage rate. The stretching ratio is determined in relation to the heat shrinkage rate required for the use of the film, but it is generally recommended that the film be stretched 1.5 times or more in at least one direction. In this way, the weather-resistant heat-shrinkable film obtained according to the present invention has extremely excellent weatherability because the polyvinyl chloride resin, which has poor weatherability, is covered with an acrylic resin. In addition to being excellent in properties, tear strength, etc., the production method of the present invention allows stable stretching of acrylic resin sheets, which are extremely difficult to stretch individually, and at a lower stretching temperature of the polyvinyl chloride resin sheet alone. Since it can be stretched over a wider range of conditions, weather-resistant heat-shrinkable films can be produced extremely efficiently. Hereinafter, the present invention will be further explained in detail by giving examples. Example 1 A polyvinyl chloride sheet with a thickness of 400 μm prepared by adding 3 parts by weight of dibutyltin malate and 1.1 parts by weight of barium stearate to 100 parts by weight of a polyvinyl chloride resin with an average degree of polymerization of 800 and calender-molding the same, and methyl methacrylate. 1 part of 2-(2'hydroxy-5methylphenylbenzotriazole) was added to 100 parts of acrylic resin (Mitsubishi Rayon Co., Ltd., Acrypet IRH50), and an acrylic resin sheet with a thickness of 100μ was extruded at a pressing temperature of 150°C. A composite sheet with a thickness of 500μ was made by thermocompression bonding, and this was stretched 2×2 at each temperature shown in Table 1 using a test stretcher.
Table 1 shows the results of evaluating the stretching processability by performing biaxial stretching. Further, the results of evaluating the shrinkage characteristics of the heat-shrinkable film thus obtained are shown by solid lines in FIG. Furthermore, when this heat shrink film was subjected to a weather resistance acceleration test by irradiating light from the acrylic resin layer side using a standard sunshine weather meter manufactured by Toyo Rika Kogyo, there was almost no change in the surface color even after 1000 hours had passed. It was found to have excellent weather resistance. Furthermore, for samples stretched at 80℃, JIS
Table 2 shows the results of measuring tear strength using Z1702. Comparative Examples 1 to 2 The same acrylic resin and polyvinyl chloride resin used in Example 1 were used in Comparative Example 1 and Comparative Example 2, respectively.
The sample was molded into a single-layer sheet with a thickness of 500 μm, and its stretchability was evaluated in the same manner as in Example 1. The results are shown in Table 1. Further, the shrinkage characteristics of the heat-shrinkable film thus obtained are shown in FIG. 1, where the acrylic resin (Comparative Example 1) is shown by a dotted line and the polyvinyl chloride resin (Comparative Example 2) is shown by a broken line. Furthermore, Table 2 shows the tear strengths of single-layer films made of acrylic resin stretched at 120°C and polyvinyl chloride resin stretched at 80°C. In addition, the weather resistance of the polyvinyl chloride resin film (Comparative Example 2) was evaluated in the same manner as in Example 1.
After 1000 hours, the surface color changes and the color changes.
It wasn't something that would be practical.

【表】【table】

【表】 第1表に示すように、本発明の方法によれば、
アクリル樹脂層とポリ塩化ビニル樹脂層とを複合
して延伸するので、単層では極めて延伸困難なア
クリル樹脂を延伸することができ、しかもポリ塩
化ビニル樹脂層単層よりも延伸温度範囲が広いな
ど、これまでになく延伸加工が容易である。ま
た、こうして得られる熱収縮フイルムは第1図に
示すように従来のポリ塩化ビニルの熱収縮フイル
ムと比較しても収縮特性に遜色なく極限収縮率に
おいてはむしろ優れており、また80℃〜130℃と
いう広い温度範囲で延伸することにより、バラエ
テイーに富んだ収縮特性を有する熱収縮フイルム
を得ることができる。特に延伸温度120℃以下の
ものは、高い収縮率を示し好ましく、さらに延伸
温度100℃以下のものは、熱収縮温度が100℃でそ
の極限収縮率近くまで収縮するので、加熱媒体と
して容易に入手し得る熱水を使用できるという利
点を有する。 次に、第2表に示すように本発明により得られ
る熱収縮シートは引裂強度においても従来のポリ
塩化ビニル樹脂の熱収縮フイルムに匹敵し、実用
上優れたものである。 実施例 2 平均重合度が800のポリ塩化ビニル樹脂100重量
部にヂオクチルフタレート10重量部、カドミウム
ステアレート1.2重量部及びバリウムステアレー
ト1.1重量部を添加したポリ塩化ビニル樹脂層が
厚さ450μの内層、メチルメタアクリレート系ア
クリル樹脂(三菱レイヨン社製アクリペツトIR
―D50)に2―ヒドロキシ―4メトキシベンゾフ
エノン1.5部を添加したアクリル樹脂層が厚さ50μ
の外層となるように環状ダイからダイ内接着しな
がら共押出成形して内径10mmのチユーブ状複合シ
ートとし、これを90℃の温水中で空気圧をかけて
円周方向に2.5倍に延伸した。こうして得られた
チユーブ状熱収縮フイルムは、軸方向引裂強度が
8.5Kg/cmであり同様にして製造したポリ塩化ビ
ニル樹脂熱収縮フイルムの8.9Kg/cmに比し遜色
なく、100℃の温水加熱による周方向収縮率も58
%と優れていた。又実施例1と同様に耐候性を評
価したところ、1000時間経過後も表面色調に変化
が無く優れていた。 実施例 3 実施例1と同一配合のポリ塩化ビニル樹脂と、
メチルメタアクリレート系アクリル樹脂(三菱レ
イヨン社製アクリペツトMF)100部に4′―tブチ
ルフエニルサリチレート0.5部添加したアクリル
樹脂層とをTダイからダイ内接着しながら共押出
成形して、各層厚さ100μ、トータル200μの複合
シートを作成し、これをストレツチヤーにより80
℃で2×2倍に2軸延伸した。得られた熱収縮フ
イルムの引裂強度は8.5Kg/cmと、同一厚さ
(200μ)の従来のポリ塩化ビニル樹脂熱収縮フイ
ルムの9.5Kg/cmと比べても大きな差異はなく、
アクリル樹脂熱収縮フイルムの2.3Kg/cmより格
段に優れており、100℃の温水中で49%の縦方向
収縮率を有するなど優れた熱収縮フイルムであ
る。 実施例 4 実施例2と同一配合のポリ塩化ビニル樹脂が厚
さ400μの内層、メチルメタアクリレート系アク
リル樹脂(三菱レイヨン社製アクリペツトIR―
D70)が厚さ100μの外層となるように、環状ダイ
からダイ内接着しながら共押出成形した内径15mm
のチユーブ状複合シートを、110℃で周方向に2
倍延伸してチユーブ状熱収縮フイルムを得た。こ
の熱収縮フイルムは軸方向引裂強度が8.3Kg/cm
であり、100℃の温水中で45%の周方向収縮率を
示し優れた熱収縮フイルムである。また実施例1
と同様にして耐候性を評価した結果、1000時間経
過後も表面色調は変化せず優れていた。 実施例 5 実施例1と同一配合の厚さ300μのポリ塩化ビ
ニル樹脂シートと、これに2―(2′ヒドロキシ―
5メチルフエニル)ベンゾトリアゾール1.5重量
部添加した厚さ100μのポリ塩化ビニル樹脂シー
トと、厚さ100μのアクリル樹脂(三菱レイヨン
社製アクリペツトIR D50)シートを、この順序
で、プレス温度170℃で熱圧着して厚さ500μの3
層複合シートとし、これをストレツチヤーにより
90℃で2×2倍に2軸延伸した。こうして得られ
た熱収縮フイルムは8.4Kg/cmの引裂強度を示し、
100℃の温水中で48%の縦収縮率を有するなど、
優れた熱収縮フイルムである。また、実施例1と
同様にして耐候性を評価したところ、1000時間経
過後も表面色調に変化がなく優れたものであつ
た。
[Table] As shown in Table 1, according to the method of the present invention,
Since the acrylic resin layer and the polyvinyl chloride resin layer are combined and stretched, it is possible to stretch the acrylic resin, which is extremely difficult to stretch with a single layer, and the stretching temperature range is wider than that of a single layer of polyvinyl chloride resin. , it is easier to stretch than ever before. In addition, as shown in Figure 1, the heat-shrinkable film obtained in this way has comparable shrinkage characteristics to conventional polyvinyl chloride heat-shrinkable films, and is actually superior in terms of ultimate shrinkage rate. By stretching in a wide temperature range of .degree. C., heat-shrinkable films having a wide variety of shrinkage characteristics can be obtained. In particular, those with a stretching temperature of 120°C or lower are preferable because they exhibit a high shrinkage rate, and those with a stretching temperature of 100°C or lower shrink close to their ultimate shrinkage rate at a heat shrinkage temperature of 100°C, so they are easily available as heating media. It has the advantage that hot water can be used. Next, as shown in Table 2, the tear strength of the heat-shrinkable sheet obtained by the present invention is comparable to that of the conventional heat-shrinkable film made of polyvinyl chloride resin, and is excellent in practical use. Example 2 A polyvinyl chloride resin layer with a thickness of 450μ was prepared by adding 10 parts by weight of dioctyl phthalate, 1.2 parts by weight of cadmium stearate, and 1.1 parts by weight of barium stearate to 100 parts by weight of polyvinyl chloride resin with an average degree of polymerization of 800. Inner layer, methyl methacrylate-based acrylic resin (Acrypet IR manufactured by Mitsubishi Rayon Co., Ltd.)
-D50) with 1.5 parts of 2-hydroxy-4methoxybenzophenone added to form an acrylic resin layer with a thickness of 50μ.
A tube-shaped composite sheet with an inner diameter of 10 mm was formed by coextrusion molding from an annular die while adhering inside the die so as to form the outer layer of the composite sheet, and this was stretched 2.5 times in the circumferential direction in hot water at 90°C by applying air pressure. The tubular heat-shrinkable film thus obtained has an axial tear strength of
The shrinkage rate in the circumferential direction when heated with hot water at 100°C was also 58.
% was excellent. Furthermore, when the weather resistance was evaluated in the same manner as in Example 1, there was no change in surface color tone even after 1000 hours had passed and it was excellent. Example 3 Polyvinyl chloride resin with the same formulation as Example 1,
An acrylic resin layer made by adding 0.5 parts of 4'-t-butyl phenyl salicylate to 100 parts of methyl methacrylate-based acrylic resin (Acrypet MF manufactured by Mitsubishi Rayon Co., Ltd.) was coextruded from a T-die while adhering inside the die. A composite sheet with a thickness of 100μ for each layer and a total of 200μ is created, and this is stretched to 80μ by a stretcher.
It was biaxially stretched 2×2 times at ℃. The tear strength of the resulting heat-shrinkable film was 8.5Kg/cm, which is not much different from the 9.5Kg/cm of a conventional polyvinyl chloride resin heat-shrinkable film of the same thickness (200μ).
This is an excellent heat-shrinkable film with a longitudinal shrinkage rate of 49% in warm water at 100°C, which is much better than the 2.3Kg/cm of acrylic resin heat-shrinkable film. Example 4 The inner layer was made of polyvinyl chloride resin having the same composition as in Example 2 and had a thickness of 400 μm, and the inner layer was made of methyl methacrylate-based acrylic resin (Acrypet IR manufactured by Mitsubishi Rayon Co., Ltd.).
D70) was co-extruded from an annular die while adhering inside the die to form an outer layer with a thickness of 100μ, with an inner diameter of 15 mm.
A tubular composite sheet of
A tubular heat-shrinkable film was obtained by stretching the film twice. This heat shrink film has an axial tear strength of 8.3Kg/cm
It is an excellent heat-shrinkable film, showing a circumferential shrinkage rate of 45% in hot water at 100°C. Also, Example 1
Weather resistance was evaluated in the same manner as above, and the surface color tone did not change even after 1000 hours and was excellent. Example 5 A polyvinyl chloride resin sheet with a thickness of 300μ having the same composition as in Example 1 and 2-(2' hydroxy-
A 100μ thick polyvinyl chloride resin sheet containing 1.5 parts by weight of benzotriazole (5-methylphenyl) and a 100μ thick acrylic resin (Mitsubishi Rayon Co., Ltd. AcryPets IR D50) sheet were thermocompressed in this order at a press temperature of 170°C. 3 with a thickness of 500μ
A layered composite sheet is made, and this is stretched using a stretcher.
Biaxial stretching was carried out at 90° C. to 2×2 times. The heat-shrinkable film thus obtained exhibited a tear strength of 8.4 Kg/cm.
It has a vertical shrinkage rate of 48% in hot water of 100℃, etc.
It is an excellent heat shrink film. Furthermore, when the weather resistance was evaluated in the same manner as in Example 1, the surface color tone did not change even after 1000 hours and was excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1及び比較例1,2の熱収縮特
性曲線であり、縦軸は縦収縮率(%)、横軸は加
熱温度である。図中、実線は実施例1、点線は比
較例1、破線は比較例2のそれぞれ熱収縮フイル
ムの収縮特性を示し、線上の温度は延伸温度を示
すものである。
FIG. 1 shows the heat shrinkage characteristic curves of Example 1 and Comparative Examples 1 and 2, where the vertical axis is the vertical shrinkage rate (%) and the horizontal axis is the heating temperature. In the figure, the solid line shows the shrinkage characteristics of the heat shrinkable film of Example 1, the dotted line shows the shrinkage characteristics of the heat shrinkable film of Comparative Example 1, and the broken line shows the shrinkage characteristics of the heat shrinkable film of Comparative Example 2, and the temperature on the line shows the stretching temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともアクリル系樹脂層とポリ塩化ビニ
ル樹脂層とを、少なくとも一面がアクリル系樹脂
層となるよう積層して複合シートとし、該複合シ
ートを80℃〜130℃の温度において延伸すること
を特徴とする耐候性熱収縮フイルムの製造方法。
1. A composite sheet is obtained by laminating at least an acrylic resin layer and a polyvinyl chloride resin layer so that at least one side is an acrylic resin layer, and the composite sheet is stretched at a temperature of 80°C to 130°C. A method for producing a weather-resistant heat shrinkable film.
JP14634878A 1978-11-27 1978-11-27 Weatherrproof heattcontractible film and making method thereof Granted JPS5573548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14634878A JPS5573548A (en) 1978-11-27 1978-11-27 Weatherrproof heattcontractible film and making method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14634878A JPS5573548A (en) 1978-11-27 1978-11-27 Weatherrproof heattcontractible film and making method thereof

Publications (2)

Publication Number Publication Date
JPS5573548A JPS5573548A (en) 1980-06-03
JPS6365506B2 true JPS6365506B2 (en) 1988-12-15

Family

ID=15405666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14634878A Granted JPS5573548A (en) 1978-11-27 1978-11-27 Weatherrproof heattcontractible film and making method thereof

Country Status (1)

Country Link
JP (1) JPS5573548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316540A (en) * 1988-06-16 1989-12-21 Kinugawa Rubber Ind Co Ltd Dynamic damper
JPH02129967U (en) * 1989-04-04 1990-10-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767788B2 (en) * 1986-07-31 1995-07-26 大日本印刷株式会社 Decorative sheet for metal sash exterior

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170282A (en) * 1974-12-17 1976-06-17 Nippon Carbide Kogyo Kk Jizokuseino aru shigaisenkyushuseifukugofuirumu

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170282A (en) * 1974-12-17 1976-06-17 Nippon Carbide Kogyo Kk Jizokuseino aru shigaisenkyushuseifukugofuirumu

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316540A (en) * 1988-06-16 1989-12-21 Kinugawa Rubber Ind Co Ltd Dynamic damper
JPH02129967U (en) * 1989-04-04 1990-10-26

Also Published As

Publication number Publication date
JPS5573548A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
US4892765A (en) Heat-shrinkable laminate film and process to produce the same
US4865902A (en) Multilayered polyolefin high shrinkage, low-shrink force shrink film
US4064296A (en) Heat shrinkable multi-layer film of hydrolyzed ethylene vinyl acetate and a cross-linked olefin polymer
US5055355A (en) Oriented film laminates of polyamides and ethylene vinyl alcohol copolymers
JP2017532261A5 (en)
EP0229715A2 (en) Multilayered polyolefin high shrinkage low-shrink force shrink film
JPH028583B2 (en)
JP2000505745A (en) Improved biaxial stretching of fluoropolymer films
DE3110247A1 (en) PACKING FILM OF FIVE LAYERS
JPS6365506B2 (en)
JPS5932293B2 (en) Stretched laminated film and its manufacturing method
US5091250A (en) Light stable polystyrene-polymethylmethacrylate laminate and method of preparation
NZ203558A (en) Quenched nylon multi-layer food casings and their preparation
JPS625060B2 (en)
GB1577128A (en) Production of polymeric film laminates
US6555242B2 (en) Longitudinally stretched, vacuum vapor coated packaging films
JPS5841178B2 (en) Method for manufacturing composite film
JP3804992B2 (en) Method for producing laminated sheet for molding
JP3766116B2 (en) Method for producing coextruded multilayer stretched film
JPS58175658A (en) Laminated biaxial oriented film and its manufacture
JPH05185506A (en) Production of moisture-proof film
JPH0140678Y2 (en)
JP2581063B2 (en) Multi-layer structure
JPS6013634Y2 (en) High barrier polypropylene resin laminated sheet
JPS5833427A (en) Method of preventing curl in piled film