JPS625060B2 - - Google Patents
Info
- Publication number
- JPS625060B2 JPS625060B2 JP54167525A JP16752579A JPS625060B2 JP S625060 B2 JPS625060 B2 JP S625060B2 JP 54167525 A JP54167525 A JP 54167525A JP 16752579 A JP16752579 A JP 16752579A JP S625060 B2 JPS625060 B2 JP S625060B2
- Authority
- JP
- Japan
- Prior art keywords
- resin layer
- ethylene
- vinyl acetate
- resin
- acetate copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920005989 resin Polymers 0.000 claims description 78
- 239000011347 resin Substances 0.000 claims description 78
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 37
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 37
- 239000004840 adhesive resin Substances 0.000 claims description 29
- 229920006223 adhesive resin Polymers 0.000 claims description 29
- 229920000554 ionomer Polymers 0.000 claims description 28
- 229920006257 Heat-shrinkable film Polymers 0.000 claims description 19
- 229920001577 copolymer Polymers 0.000 claims description 13
- 229920006122 polyamide resin Polymers 0.000 claims description 12
- 229920000098 polyolefin Polymers 0.000 claims description 10
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 claims description 7
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical class C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 5
- 239000005977 Ethylene Substances 0.000 claims description 5
- 239000002985 plastic film Substances 0.000 claims description 4
- 238000007127 saponification reaction Methods 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- 229920006255 plastic film Polymers 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 239000010410 layer Substances 0.000 description 48
- 230000004888 barrier function Effects 0.000 description 14
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000009835 boiling Methods 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 235000020991 processed meat Nutrition 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012785 packaging film Substances 0.000 description 2
- 229920006280 packaging film Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- UFFRSDWQMJYQNE-UHFFFAOYSA-N 6-azaniumylhexylazanium;hexanedioate Chemical compound [NH3+]CCCCCC[NH3+].[O-]C(=O)CCCCC([O-])=O UFFRSDWQMJYQNE-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Wrappers (AREA)
Description
本発明は、ガスバリア性に優れた包装用熱収縮
性フイルム及びその製造方法に関するものであ
り、更に詳しくはガスバリア性に優れたエチレン
―酢酸ビニル共重合体けん化物樹脂を中間層とす
る低温熱収縮性、透明性、強靭性、衛生性等の良
好な食品包装用多層熱収縮性フイルムとその製造
方法に関するものである。従来、塩化ビニリデン
系樹脂フイルムが、ハム、ソーセージ等の畜肉加
工品、蒲鉾等の魚肉加工品の包装用として、使用
されてきた。塩化ビニリデン系樹脂は、ガスバリ
ア性に優れているが、残存塩化ビニリデン・モノ
マーに食品衛生上の不安があり、又包装用途によ
つては更に高度の酸素ガスバリア性が要求され、
塩化ビニリデン樹脂に代つて、最近エチレン―酢
酸ビニル共重合体けん化物樹脂が注目されてき
た。
然し乍ら、エチレン―酢酸ビニル共重合体けん
化物樹脂は、ガスバリア性が著しく優れている一
方、吸湿によつてガスバリア性が低下し、力学性
能も大幅に低下するという欠点がある。又、エチ
レン―酢酸ビニル共重合体けん化物樹脂の単層の
押出チユーブあるいは押出シートを、十分乾燥さ
せた状態では100℃以下の延伸温度で二軸延伸す
ることは極めて困難であり、その為食肉等の真空
収縮包装に使用することのできる低温熱収縮性の
二軸延伸フイルムを得ることが困難であつた。
本発明者らは、ガスバリア性の優れたエチレン
―酢酸ビニル共重合体けん化物樹脂から長期にわ
たつて安定した高度の酸素ガスバリア性を有し、
しかも熱湯中で高い熱収縮性を示す包装用フイル
ムを得んとして研究を実施し、エチレン―酢酸ビ
ニル共重合体けん化物樹脂層/接着用樹脂層/ア
イオノマー樹脂層の三層から成る共押出積層シー
トが100℃以下の温度で二軸延伸可能であること
を見出し、更に種々検討を進めて本発明を完成さ
せるに至つたものである。
本発明の第一の目的は、酸素ガスバリア性、防
湿性が長時間にわたつて安定しており、しかも低
温熱収縮性、透明性、耐ピンホール性、衛生性等
の優れた収縮包装用に適した熱収縮性フイルムを
提供することであり、本発明のもう一つの目的は
そのようなフイルムの製造方法を提供することで
ある。
本発明は、アイオノマー樹脂層/変性ポリオレ
フイン系接着性樹脂層又は共重合ポリアミド樹脂
層/エチレン―酢酸ビニル共重合体けん化物樹脂
層/変性ポリオレフイン系接着性樹脂層又は共重
合ポリアミド樹脂層、及びアイオノマー樹脂層/
変性ポリオレフイン系接着性樹脂層又は共重合ポ
リアミド樹脂層/エチレン―酢酸ビニル共重合体
けん化物樹脂層/変性ポリオレフイン系接着性樹
脂層又は共重合ポリアミド樹脂層/アイオノマー
樹脂層又はエチレン―酢酸ビニル共重合体が、こ
の順で隣接した積層構造である多層プラスチツク
フイルムであり、エチレン―酢酸ビニル共重合体
けん化物樹脂層は、エチレン含有率25乃至75モル
%、共重合体中の酢酸ビニルに対するけん化度が
90%以上の樹脂から成り、該フイルムの総厚みが
5μ乃至150μであり、100℃の温度の雰囲気中に
入れて10秒後の寸法収縮率が縦横とも10%を越え
ることを特徴とする。
エチレン―酢酸ビニル共重合体けん化物樹脂
は、軟化温度(フローテスター法)が150乃至175
℃で、エチレン含有率が25乃至75モル%、共重合
体中の酢酸ビニルに対するけん化度が90%以上で
あり、乾燥状態に於いて、極めて高いガスバリア
性を有している。
エチレン―酢酸ビニル共重合体けん化物樹脂
は、共重合体中の酢酸ビニルけん化物の濃度の高
い方が軟化温度も高くなり、ガスバリア性も向上
するが、一方吸湿し易くなる、二次加工性が悪く
なる等の欠点を生じる。従つて本発明の熱収縮性
フイルムに於いては軟化温度が165℃乃至175℃の
エチレン―酢酸ビニル共重合体けん化物樹脂が好
ましい。
アイオノマー樹脂は、エチレン―メタアクリル
酸共重合体、エチレン―アクリル酸共重合体、エ
チレン―イタコン酸共重合体、エチレン―メタア
クリル酸メチル共重合体等に、金属イオンを作用
させたイオン性共重合体であり、その内特にエチ
レン―メタアクリル酸共重合体にNaイオン、Mg
イオン、あるいはZnイオンを作用させた樹脂が
好ましい。アイオノマー樹脂は、優れた水蒸気遮
断性を有するのみでなく、二次加工に於けるフイ
ルム間のヒートシールに際しても、低温ヒートシ
ール性が優れているという長所を有している。
接着用樹脂は、分子鎖末端を反応性官能基で処
理した変性ポリエチレン系接着性樹脂、変性ポリ
プロピレン系接着性樹脂、変性エチレン―酢酸ビ
ニル共重合体系接着性樹脂、共重合ポリアミド樹
脂等であり、この内特に変性エチレン―酢酸ビニ
ル共重合体系接着性樹脂及び共重合ポリアミド樹
脂が好ましい。
本発明のフイルムの総厚みは、5μ乃至150μ
であり、この範囲の厚みのフイルムが、食品の収
縮包装用に適している。アイオノマー樹脂層に対
して、エチレン―酢酸ビニル共重合体けん化物樹
脂層の厚みは20%乃至5%程度が好ましく、アイ
オノマー樹脂層に対して接着用樹脂層の厚みは50
%乃至5%程度が好ましい。
本発明の熱収縮性フイルムの製造方法は、エチ
レン含有率25乃至75モル%、該共重合体中の酢酸
ビニルに対するけん化度が90%以上のエチレン―
酢酸ビニル共重合体けん化物樹脂層と接着用樹脂
層とアイオノマー樹脂層とがこの順で隣接した積
層構造を含む多層プラスチツクシートであつて、
エチレン―酢酸ビニル共重合体けん化物樹脂層が
表面に露出していない多層シートを共押出法によ
り、積層ダイから溶融押出しを行ない、冷却固化
し次いで45℃乃至100℃の範囲内の延伸温度に再
加熱して縦方向に1.5倍以上横方向に1.5倍以上二
軸延伸した後、冷却することを特徴としている。
多層シートの共押出法には、複数の押出機を必
要としサーキユライダーによつてチユーブ状に押
出すか、又はTダイによつてフラツト状に押出す
かのいずれかが好ましい。サーキユラーダイから
多層シートをチユーブ状に溶融押出する場合は、
水槽内に浸漬してチユーブを冷却固化させるか、
冷却空気を、チユーブに吹きつけて、冷却固化さ
せるのが好ましい。次いでこのチユーブを45℃乃
至100℃の範囲内の延伸温度に再加熱して縦方向
は引取ロールを使つて1.5倍以上延伸し、横方向
はチユーブ内に空気を入れてチユーブ内の気圧を
高めてチユーブを膨張させて1.5倍以上の延伸を
掛ける。この場合、縦横の延伸は同時に行なう
か、横方向を先に延伸し、次いで縦方向の延伸を
行なうことによつて広い延伸倍率にわたつて、外
観の良好なフイルムを製造することができる。
Tダイから多層シートをフラツト状に溶融押出
する場合は、2本乃至3本のロールの表面にシー
トを接触させて冷却するか、エアーナイフを使つ
て冷却空気をシート表面に吹き付けるか、あるい
はシートを水槽内に入れて冷却するかのいずれか
が好ましい。次いでこのフラツトシートを45℃乃
至100℃の範囲内の延伸温度に再加熱して、縦方
向は延伸ロールの組合せを使つて1.5倍以上に延
伸し、横方向はシートの端部をチヤツクで固定し
て横方向へ連続的に延伸してゆくテンター方式の
延伸が好ましい。フラツトシートの場合でも、同
時二軸延伸あるいはまず横方向へ延伸し次いで縦
方向へ延伸する逐次二軸延伸によつて、広い延伸
倍率にわたつて、外観の良好なフイルムを製造す
ることが出来る。
いずれの延伸方式の場合でも、延伸温度が45℃
乃至100℃の範囲内の温度であれば、必ずしも縦
横共、同一温度で延伸する必要はない。
本発明の多層構成の積層シートの場合、まず縦
方向に延伸し次いで横方向に延伸すると、第一の
縦延伸によつて、原反の多層シートの縦方向の線
が強調され、第二の横延伸によつてもこの線が消
えず、二軸延伸フイルムに外観不良を生ずる場合
がある。そこで、同時二軸延伸か、あるいはまず
横延伸し、次いで縦延伸する逐次二軸延伸法を採
用することによつて原反シートの縦方向の線を打
消すことが出来、外観の良好な二軸延伸フイルム
を製造することが出来る。
本発明の熱収縮性フイルムは食品の収縮包装用
を目的とする為、食肉加工品等の原料を該フイル
ムで造つた袋に充填し口部をヒートシールして70
℃乃至95℃程度の熱湯中に入れて収縮包装あるい
は煮沸殺菌する。その為の熱収縮性フイルムは少
くとも100℃の温度の雰囲気中に入れて10秒後に
縦横とも10%を越える寸法収縮率を有することが
必要である。
本発明のフイルムはその要求を満足し、しかも
長期間にわたつて安定した高い酸素ガスバリア性
を有する。
本発明の熱収縮性フイルムを製造する為には、
原反の多層シートを45℃乃至100℃に加熱して、
二軸延伸することが必要であり、本発明の積層構
造を含む多層シートで初めてこのような低い温度
に於ける二軸延伸が可能となつた。
エチレン―酢酸ビニル共重合体けん化物樹脂の
単層シートは、軟化温度附近の140℃乃至180℃に
加熱すると延伸可能であるが、このような高い温
度で二軸延伸したフイルムは1000℃に加熱しても
殆んど収縮性を示さない。この多層シートを100
℃以下の温度に加熱して延伸しようとしても、樹
脂が硬い為、いわゆるネツキング現象を起すか、
延伸の途中でシートが破断してしまう。従つてこ
の樹脂の単層シートを延伸して100℃以下で収縮
を起す低温熱収縮性のフイルムを製造することは
極めて困難である。
一方、アイオノマー樹脂の単層シートは延伸可
能温度幅が極めて広く、例えば融点99℃、ビカツ
ト軟化点80℃のエチレン―メタアクリル酸共重合
体系アイオノマー樹脂の場合、60℃乃至95℃の範
囲内の温度、即ち融点以下の温度でも容易に二軸
延伸することが出来、ネツキングを生じることな
く、外観の良好な熱収縮性フイルムを得ることが
できる。
本発明の主な効果は、結晶融点以下の広い温度
域しかも、100℃以下の温度域に於いて良好な二
軸延伸性を有するアイオノマー樹脂と100℃以下
の温度では二軸延伸の極めて困難なエチレン―酢
酸ビニル共重合体けん化物樹脂とを接着用樹脂を
介して、積層させこの三層構造によつてエチレン
―酢酸ビニル共重合体けん化物樹脂層の100℃以
下の温度に於ける二軸延伸を可能にしたことにあ
る。
異なる樹脂層を積層した多層シートの場合、一
般には各々の樹脂の延伸可能温度域が異なつてい
る為、益々延伸可能温度域が狭くなる傾向があ
る。また、多層シートの場合、最も厚み比率が大
きいか延伸温度に於ける弾性率の高いシートが延
伸可能温度域を支配する傾向があり、軟化温度の
高いエチレン―酢酸ビニル共重合体けん化物樹脂
層と積層して、100℃以下の温度に於ける二軸延
伸を可能にする樹脂を見出すことは容易ではな
い。アイオノマー樹脂は、結晶融点が100℃附近
にあり、しかも結晶融点以下の比較的高い弾性率
を有する温度領域でネツキングを生じることな
く、二軸延伸することが可能であり、このアイオ
ノマー層と接着用樹脂層を介してエチレン―酢酸
ビニル共重合体けん化物樹脂層とを積層すること
によつて、他の組合せでは困難であつた良好な低
温二軸延伸、その結果としての低温熱収縮性の付
与が、可能となつたものである。
本発明は、上記の三層の積層構造を基本とし
て、その外に、エチレン―酢酸ビニル共重合体け
ん化物樹脂の吸湿を防止する為、この層を表面に
露出させない為の表面層のあることが好ましく、
用途に応じて更に多層化する。
アイオノマー樹脂/接着用樹脂/エチレン―酢
酸ビニル共重合体けん化物樹脂/接着用樹脂/ア
イオノマー樹脂の五層構成の積層シートの場合、
50℃乃至80℃の温度域で二軸延伸することによつ
て、100℃以下の雰囲気中で高い寸法収縮率を示
す熱収縮性フイルムを得ることができる。このフ
イルムは、表裏対称構造にすることができる為フ
イルムのカールが小さく、またアイオノマー樹脂
層が表面にある為、ヒートシール性も良好で、真
空収縮包装等の用途に適している。この場合、ア
イオノマー樹脂は融点85℃乃至100℃、ビカツト
軟化点60℃乃至80℃のエチレン―メタアクリル酸
共重合体にNaイオン又はZnイオンを作用させた
樹脂が好ましい。接着用樹脂は、変性エチレン―
酢酸ビニル共重合体系接着性樹脂が好ましい。
アイオノマー樹脂/接着用樹脂/エチレン―酢
酸ビニル共重合体けん化物樹脂/接着用樹脂/エ
チレン―酢酸ビニル共重合体樹脂の五層構成のシ
ートの場合、60℃乃至80℃の温度域で二軸延伸す
ることによつて、100℃以下で10%以上の寸法収
縮率を示す熱収縮性フイルムを得ることが出来
る。このフイルムは柔軟性、耐ピンホール性、ヒ
ートシール性に優れ、食肉等の収縮包装用に適し
ている。この場合も接着用樹脂層は、変性エチレ
ン―酢酸ビニル共重合体系接着性樹脂が好まし
い。
アイオノマー樹脂/共重合体ポリアミド樹脂/
エチレン―酢酸ビニル共重合体けん化物樹脂/共
重合ポリアミド樹脂の四層構成のシートの場合、
中間層の共重合ポリアミド樹脂が接着用樹脂の作
用をしている。共重合ポリアミド樹脂は、いずれ
もε―カプロラクタムとアジピン酸ヘキサメチレ
ンジアンモニウムとの共重合体が好ましい。この
シートの場合、60℃乃至80℃の温度域で二軸延伸
することによつて、100℃以下の雰囲気中で、高
い寸法収縮率を示す、熱収縮性フイルムを得るこ
とが出来る。この構成の場合、良好な二軸延伸フ
イルムを得る為には、アイオノマー樹脂層の厚み
が共重合ポリアミド樹脂層より、十分に厚いこと
が好ましい。このフイルムは透明性、耐熱性にも
優れており、ボイル殺菌など長時間の熱湯中での
熱処理に耐えるという特長を持つている。
二軸延伸の延伸倍率は縦横とも1.5倍以上であ
り、好ましくは2倍乃至4倍である。100℃の雰
囲気中に入れて、10秒後の寸法収縮率が縦横とも
10%を越える為には、1.5倍以上の延伸を必要と
する。寸法収縮率(α)は元のフイルムの長さを
1o,一定温度の雰囲気中に入れて、一定時間後の
フイルムの長さを1とすると、α=100(1o−
1)/1o(%)で定義される値である。本発明の
熱収縮率は、70℃乃至90℃の雰囲気中に入れて10
秒後の寸法収縮率が20%乃至50%であることが好
ましい。このようなフイルムを得る為には、縦横
とも2倍乃至4倍の二軸延伸を45℃乃至100℃の
温度で行なうのが好ましい。
次に本発明の実施例を述べる。
実施例
第1表に本発明の実施例及び比較例を示す。
The present invention relates to a heat-shrinkable packaging film with excellent gas barrier properties and a method for producing the same, and more specifically relates to a low-temperature heat-shrinkable film with an intermediate layer made of a saponified ethylene-vinyl acetate copolymer resin with excellent gas barrier properties. The present invention relates to a multilayer heat-shrinkable film for food packaging that has good properties such as flexibility, transparency, toughness, and hygiene, and a method for producing the same. Conventionally, vinylidene chloride resin films have been used for packaging processed meat products such as hams and sausages, and processed fish meat products such as kamaboko. Vinylidene chloride resin has excellent gas barrier properties, but residual vinylidene chloride monomer poses food hygiene concerns, and some packaging applications require even higher oxygen gas barrier properties.
In place of vinylidene chloride resin, saponified ethylene-vinyl acetate copolymer resin has recently attracted attention. However, while the saponified ethylene-vinyl acetate copolymer resin has extremely excellent gas barrier properties, it has the drawback that its gas barrier properties decrease due to moisture absorption, and its mechanical performance also decreases significantly. Furthermore, it is extremely difficult to biaxially stretch a single-layer extruded tube or extruded sheet of saponified ethylene-vinyl acetate copolymer resin at a stretching temperature of 100°C or less in a sufficiently dry state. It has been difficult to obtain a low-temperature heat-shrinkable biaxially oriented film that can be used for vacuum shrink packaging such as the following. The present inventors have developed a saponified ethylene-vinyl acetate copolymer resin with excellent gas barrier properties, which has stable and high oxygen gas barrier properties over a long period of time.
In addition, we conducted research to obtain a packaging film that exhibits high heat shrinkability in hot water, and developed a coextrusion laminate consisting of three layers: an ethylene-vinyl acetate copolymer saponified resin layer, an adhesive resin layer, and an ionomer resin layer. The inventors discovered that the sheet can be biaxially stretched at a temperature of 100° C. or lower, and after further various studies, they completed the present invention. The first object of the present invention is to provide shrink packaging that has stable oxygen gas barrier properties and moisture proof properties over a long period of time, and has excellent low-temperature heat shrinkability, transparency, pinhole resistance, and hygiene. It is an object of the present invention to provide a suitable heat-shrinkable film and a method of manufacturing such a film. The present invention provides an ionomer resin layer/modified polyolefin adhesive resin layer or copolymerized polyamide resin layer/ethylene-vinyl acetate copolymer saponified resin layer/modified polyolefin adhesive resin layer or copolymerized polyamide resin layer, and an ionomer Resin layer/
Modified polyolefin adhesive resin layer or copolymerized polyamide resin layer / ethylene-vinyl acetate copolymer saponified resin layer / modified polyolefin adhesive resin layer or copolymerized polyamide resin layer / ionomer resin layer or ethylene-vinyl acetate copolymer The composite is a multilayer plastic film with a laminated structure of adjacent layers in this order, and the ethylene-vinyl acetate copolymer saponified resin layer has an ethylene content of 25 to 75 mol% and a saponification degree of vinyl acetate in the copolymer. but
The film is composed of 90% or more resin, has a total thickness of 5μ to 150μ, and is characterized by a dimensional shrinkage rate of over 10% in both length and width after 10 seconds of being placed in an atmosphere at a temperature of 100°C. Ethylene-vinyl acetate copolymer saponified resin has a softening temperature (flow tester method) of 150 to 175.
℃, the ethylene content is 25 to 75 mol%, the degree of saponification of vinyl acetate in the copolymer is 90% or more, and it has extremely high gas barrier properties in a dry state. For saponified ethylene-vinyl acetate copolymer resins, the higher the concentration of saponified vinyl acetate in the copolymer, the higher the softening temperature and improved gas barrier properties, but on the other hand, the higher the concentration of saponified vinyl acetate in the copolymer, the higher the gas barrier properties. This results in disadvantages such as poor performance. Therefore, in the heat-shrinkable film of the present invention, a saponified ethylene-vinyl acetate copolymer resin having a softening temperature of 165°C to 175°C is preferred. Ionomer resins are ionic copolymers made by reacting metal ions with ethylene-methacrylic acid copolymers, ethylene-acrylic acid copolymers, ethylene-itaconic acid copolymers, ethylene-methyl methacrylate copolymers, etc. It is a polymer, especially ethylene-methacrylic acid copolymer containing Na ions and Mg.
A resin treated with ions or Zn ions is preferable. Ionomer resins not only have excellent water vapor barrier properties, but also have the advantage of excellent low-temperature heat sealing properties when heat sealing between films in secondary processing. Adhesive resins include modified polyethylene adhesive resins whose molecular chain ends have been treated with reactive functional groups, modified polypropylene adhesive resins, modified ethylene-vinyl acetate copolymer adhesive resins, copolymerized polyamide resins, etc. Among these, modified ethylene-vinyl acetate copolymer adhesive resins and copolyamide resins are particularly preferred. The total thickness of the film of the present invention is 5μ to 150μ
Films with a thickness within this range are suitable for shrink-wrapping foods. The thickness of the saponified ethylene-vinyl acetate copolymer resin layer is preferably about 20% to 5% of the ionomer resin layer, and the thickness of the adhesive resin layer is about 50% of the ionomer resin layer.
% to about 5% is preferable. The method for producing a heat-shrinkable film of the present invention is based on an ethylene copolymer having an ethylene content of 25 to 75 mol% and a degree of saponification of vinyl acetate in the copolymer of 90% or more.
A multilayer plastic sheet including a laminated structure in which a saponified vinyl acetate copolymer resin layer, an adhesive resin layer, and an ionomer resin layer are adjacent to each other in this order,
A multilayer sheet in which the saponified ethylene-vinyl acetate copolymer resin layer is not exposed on the surface is melt-extruded from a laminated die using a coextrusion method, solidified by cooling, and then stretched at a temperature within the range of 45°C to 100°C. It is characterized by being reheated and biaxially stretched by 1.5 times or more in the machine direction and 1.5 times or more in the transverse direction, and then cooled. The coextrusion method for multilayer sheets requires a plurality of extruders, and is preferably extruded into a tube shape using a circular rider or extruded into a flat shape using a T-die. When melt extruding a multilayer sheet into a tube shape from a circular die,
Either cool and solidify the tube by immersing it in a water tank, or
Preferably, cooling air is blown into the tube to cool and solidify it. Next, this tube is reheated to a stretching temperature within the range of 45°C to 100°C, stretched by more than 1.5 times in the longitudinal direction using a take-up roll, and in the transverse direction, air is introduced into the tube to increase the pressure inside the tube. Inflate the tube and stretch it more than 1.5 times. In this case, a film with good appearance can be produced over a wide range of stretching ratios by simultaneously stretching in the longitudinal and lateral directions, or by first stretching in the transverse direction and then in the longitudinal direction. When melt-extruding a multilayer sheet in a flat form from a T-die, the sheet is cooled by contacting the surfaces of two or three rolls, cooling air is blown onto the sheet surface using an air knife, or the sheet is It is preferable to cool it by placing it in a water tank. Next, this flat sheet is reheated to a stretching temperature within the range of 45°C to 100°C, and stretched by more than 1.5 times in the longitudinal direction using a combination of stretching rolls, and in the transverse direction, the edges of the sheet are fixed with chucks. A tenter method of stretching in which the film is stretched continuously in the transverse direction is preferred. Even in the case of a flat sheet, a film with good appearance can be produced over a wide range of stretching ratios by simultaneous biaxial stretching or sequential biaxial stretching in which the film is first stretched in the transverse direction and then in the longitudinal direction. Regardless of the stretching method, the stretching temperature is 45℃.
As long as the temperature is within the range of 100° C., it is not necessarily necessary to stretch at the same temperature in both length and width. In the case of the multilayer laminated sheet of the present invention, when first stretched in the longitudinal direction and then stretched in the transverse direction, the first longitudinal stretching emphasizes the longitudinal lines of the original multilayer sheet, and the second These lines may not disappear even after transverse stretching, resulting in poor appearance of the biaxially stretched film. Therefore, by adopting simultaneous biaxial stretching or a sequential biaxial stretching method in which horizontal stretching is first performed and then longitudinal stretching, it is possible to eliminate the vertical lines of the original sheet and create a two-dimensional structure with a good appearance. An axially stretched film can be produced. Since the heat-shrinkable film of the present invention is intended for shrink-wrapping foods, raw materials such as processed meat products are filled into a bag made of the film and the opening is heat-sealed for 70 minutes.
Shrink-wrap or sterilize by boiling in boiling water at a temperature between 95°C and 95°C. For this purpose, the heat-shrinkable film must have a dimensional shrinkage rate of more than 10% in both length and width after 10 seconds of being placed in an atmosphere at a temperature of at least 100°C. The film of the present invention satisfies these requirements and has stable high oxygen gas barrier properties over a long period of time. In order to manufacture the heat-shrinkable film of the present invention,
Heating the original multilayer sheet to 45℃ to 100℃,
Biaxial stretching is necessary, and biaxial stretching at such a low temperature has become possible for the first time with the multilayer sheet containing the laminated structure of the present invention. A single-layer sheet of saponified ethylene-vinyl acetate copolymer resin can be stretched by heating it to 140°C to 180°C, near its softening temperature, but a film biaxially stretched at such a high temperature cannot be heated to 1000°C. However, it shows almost no shrinkage. 100 pieces of this multilayer sheet
Even if you try to stretch it by heating it to a temperature below ℃, the resin is hard and will cause the so-called netting phenomenon.
The sheet breaks during stretching. Therefore, it is extremely difficult to produce a low-temperature heat-shrinkable film that shrinks at temperatures below 100° C. by stretching a single-layer sheet of this resin. On the other hand, a single-layer sheet of ionomer resin can be stretched over a very wide temperature range. For example, in the case of an ethylene-methacrylic acid copolymer ionomer resin with a melting point of 99°C and a Vikato softening point of 80°C, it can be stretched within a range of 60°C to 95°C. Biaxial stretching can be easily performed even at temperatures below the melting point, and a heat-shrinkable film with a good appearance can be obtained without causing netting. The main effects of the present invention are that the ionomer resin has good biaxial stretching properties in a wide temperature range below the crystal melting point and in the temperature range below 100°C, and the ionomer resin has excellent biaxial stretching properties at temperatures below 100°C. The saponified ethylene-vinyl acetate copolymer resin is laminated with the saponified ethylene-vinyl acetate copolymer resin through an adhesive resin, and this three-layer structure allows the biaxial stability of the saponified ethylene-vinyl acetate copolymer resin layer at temperatures below 100°C. The reason is that it makes stretching possible. In the case of a multilayer sheet in which different resin layers are laminated, each resin generally has a different stretchable temperature range, so the stretchable temperature range tends to become narrower. In addition, in the case of multilayer sheets, the sheet with the largest thickness ratio or the highest elastic modulus at the stretching temperature tends to dominate the stretchable temperature range, and the ethylene-vinyl acetate copolymer saponified resin layer with a high softening temperature tends to dominate the stretchable temperature range. It is not easy to find a resin that allows biaxial stretching at temperatures below 100°C. Ionomer resin has a crystalline melting point around 100°C, and can be biaxially stretched without necking in a temperature range where it has a relatively high elastic modulus below the crystallographic melting point. By laminating an ethylene-vinyl acetate copolymer saponified resin layer through a resin layer, it is possible to achieve good low-temperature biaxial stretching, which was difficult with other combinations, and as a result, impart low-temperature heat shrinkability. is now possible. The present invention is based on the above-mentioned three-layer laminated structure, but also includes a surface layer to prevent this layer from being exposed to the surface in order to prevent the saponified ethylene-vinyl acetate copolymer resin from absorbing moisture. is preferable,
Further layers can be added depending on the application. In the case of a laminate sheet with a five-layer structure of ionomer resin/adhesive resin/saponified ethylene-vinyl acetate copolymer resin/adhesive resin/ionomer resin,
By biaxially stretching in a temperature range of 50°C to 80°C, a heat-shrinkable film that exhibits high dimensional shrinkage in an atmosphere of 100°C or lower can be obtained. This film has a symmetrical structure on the front and back, so the curl of the film is small, and since the ionomer resin layer is on the surface, it has good heat sealability, making it suitable for applications such as vacuum shrink packaging. In this case, the ionomer resin is preferably a resin prepared by reacting Na ions or Zn ions with an ethylene-methacrylic acid copolymer having a melting point of 85° C. to 100° C. and a Vicat softening point of 60° C. to 80° C. The adhesive resin is modified ethylene.
Vinyl acetate copolymer adhesive resins are preferred. In the case of a sheet with a five-layer structure of ionomer resin/adhesive resin/saponified ethylene-vinyl acetate copolymer resin/adhesive resin/ethylene-vinyl acetate copolymer resin, biaxial stability occurs in the temperature range of 60°C to 80°C. By stretching, it is possible to obtain a heat-shrinkable film that exhibits a dimensional shrinkage of 10% or more at temperatures below 100°C. This film has excellent flexibility, pinhole resistance, and heat sealability, and is suitable for shrink-wrapping meat, etc. In this case as well, the adhesive resin layer is preferably a modified ethylene-vinyl acetate copolymer adhesive resin. Ionomer resin/Copolymer polyamide resin/
In the case of a sheet with a four-layer structure of ethylene-vinyl acetate copolymer saponified resin/copolymerized polyamide resin,
The copolyamide resin in the middle layer acts as an adhesive resin. The copolymerized polyamide resin is preferably a copolymer of ε-caprolactam and hexamethylene diammonium adipate. In the case of this sheet, by biaxially stretching it at a temperature range of 60°C to 80°C, a heat-shrinkable film that exhibits high dimensional shrinkage in an atmosphere of 100°C or lower can be obtained. In the case of this configuration, in order to obtain a good biaxially stretched film, it is preferable that the ionomer resin layer is sufficiently thicker than the copolyamide resin layer. This film has excellent transparency and heat resistance, and can withstand long-term heat treatment in boiling water, such as boiling sterilization. The stretching ratio of the biaxial stretching is 1.5 times or more in both length and width, preferably 2 times to 4 times. The dimensional shrinkage rate after 10 seconds after being placed in a 100℃ atmosphere is
To exceed 10%, it is necessary to stretch 1.5 times or more. The dimensional shrinkage rate (α) is the length of the original film.
1o, put in a constant temperature atmosphere, and let the length of the film after a certain time be 1, then α = 100 (1o -
1)/1o (%). The heat shrinkage rate of the present invention is 10% when placed in an atmosphere of 70℃ to 90℃.
It is preferable that the dimensional shrinkage after seconds is 20% to 50%. In order to obtain such a film, it is preferable to carry out biaxial stretching of 2 to 4 times both length and width at a temperature of 45°C to 100°C. Next, examples of the present invention will be described. Examples Table 1 shows examples and comparative examples of the present invention.
【表】
第1表に示したNo.1〜No.10のフイルムの原反シ
ートはいずれもTダイ押出法によつて製造した。
単層ダイ又は多層共押出ダイから溶融押出しし
て、160μの厚さのシートを造つた。次いで、逐
次二軸延伸装置によりシートを再加熱して後、縦
横とも各々2倍に延伸して約40μの厚さのフイル
ムを造り、延伸性と収縮性とを評価した。
最適延伸温度域とは延伸中にフイルムの破断が
生じることなく、外観が比較的良好なフイルムを
延伸することの出来る温度域のことである。フイ
ルム外観は透明性、平滑性が良く、延伸ムラのな
いものを良好とし、ネツキングによる延伸ムラの
生じているもの、平滑性、透明性の悪いものを不
良とした。熱収縮性は沸騰水中にフイルムを入れ
て、10秒後に取り出して冷却し、煮沸前後で縦横
とも10%を越える寸法収縮率を示すものを良好と
し、それ以下のものを不良とした。
第1表に於いて、アイオノマー樹脂は融点99
℃、ビカツト軟化点80%℃のエチレン―メタアク
リル酸共重合体にZnイオンを作用させた樹脂
(三井ポリケミカル(株)製ハイミラン)であり、変
性エチレン―酢酸ビニル共重合体系接着性樹脂は
三井石油化学(株)製アドマーであり、エチレン―酢
酸ビニル共重合体けん化物樹脂は軟化温度(フロ
ーテスター法)が170℃のクラレ(株)製エバールで
あり、共重合ポリアミドは融点190℃の宇部興産
(株)製ナイロンであり、ポリプロピレン共重合体は
融点150℃の住友化学(株)製住友ノーブレンであ
り、低密度ポリエチレンは融点105℃の住友化学
(株)製スミカセンであり、エチレン―酢酸ビニル共
重合体樹脂は住友化学(株)製エバテートで共重合体
中の酢酸ビニル含量は7モル%である。
第2表にはNo.1〜No.10のフイルムの各層厚みを
示す。(各層の略号は第1表と同じである。)[Table] The raw sheets of films No. 1 to No. 10 shown in Table 1 were all manufactured by the T-die extrusion method.
160μ thick sheets were produced by melt extrusion from a single layer die or a multilayer coextrusion die. Next, the sheet was reheated using a sequential biaxial stretching device, and then stretched twice in both length and width to form a film with a thickness of about 40 μm, and its stretchability and shrinkability were evaluated. The optimum stretching temperature range is a temperature range in which a film with a relatively good appearance can be stretched without causing film breakage during stretching. Films with good transparency and smoothness and no stretching unevenness were evaluated as good, and films with stretching unevenness due to netting or poor smoothness and transparency were evaluated as poor. Heat shrinkability was determined by placing the film in boiling water, taking it out after 10 seconds, and cooling it. Those exhibiting a dimensional shrinkage rate of more than 10% both in length and width before and after boiling were considered good, and those less than that were considered poor. In Table 1, ionomer resin has a melting point of 99
It is a resin (Himilan manufactured by Mitsui Polychemicals Co., Ltd.) made by acting on Zn ions on an ethylene-methacrylic acid copolymer with a Vikatsuto softening point of 80% °C.A modified ethylene-vinyl acetate copolymer adhesive resin is The saponified ethylene-vinyl acetate copolymer resin is Eval manufactured by Kuraray Co., Ltd., which has a softening temperature (flow tester method) of 170°C, and the copolyamide polyamide has a melting point of 190°C. Ube Industries
The polypropylene copolymer is Sumitomo Noblen manufactured by Sumitomo Chemical Co., Ltd. with a melting point of 150℃, and the low density polyethylene is Sumitomo Chemical Co., Ltd. with a melting point of 105℃.
The ethylene-vinyl acetate copolymer resin is Evatate, manufactured by Sumitomo Chemical Co., Ltd., and the vinyl acetate content in the copolymer is 7 mol%. Table 2 shows the thickness of each layer of films No. 1 to No. 10. (The abbreviations for each layer are the same as in Table 1.)
【表】
フイルム構成の順序と厚み構成の順序はそれぞ
れ左から右へ対応させて表わしている。
実施例のNo.1〜No.5で明らかなように、本発明
の熱収縮性フイルムはフイルム外観及び低温熱収
縮性が極めて良好である。
比較例のNo.6〜No.10で明らかなように、アイオ
ノマー樹脂層を含まないフイルムは低温熱収縮性
が悪く、外観も不十分で、食肉加工品等の収縮包
装用に適さない。[Table] The order of the film structure and the order of the thickness structure are shown in correspondence from left to right. As is clear from Examples No. 1 to No. 5, the heat-shrinkable film of the present invention has extremely good film appearance and low-temperature heat-shrinkability. As is clear from Comparative Examples No. 6 to No. 10, films that do not contain an ionomer resin layer have poor low-temperature heat shrinkability and an unsatisfactory appearance, making them unsuitable for shrink-wrapping processed meat products and the like.
Claims (1)
接着性樹脂層又は共重合ポリアミド樹脂層/エチ
レン―酢酸ビニル共重合体けん化物樹脂層/変性
ポリオレフイン系接着性樹脂層又は共重合ポリア
ミド樹脂層が、この順で隣接した積層構造である
多層プラスチツクフイルムであり、エチレン―酢
酸ビニル共重合体けん化物樹脂層は、エチレン含
有率25乃至75モル%、共重合体中の酢酸ビニルに
対するけん化度が90%以上の樹脂からなり、該フ
イルムの総厚みが5μ乃至150μであり、100℃の
温度の雰囲気中に入れて10秒後の寸法収縮率が縦
横とも10%を越えることを特徴とする熱収縮性フ
イルム。 2 アイオノマー樹脂がエチレン―メタアクリル
酸共重合体に金属イオンを作用させた樹脂である
特許請求の範囲第1項記載の熱収縮性フイルム。 3 変性ポリオレフイン系接着性樹脂が変性エチ
レン―酢酸ビニル共重合体である特許請求の範囲
第1項又は第2項記載の熱収縮性フイルム。 4 アイオノマー樹脂層/変性ポリオレフイン系
接着性樹脂層又は共重合ポリアミド樹脂層/エチ
レン―酢酸ビニル共重合体けん化物樹脂層/変性
ポリオレフイン系接着性樹脂層又は共重合ポリア
ミド樹脂層/アイオノマー樹脂層又はエチレン―
酢酸ビニル共重合体が、この順で隣接した積層構
造である多層プラスチツクフイルムであり、エチ
レン―酢酸ビニル共重合体けん化物樹脂層は、エ
チレン含有率25乃至75モル%、共重合体中の酢酸
ビニルに対するけん化度が90%以上の樹脂からな
り、該フイルムの総厚みが5μ乃至150μであ
り、100℃の温度の雰囲気中に入れて10秒後の寸
法収縮率が縦横とも10%を越えることを特徴とす
る熱収縮性フイルム。 5 アイオノマー樹脂がエチレン―メタアクリル
酸共重合体に金属イオンを作用させた樹脂である
特許請求の範囲第4項記載の熱収縮性フイルム。 6 変性ポリオレフイン系接着性樹脂が変性エチ
レン―酢酸ビニル共重合体である特許請求の範囲
第4項又は第5項記載の熱収縮性フイルム。[Claims] 1. Ionomer resin layer/modified polyolefin adhesive resin layer or copolymerized polyamide resin layer/saponified ethylene-vinyl acetate copolymer resin layer/modified polyolefin adhesive resin layer or copolymerized polyamide resin layer However, it is a multilayer plastic film with a laminated structure of adjacent layers in this order. The film is made of 90% or more resin, has a total thickness of 5μ to 150μ, and has a dimensional shrinkage rate of more than 10% in both length and width after 10 seconds of being placed in an atmosphere at a temperature of 100°C. Shrinkable film. 2. The heat-shrinkable film according to claim 1, wherein the ionomer resin is a resin in which metal ions are applied to an ethylene-methacrylic acid copolymer. 3. The heat-shrinkable film according to claim 1 or 2, wherein the modified polyolefin adhesive resin is a modified ethylene-vinyl acetate copolymer. 4 Ionomer resin layer / modified polyolefin adhesive resin layer or copolymerized polyamide resin layer / ethylene-vinyl acetate copolymer saponified resin layer / modified polyolefin adhesive resin layer or copolymerized polyamide resin layer / ionomer resin layer or ethylene ―
It is a multilayer plastic film with a laminated structure in which vinyl acetate copolymer is adjacent to each other in this order, and the ethylene-vinyl acetate copolymer saponified resin layer has an ethylene content of 25 to 75 mol% and acetic acid in the copolymer. The film must be made of a resin with a saponification degree of 90% or more relative to vinyl, the total thickness of the film is 5μ to 150μ, and the dimensional shrinkage rate in both length and width after 10 seconds after being placed in an atmosphere at a temperature of 100℃ exceeds 10%. A heat-shrinkable film featuring: 5. The heat-shrinkable film according to claim 4, wherein the ionomer resin is a resin in which metal ions are applied to an ethylene-methacrylic acid copolymer. 6. The heat-shrinkable film according to claim 4 or 5, wherein the modified polyolefin adhesive resin is a modified ethylene-vinyl acetate copolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16752579A JPS5689944A (en) | 1979-12-25 | 1979-12-25 | Thermoocontractive film and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16752579A JPS5689944A (en) | 1979-12-25 | 1979-12-25 | Thermoocontractive film and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5689944A JPS5689944A (en) | 1981-07-21 |
JPS625060B2 true JPS625060B2 (en) | 1987-02-03 |
Family
ID=15851304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16752579A Granted JPS5689944A (en) | 1979-12-25 | 1979-12-25 | Thermoocontractive film and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5689944A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155865U (en) * | 1988-04-18 | 1989-10-26 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56136365A (en) * | 1980-03-28 | 1981-10-24 | Mitsubishi Plastics Ind | Laminated film |
IT1153003B (en) * | 1982-11-03 | 1987-01-14 | Grace W R & Co | LAMINATED FILMS FOR PACKAGING AND RELATED ITEMS WITH IMPROVED RESISTANCE TO HEAT TREATMENTS |
JPS59169440A (en) * | 1983-03-16 | 1984-09-25 | 大倉工業株式会社 | Casing for ham and sausage |
EP0132565B2 (en) * | 1983-08-01 | 1998-11-25 | AlliedSignal Inc. | Oriented film laminates of polyamides and ethylene vinyl alcohol |
JPS6047632A (en) * | 1983-08-26 | 1985-03-15 | Masahiko Kamiyama | Package of processed marine and livestock product |
NZ238706A (en) * | 1990-06-27 | 1994-12-22 | Gunze Kk | Stretched multi-layer films having at least one polyamide layer of 50-95% crystalline polyamide and 5-50% amorphous polyamide |
JP7363083B2 (en) * | 2019-04-24 | 2023-10-18 | 三菱ケミカル株式会社 | Heat-shrinkable laminated film, heat-shrinkable laminated tube, and packaging |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS516276A (en) * | 1974-07-04 | 1976-01-19 | Mitsubishi Plastics Ind | Echiren sakusanbinirukeikyojugotaikenkabutsuno nijikuenshinhoho |
JPS5131784A (en) * | 1974-09-13 | 1976-03-18 | Sumitomo Bakelite Co | FUKUGO FUIRUMUNAISHISHIITO |
JPS5134285A (en) * | 1974-09-19 | 1976-03-23 | Sumitomo Bakelite Co | FUKUGO FUIRUMUNAISHISHIITO |
JPS5234670A (en) * | 1975-08-18 | 1977-03-16 | Matsushita Electronics Corp | Semiconductor device |
JPS5243889A (en) * | 1975-10-02 | 1977-04-06 | Grace W R & Co | Heat shrinkable laminated film and method for its production |
JPS5253984A (en) * | 1975-10-29 | 1977-04-30 | Toray Ind Inc | Composite film |
JPS52115880A (en) * | 1976-03-24 | 1977-09-28 | Mitsubishi Plastics Ind | Method of manufacturing composite film with superior property of gas enterception |
JPS52148577A (en) * | 1976-06-04 | 1977-12-09 | Kureha Chem Ind Co Ltd | Heat-shrinkable multilayered films having gas barrier properties |
JPS5363484A (en) * | 1976-11-18 | 1978-06-06 | Nippon Synthetic Chem Ind Co Ltd:The | Multilayer structure |
JPS5382888A (en) * | 1976-12-29 | 1978-07-21 | Kureha Chem Ind Co Ltd | Co-extruded five-layered drawn cylindrical film and its manufacture |
JPS543179A (en) * | 1977-06-10 | 1979-01-11 | Asahi Chem Ind Co Ltd | Heat-shrinkable laminate film |
JPS5415981A (en) * | 1977-07-06 | 1979-02-06 | Gunze Kk | Heat shrinking laminate film manufacture |
JPS5447776A (en) * | 1977-09-22 | 1979-04-14 | Gunze Kk | Clear gas barrier laminated film of no curling and manufacture thereof |
JPS5486579A (en) * | 1977-12-23 | 1979-07-10 | Mitsubishi Plastics Ind Ltd | Laminated drawn film |
-
1979
- 1979-12-25 JP JP16752579A patent/JPS5689944A/en active Granted
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS516276A (en) * | 1974-07-04 | 1976-01-19 | Mitsubishi Plastics Ind | Echiren sakusanbinirukeikyojugotaikenkabutsuno nijikuenshinhoho |
JPS5131784A (en) * | 1974-09-13 | 1976-03-18 | Sumitomo Bakelite Co | FUKUGO FUIRUMUNAISHISHIITO |
JPS5134285A (en) * | 1974-09-19 | 1976-03-23 | Sumitomo Bakelite Co | FUKUGO FUIRUMUNAISHISHIITO |
JPS5234670A (en) * | 1975-08-18 | 1977-03-16 | Matsushita Electronics Corp | Semiconductor device |
JPS5243889A (en) * | 1975-10-02 | 1977-04-06 | Grace W R & Co | Heat shrinkable laminated film and method for its production |
JPS5253984A (en) * | 1975-10-29 | 1977-04-30 | Toray Ind Inc | Composite film |
JPS52115880A (en) * | 1976-03-24 | 1977-09-28 | Mitsubishi Plastics Ind | Method of manufacturing composite film with superior property of gas enterception |
JPS52148577A (en) * | 1976-06-04 | 1977-12-09 | Kureha Chem Ind Co Ltd | Heat-shrinkable multilayered films having gas barrier properties |
JPS5363484A (en) * | 1976-11-18 | 1978-06-06 | Nippon Synthetic Chem Ind Co Ltd:The | Multilayer structure |
JPS5382888A (en) * | 1976-12-29 | 1978-07-21 | Kureha Chem Ind Co Ltd | Co-extruded five-layered drawn cylindrical film and its manufacture |
JPS543179A (en) * | 1977-06-10 | 1979-01-11 | Asahi Chem Ind Co Ltd | Heat-shrinkable laminate film |
JPS5415981A (en) * | 1977-07-06 | 1979-02-06 | Gunze Kk | Heat shrinking laminate film manufacture |
JPS5447776A (en) * | 1977-09-22 | 1979-04-14 | Gunze Kk | Clear gas barrier laminated film of no curling and manufacture thereof |
JPS5486579A (en) * | 1977-12-23 | 1979-07-10 | Mitsubishi Plastics Ind Ltd | Laminated drawn film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155865U (en) * | 1988-04-18 | 1989-10-26 |
Also Published As
Publication number | Publication date |
---|---|
JPS5689944A (en) | 1981-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4865902A (en) | Multilayered polyolefin high shrinkage, low-shrink force shrink film | |
EP0051480B1 (en) | Laminate films for heat-shrink packaging foodstuffs | |
US4911963A (en) | Multilayer film containing amorphous nylon | |
EP0229715B1 (en) | Multilayered polyolefin high shrinkage low-shrink force shrink film | |
US4352849A (en) | Coextruded, heat-shrinkable, multi-layer, polyolefin packaging film | |
US4695491A (en) | Heat-shrinkable composite packaging film | |
US5077109A (en) | Oriented multilayer film and process for making same | |
NO171713B (en) | PROCEDURE FOR THE PREPARATION OF A COOK-STRUCTURED THERMOPLASTIC MULTILAYER, SHRIMP MOVIE | |
JPS625060B2 (en) | ||
JPH10291286A (en) | Polyamide multilayer shrinkable film | |
JPS61295036A (en) | Heat-shrinkable laminated film | |
JPS59152853A (en) | Heat-shrinkable multilayer film and manufacture thereof | |
US4731214A (en) | Process for preparing a thermally shrinkable multilayer film | |
JPS625061B2 (en) | ||
JP3028341B2 (en) | Multilayer film | |
JPH04232048A (en) | Ethylene propyrene terpolymer film | |
JPS588644A (en) | Heat-shrinkable multilayer film and its package | |
JPS625063B2 (en) | ||
JPH0143626B2 (en) | ||
JPS59212261A (en) | Heat-shrinkable multilayer film | |
JPH0313336A (en) | Multilayer stretched film | |
JPH0140678Y2 (en) | ||
JP2821252B2 (en) | Sealant film | |
JPS60232947A (en) | Heat-shrinkable multilayer film | |
JPH0334852A (en) | Multi-layer film and manufacture thereof |