JPS636545A - Self-developing positive type electron beam resist and pattern forming method using the same - Google Patents

Self-developing positive type electron beam resist and pattern forming method using the same

Info

Publication number
JPS636545A
JPS636545A JP14948886A JP14948886A JPS636545A JP S636545 A JPS636545 A JP S636545A JP 14948886 A JP14948886 A JP 14948886A JP 14948886 A JP14948886 A JP 14948886A JP S636545 A JPS636545 A JP S636545A
Authority
JP
Japan
Prior art keywords
resist
electron beam
metal phthalocyanine
film
phthalocyanine derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14948886A
Other languages
Japanese (ja)
Inventor
Yoko Yoshinaga
吉永 曜子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14948886A priority Critical patent/JPS636545A/en
Publication of JPS636545A publication Critical patent/JPS636545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705

Abstract

PURPOSE:To obtain the titled resist having a high sensitivity and being a self- developing type by forming the positive type electron beam resist obtd. by depositing a metallophthalocyanine derivative on a substrate, thereby easily forming a resist film to a single composition. CONSTITUTION:The titled resist is composed of the metallophthalocyanine derivative shown by the formula wherein M is a metal atom, L is a ligand, Pc is a phthalocyanine ring (n) is an integer of 1 or 2. Said derivative is for example, sodium dicyanocobaltphthalocyanine, etc. The resist is obtd. by dissolving the metallophthalocyanine derivative to a solvent to form an electrolyte, and by depositing a crystal of the electrolysis product on an electrode by effecting the electrolysis of the electrolyte, followed by depositing the obtd. crystal on a substrate such as a glass, etc. The pattern is formed by irradiating the electron beam on the resist film, followed by removing the exposed part of the resist film. Thus, as the resist is produced from the metallophthalocyanine derivative, the titled resist having a high sensitivity and enabling a dry process is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子線リソグラフィー用レジスト、詳しくは
、電子線の照射だけでパターニング可能であり、現像処
理を必要としない、いわゆる自己現像型であって、ドラ
イプロセスによってパターニング可能であるポジ型レジ
スト及び該レジストを用いたパターンの形成方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a resist for electron beam lithography, specifically, a so-called self-developing type resist that can be patterned only by electron beam irradiation and does not require development. The present invention relates to a positive resist that can be patterned by a dry process and a pattern forming method using the resist.

〔従来の技術〕[Conventional technology]

光リソグラフィーを用いた回路基板等の形成に用いるレ
ジスト形成用材料としては、主に紫外線に対する感光性
を有するフォトレジストが用いられてきた。
Photoresists that are sensitive to ultraviolet rays have been mainly used as resist forming materials for forming circuit boards and the like using photolithography.

しかしながら、紫外線レジストでは、主に紫外線自身の
回折や干渉作用のために解像度に限界があり、超LSI
のようなより高度に集積化された回路などの製造に必要
な、より微細なレジストパターンの形成には十分対応で
きなくなっている。
However, ultraviolet resists have limited resolution mainly due to the diffraction and interference effects of the ultraviolet rays themselves.
It is no longer sufficient to support the formation of finer resist patterns required for manufacturing more highly integrated circuits such as .

そこで、より微細なレジストパターンを形成できる新た
な露光技術やレジスト形成用材料の開発が盛んとなって
いる。
Therefore, new exposure techniques and resist forming materials that can form finer resist patterns are being actively developed.

なかでも、回折や干渉の影響がほとんどなく原理的には
微細パターンの形成特性に優れ、更に光源、マスク等の
周辺機器の開発が著しい、電子線を用いた露光技術は、
例えば1−以下というより微細なレジストパターンを解
像度良く形成できる技術として注目されている。
Among these, exposure technology using electron beams has excellent properties for forming fine patterns in principle with almost no influence of diffraction or interference, and the development of peripheral equipment such as light sources and masks is remarkable.
For example, it is attracting attention as a technology that can form finer resist patterns of 1- or less with high resolution.

ポジ型電子線レジストとして代表的なものとしては、ポ
リメタクリル酸メチル(PMMA)が知られている。こ
のポジ型の電子線レジストは、ポリメタクリル酸グリシ
ジル等のネガ型レジストと比較して、解像性に優れ、後
重合効果もなく扱い易いという利点を有するが、感度が
低いのが欠点である。そこで、感度を上げるために電子
線に反応して樹脂の主鎖の切断を促進する効果を有する
テトラメチル錫や Ph5SAsF6−等のオニウム塩
化合物などを更に樹脂に添加して使用する場合が多い。
Polymethyl methacrylate (PMMA) is known as a typical positive electron beam resist. Compared to negative resists such as polyglycidyl methacrylate, this positive electron beam resist has the advantage of superior resolution and ease of handling without post-polymerization effects, but its disadvantage is low sensitivity. . Therefore, in order to increase the sensitivity, onium salt compounds such as tetramethyltin and Ph5SAsF6-, which have the effect of promoting scission of the main chain of the resin in response to electron beams, are often added to the resin.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、PMMA等の樹脂に、電子線と反応して樹脂
の主鎖の切断を促進する効果を有する各種添加物を添加
して形成したポジ型電子線レジストでは1例えばレジス
ト全体に均一な感度や解像度を得るためには、複数の成
分が均一に混合されていなければならず、しかも各成分
の配合量も微妙であり、そのための特別な技術が要求さ
れる。
However, with positive electron beam resists formed by adding various additives to resins such as PMMA that have the effect of reacting with electron beams and promoting scission of the main chain of the resin, for example, it is difficult to achieve uniform sensitivity throughout the resist. In order to obtain resolution, a plurality of components must be mixed uniformly, and the amount of each component is also delicate, requiring special techniques for this purpose.

−方、従来のレジストでは、パターニングに際して、露
光後に現像処理による不必要な部分の除去工程が必須で
あった。そこで、この現像処理を省略できるいわゆる自
己現像型のレジスト、すなわちパターン露光の際に同時
に不要部分を除去できるレジストの使用がPMMA等を
用いて試みられているが、いずれも電子線の大量の照射
を必要とし、ここでも感度の点で満足できるものがない
のが現状である。
- On the other hand, in patterning, conventional resists require a step of removing unnecessary portions by development treatment after exposure. Therefore, attempts have been made to use so-called self-developing resists that can omit this development process, that is, resists that can remove unnecessary portions at the same time as pattern exposure, using PMMA, etc., but all of these resists require a large amount of electron beam irradiation. The current situation is that there is no one that is satisfactory in terms of sensitivity.

本発明の目的は、単一組成からなり、成膜が容易であり
、しかも感度に優れたポジ型電子線レジスト膜を提供す
ることにある。
An object of the present invention is to provide a positive electron beam resist film that has a single composition, is easy to form, and has excellent sensitivity.

本発明の他の目的は、従来のレジストのようにパターン
露光後の現像処理を必要としない自己現像型であって、
しかも高感度のポジ型電子線レジスト膜を提供すること
にある。
Another object of the present invention is to provide a self-developing type resist that does not require development treatment after pattern exposure unlike conventional resists,
Moreover, it is an object of the present invention to provide a highly sensitive positive electron beam resist film.

本発明の他の目的は、ドライプロセスによって実施でき
、かつ従来のような現像処理が省略されていることによ
って、製造工程が簡略化された微細レジストパターンの
形成方法を提供することにある。
Another object of the present invention is to provide a method for forming a fine resist pattern which can be carried out by a dry process and which simplifies the manufacturing process by omitting the conventional development process.

本発明の他の目的は、パターニングされた金属フタロシ
アニン誘導体膜からなる機能膜、及びその形成方法を提
供することにある。
Another object of the present invention is to provide a functional film made of a patterned metal phthalocyanine derivative film and a method for forming the same.

〔問題点を解決するための手段〕[Means for solving problems]

と記の目的は、以下の本発明によって達成することがで
きる。
The objects described above can be achieved by the present invention as described below.

すなわち本発明は、金属フタロシアニン誘導体からなる
ことを特徴とする自己現像型のポジ型電子線レジスト、
及び基板上に形成した金属フタロシアニン誘導体膜に電
子線を照射して、該照射部を前記基板上から除去し、該
膜の非照射部からなるパターンを該基板上に形成する過
程を含むことを特徴とするパターンの形成方法である。
That is, the present invention provides a self-developing positive electron beam resist characterized by comprising a metal phthalocyanine derivative;
and irradiating a metal phthalocyanine derivative film formed on a substrate with an electron beam, removing the irradiated portion from the substrate, and forming a pattern on the substrate consisting of the non-irradiated portion of the film. This is a characteristic pattern forming method.

本発明の電子線レジストを形成するための金属フタロシ
アニン誘導体には、例えば下記−般式(I)で示される
化合物が含まれる。
The metal phthalocyanine derivative for forming the electron beam resist of the present invention includes, for example, a compound represented by the following general formula (I).

MPc (L)n    −−−CI )(上記式にお
いて、Mは金属原子、Lは配位子、Pcはフタロシアニ
ン環であり、nは1または2を表わす。
MPc (L)n ---CI) (In the above formula, M is a metal atom, L is a ligand, Pc is a phthalocyanine ring, and n represents 1 or 2.

上記−般式(I)におけるM(金属原子)として好まし
いものは、三価以上の金属であり、例えばアルミニウム
、インジウム、ガリウム、スズ、鉛、チタン、ゲルマニ
ウム、シリコン、トリウム、アンチモン、バナジウム、
クロム、モリブデン、ウラン、マンガン、鉄、コバルト
、ニツヶル、ハフニウム、ロジウム、パラジウム、オス
ミウム、白金等を挙げることができる。また、これらの
なかでも周期律表の第■族に属する遷移金属が特に好ま
しい。
Preferred as M (metal atom) in the above general formula (I) are trivalent or higher valent metals, such as aluminum, indium, gallium, tin, lead, titanium, germanium, silicon, thorium, antimony, vanadium,
Examples include chromium, molybdenum, uranium, manganese, iron, cobalt, nickel, hafnium, rhodium, palladium, osmium, and platinum. Among these, transition metals belonging to Group 1 of the periodic table are particularly preferred.

上記−般式(I)におけるL(配位子)として好ましい
ものは、含窒素有機化合物からなる基であり、例えばシ
アノ基、ピペリジノ基、ピペリジル基、l−メチルイミ
ダゾリル基、ピリジル基、2−メチルピラジニル基、3
,4−ジメチルピリジル基、3.5−ジメチルピリジル
基、4−メチルビリジル基、3−クロルピリジル基、ピ
ラジニル基、3−エチルピリジル基、4−エチルピリジ
ル基、3−アセチルピリジル基、4−アセチルピリジル
基、ビピリジル基、ジシアノベンジル基、シアノベンジ
ル基、更には、ジメチルアミノ基、エチルアミノ基、プ
ロピルアミン基、ブチルアミノ基等の脂肪族アミ7基、
アニリノ基、メチルアニリノ基、ジメチルアニリノ基、
ナフチルアミノ基等の芳香族アミン基、塩素、臭素等の
ハロゲン原子などを挙げることができる。これらの配位
子は、nが2のときはこれらは同一でも異なるものであ
っても良い。
Preferred as L (ligand) in the above general formula (I) are groups made of nitrogen-containing organic compounds, such as cyano group, piperidino group, piperidyl group, l-methylimidazolyl group, pyridyl group, 2- Methyl pyrazinyl group, 3
, 4-dimethylpyridyl group, 3.5-dimethylpyridyl group, 4-methylpyridyl group, 3-chloropyridyl group, pyrazinyl group, 3-ethylpyridyl group, 4-ethylpyridyl group, 3-acetylpyridyl group, 4-acetyl group Pyridyl group, bipyridyl group, dicyanobenzyl group, cyanobenzyl group, and further aliphatic amide groups such as dimethylamino group, ethylamino group, propylamine group, butylamino group,
Anilino group, methylanilino group, dimethylanilino group,
Examples include aromatic amine groups such as naphthylamino groups, and halogen atoms such as chlorine and bromine. When n is 2, these ligands may be the same or different.

このような金属フタロシアニン誘導体は、公知の方法で
得ることができ、例えば、モーザー及びトーマスによる
「フタロシアニンコンパウンズ」に記載の方法等で金属
フタロシアニンを得た後、金属フタロシアニンに上記配
位子を単に配位させる方法、金属と、フタル酸若しくは
フタルイミド、フタロニトリル、アミノイミノインドレ
ニン等のフタール酸誘導体とを、必要に応じた窒素源の
存在下及び触媒の存在下で反応させて、金属フタロシア
ニン化合物を合成する際に、金属としてポリハロゲン化
金属を用い、金属が1〜2の/\ロゲンを有する金属フ
タロシアニンを調製し、このハロゲンを利用して上述の
配位子を導入する方法、あるいは無金属のフタロシアニ
ンを合成し、これにポリハロゲン化金属を導入して上記
と同様にする方法等が挙げられるが、これらの方法に限
定されるものではない。
Such a metal phthalocyanine derivative can be obtained by a known method. For example, after obtaining a metal phthalocyanine by the method described in "Phthalocyanine Compounds" by Moser and Thomas, the above-mentioned ligand is simply added to the metal phthalocyanine. A metal phthalocyanine compound is produced by reacting a metal with phthalic acid or a phthalic acid derivative such as phthalimide, phthalonitrile, or aminoiminoindolenine in the presence of a nitrogen source and a catalyst as necessary. When synthesizing, a polyhalogenated metal is used as the metal, a metal phthalocyanine in which the metal has 1 to 2 /\ halogens is prepared, and the above-mentioned ligand is introduced using this halogen, or Examples include a method in which a metal phthalocyanine is synthesized and a polyhalogenated metal is introduced therein in the same manner as described above, but the method is not limited to these methods.

なお、これらの金属フタロシアニン誘導体は、そのベン
ゼン核が、ハロゲン原子、メチル基、ニトロ基、カルボ
キシル基、その他の置換基を1〜16個有することがで
きる。
Note that the benzene nucleus of these metal phthalocyanine derivatives can have 1 to 16 substituents such as a halogen atom, a methyl group, a nitro group, a carboxyl group, and other substituents.

本発明の電子線レジストは、以上のような金属フタロシ
アニン誘導体からなり、スピンコード法、ラングミュア
−プロジェット法、蒸着法、MBE法、イオンクラスタ
ービーム法等の種々の方法によって所定の基板上に積層
して用いることができるが、なかでも、蒸着法、MBE
法等の方法によれば、微細パターンの形成に好適な、膜
全体にわたって感度等の特性にばらつきのない品質の良
い電子線レジスト膜が成膜性良く形成できるので好まし
い。
The electron beam resist of the present invention is made of the metal phthalocyanine derivative as described above, and is laminated on a predetermined substrate by various methods such as spin code method, Langmuir-Prodgett method, vapor deposition method, MBE method, and ion cluster beam method. Among them, vapor deposition method, MBE
Methods such as the method described above are preferred because they can form a high-quality electron beam resist film with good film-forming properties that are suitable for forming fine patterns and have uniform characteristics such as sensitivity over the entire film.

そのような蒸着膜は、上述のような金属フタロシアニン
誘導体を用いて通常の蒸着法によって得ることができる
Such a vapor deposited film can be obtained by a normal vapor deposition method using the metal phthalocyanine derivative as described above.

この蒸着法に用いる金属フタロシアニン誘導体としては
、種々のものが利用できるが、以下のような特願昭59
−274838号に記載された方法によって電解生成さ
せたものが、高感度が得られるなど電子線レジストとし
ての特性の優れた蒸着膜の形成に好適な、純度の高い金
属フタロシアニン誘導体を安価な装置と容易な操作で得
ることができるので特に好ましい。
Various metal phthalocyanine derivatives can be used in this vapor deposition method, but the following patent application
-274838, is a highly pure metal phthalocyanine derivative suitable for forming a deposited film with excellent properties as an electron beam resist, such as high sensitivity, using inexpensive equipment. It is particularly preferred because it can be obtained with easy operations.

すなわち、上述した金属フタロシアニン誘導体は、分子
全体としては、酸性(若しくは塩基性)を示し、塩基(
若しくは酸)と造塩する傾向にあり、かつ各種の有機溶
剤、好ましくは双極性有機溶剤、またはこれらと水との
混合溶液に従来の金属フタロシアニンと比べて著しく可
溶性であり、溶剤に溶解して結晶化させることが可能で
ある。
That is, the metal phthalocyanine derivative described above exhibits acidity (or basicity) as a whole molecule, and has a base (
It tends to form salts with various organic solvents, preferably dipolar organic solvents, or mixed solutions of these and water, compared to conventional metal phthalocyanines. It is possible to crystallize it.

結晶化は、所望の金属フタロシアニン誘導体を適当な溶
剤に溶解して調製した溶液中に一対の電極を挿入し、直
流電気分解を行なうことにより電極上に金属フタロシア
ニン誘導体の結晶を析出させる方法によって容易に行う
ことができる。
Crystallization can be easily achieved by inserting a pair of electrodes into a solution prepared by dissolving the desired metal phthalocyanine derivative in an appropriate solvent, and depositing crystals of the metal phthalocyanine derivative on the electrodes by performing direct current electrolysis. can be done.

この結晶化に用いる金属フタロシアニン誘導体の溶剤と
しては、アセトニトリル、アセトン、メチルエチルケト
ン、メチル−n−プロピルケトン、メチルイソブチルケ
トン、ジエチルケトン、ギ酸メチル、ギ酸メチル、ギ酸
プロピル、酢酸メチル、酢酸エチル、酢酸ブチル、シク
ロヘキサン、テトラヒドロフラン、ジオキサン、メタノ
ール。
Solvents for metal phthalocyanine derivatives used in this crystallization include acetonitrile, acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isobutyl ketone, diethyl ketone, methyl formate, methyl formate, propyl formate, methyl acetate, ethyl acetate, butyl acetate. , cyclohexane, tetrahydrofuran, dioxane, methanol.

エタノール、イソプロピルアルコール、ブタノール、メ
チルセロソルブ、ブチルセロソルブ、セロソルブアセテ
ート、ホルムアミド、ジメチルホルムアミド、ジメチル
スルホキシド、ヘキサメチルフォスフオトリアミドある
いはこれらと水の混合物、あるいはこれらとペンタン、
ヘキサン、シクロヘキサン、ヘプタン、オクタン、ミネ
ラルスピリット、石油エーテル、ガソリン、ベンゼン、
トルエン、キシレン、クロロホルム、四基化炭!、クロ
ルベンゼン、パークロルエチレン、トリクロルエチレン
等との混合物などを挙げることができる。
Ethanol, isopropyl alcohol, butanol, methyl cellosolve, butyl cellosolve, cellosolve acetate, formamide, dimethyl formamide, dimethyl sulfoxide, hexamethyl phosphotriamide or mixtures thereof with water, or mixtures thereof with water, or pentane,
Hexane, cyclohexane, heptane, octane, mineral spirits, petroleum ether, gasoline, benzene,
Toluene, xylene, chloroform, tetracarboxylic carbon! , mixtures with chlorobenzene, perchloroethylene, trichloroethylene, etc.

これらのなかから適宜選択した溶剤に所望の金属フタロ
シアニン誘導体を例えば約10’〜約10−IMの濃度
で溶解して調製した溶液に一対の電極を挿入し、これら
電極間に直流電圧あるいは電流を印加し、電気分解を行
なうことによって電極上に金属フタロシアニン誘導体の
結晶を得ることができる。
A pair of electrodes is inserted into a solution prepared by dissolving a desired metal phthalocyanine derivative in a solvent appropriately selected from these at a concentration of, for example, about 10' to about 10-IM, and a DC voltage or current is applied between these electrodes. By applying this voltage and performing electrolysis, crystals of the metal phthalocyanine derivative can be obtained on the electrode.

なお、電解用の溶液には、更に必要に応じてKCI 、
 NaBr、 K1.  LiCl0.s 、 LiB
Fa 、テトラ−n−ブチルアンモニウムバークロレー
ト、テトラ−n−ブチルアンモニウムパーフルオロポレ
ート、テトラメチルアンモニウムクロリド、p−トルエ
ンスルホン酸ソーダ、Na2 SO,等の電解質を例え
ば約10−3〜約10−’M程度加えても良い。
In addition, the solution for electrolysis may further contain KCI,
NaBr, K1. LiCl0. s, LiB
Electrolytes such as Fa, tetra-n-butylammonium verchlorate, tetra-n-butylammonium perfluoroporate, tetramethylammonium chloride, sodium p-toluenesulfonate, Na2SO, etc., for example, from about 10-3 to about 10-' You may add about M.

また、電解に用いる電極としては、金、白金、ニッケル
、銅などの金属、あるいはこれら金属をプラスチックや
ガラス等の絶縁性基材に蒸着させたもの、更には、酸化
錫、酸化インジウム、酸化錫インジウム等の導電性金属
酸化物層を被覆した絶縁性基板等の公知の電極材ならば
いずれも使用できる。また、電気分解の条件は、使用す
る金属フタロシアニン誘導体の種類、電極の材質と形状
及び大きさ、電解液及び電解質の種類とその濃度等によ
って種々異なるが、0,7〜20V程度の定電位、ある
いは5gA程度以上の定電流を用いるのが基若用の結晶
を得るには好適である。
Electrodes used for electrolysis include metals such as gold, platinum, nickel, and copper, or those made by vapor-depositing these metals on insulating substrates such as plastic and glass, and tin oxide, indium oxide, and tin oxide. Any known electrode material such as an insulating substrate coated with a layer of conductive metal oxide such as indium can be used. The conditions for electrolysis vary depending on the type of metal phthalocyanine derivative used, the material, shape and size of the electrode, the type and concentration of the electrolytic solution and electrolyte, etc., but include constant potential of about 0.7 to 20 V, Alternatively, it is suitable to use a constant current of about 5 gA or more to obtain crystals for basic use.

ちなみに、金属フタロシアニン誘導体が酸性である場合
には、陽極の表面に結晶が析出し、また塩基性である場
合には、陰極に結晶が析出する。
Incidentally, when the metal phthalocyanine derivative is acidic, crystals are deposited on the surface of the anode, and when it is basic, crystals are deposited on the cathode.

このようにして得られた結晶を用いて蒸着により、適当
な基板上に金属フタロシアニン誘導体の蒸着膜を所定の
膜厚で形成してパターニング用レジスト膜とすることが
できる。
By vapor deposition using the crystal thus obtained, a vapor-deposited film of a metal phthalocyanine derivative can be formed on a suitable substrate to a predetermined thickness to form a resist film for patterning.

この基若の際の操作条件は、用いる金属フタロシアニン
誘導体や基板の種類等によっても異なるが、例えば真空
度、 to−1−to°’ aa+Hg、結晶の加熱温
度;400〜450°C1基板温度;−10〜20’C
の条件で行なうことができる。
The operating conditions during this base aging vary depending on the metal phthalocyanine derivative used, the type of substrate, etc., but include, for example, the degree of vacuum, to-1-to°' aa+Hg, crystal heating temperature; 400 to 450°C; substrate temperature; -10~20'C
This can be done under the following conditions.

金属フタロシアニン誘導体を積層する基板としては、金
属フタロシアニン誘導体蒸着膜の用途。
The metal phthalocyanine derivative vapor-deposited film is used as a substrate on which the metal phthalocyanine derivative is laminated.

例えば他の材料のパターニングのためのレジスト膜とし
て用いる、あるいはそれ自身パターニングされた機能膜
として用いるかに応じて適宜選択されるものであり、例
えばガラス、石英、ITO、シリコン等の絶縁体から各
種の半導体からなるものなどが挙げられる。
For example, it is selected as appropriate depending on whether it is used as a resist film for patterning other materials or as a patterned functional film itself. Examples include those made of semiconductors.

上記の金属フタロシアニン誘導体からなる膜はこれに電
子線を照射した際に、電子線の照射量が低い時には各分
子間の架橋反応が生じた結果と推定される変色が生じ、
電子線の照射量が増加すると、電子線が加熱源となって
架橋反応と並行して金属フタロシアニン誘導体の昇華が
起り始め、更に照射量が多くなると金属フタロシアニン
誘導体の配位子の変化を伴なった分解が生じるとともに
それが昇華し、被照射部分を基板上から除去することが
できるという特性、すなわちパターニングと現像とを一
挙に行なうことができる自己現像型のポジ型レジストと
しての特性を有している。
When the film made of the metal phthalocyanine derivative mentioned above is irradiated with an electron beam, when the amount of electron beam irradiation is low, discoloration occurs, which is presumed to be the result of a crosslinking reaction between each molecule.
When the irradiation dose of the electron beam increases, the electron beam becomes a heating source and sublimation of the metal phthalocyanine derivative begins to occur in parallel with the crosslinking reaction, and when the irradiation dose increases further, the ligand of the metal phthalocyanine derivative changes. It has the property of being able to remove the irradiated area from the substrate by decomposing it and sublimating it, that is, it has the property of being a self-developing positive resist that can perform patterning and development at the same time. ing.

従って、上記金属フタロシアニン誘導体膜をパターニン
グする際には、該誘導体を分解、昇華させるのに必要な
電子線の照射量でのパターン露光が必要であり、このよ
うな照射によって、被照射部が基板から除去されてパタ
ーニングが実施できる。この、パターニングに必要な電
子線の照射量は、用いる金属フタロシアニン誘導体の種
類に応じて異なるが、多くても10−θ〜lO″′IA
程度で良く1本発明のレジストは極めて高い感度を有す
る。しかも1本発明のレジストは金属フタロシアニン誘
導体から単一組成で構成されるものであり、レジスト膜
全体にわたって感度等の特性にバラツキのない品質の良
いレジスト膜となる。
Therefore, when patterning the metal phthalocyanine derivative film, it is necessary to perform pattern exposure with an amount of electron beam irradiation necessary to decompose and sublimate the derivative. patterning can be performed. The amount of electron beam irradiation required for patterning varies depending on the type of metal phthalocyanine derivative used, but is at most 10-θ~lO''IA
The resist of the present invention has extremely high sensitivity. Moreover, the resist of the present invention is composed of a single composition of metal phthalocyanine derivatives, resulting in a high-quality resist film with no variation in characteristics such as sensitivity over the entire resist film.

本発明の電子線レジストを用いたパターンの形成は1例
えば以下のようにして実施できる。
Formation of a pattern using the electron beam resist of the present invention can be carried out, for example, as follows.

まず、所定の基板上に上述したような種々の方法を用い
て金属フタロシアニン誘導体膜を形成する。このときの
膜厚は、パターニングされた後の金属フタロシアニン誘
導体膜の用途、すなわち他の材料のパターニングのため
のレジス) Iffとして用いる、あるいはそれ自身パ
ターニングされた機能膜として用いるかに応じて適宜決
定される。
First, a metal phthalocyanine derivative film is formed on a predetermined substrate using the various methods described above. The film thickness at this time is determined as appropriate depending on the use of the metal phthalocyanine derivative film after patterning, that is, whether it is used as a resist for patterning other materials or as a patterned functional film itself. be done.

次に、基板上の金属フタロシアニン誘導体膜に電子線を
上述したような照射量で非照射部が所望のパターン状と
なるように照射する。すると、該膜の電子線照射部は基
板上から除去され、基板上には、所望のパターン状の金
属フタロシアニン誘導体膜が残される。
Next, the metal phthalocyanine derivative film on the substrate is irradiated with an electron beam at the above-mentioned irradiation dose so that the non-irradiated areas form a desired pattern. Then, the electron beam irradiated portion of the film is removed from the substrate, leaving a desired patterned metal phthalocyanine derivative film on the substrate.

なお、金属フタロシアニン誘導体膜をそれ自身パターニ
ングされた機能膜として用いる場合には、このまま使用
すれば良く、また他の電極材等のパターニングに用いる
ならば、従来のフォトレジスト等と同様に用いれば良い
Note that if the metal phthalocyanine derivative film itself is used as a patterned functional film, it can be used as is, and if it is used for patterning other electrode materials, it can be used in the same way as conventional photoresists, etc. .

なお、それ自身パターニングされた機能膜として用いる
ものとしては、使用した金属フタロシアニン誘導体の種
類に応じた例えば抵抗発熱体、抵抗、電極、センサなど
としての特性を利用しもの等を挙げることができる。
Examples of functional films that are patterned themselves include those that utilize the properties of the metal phthalocyanine derivative as a resistance heating element, resistor, electrode, sensor, etc., depending on the type of metal phthalocyanine derivative used.

〔発明の効果〕〔Effect of the invention〕

本発明の金属フタロシアニン誘導体からなるレジストは
、従来のレジストのように感度を上げるための添加剤を
必要としない単一組成からなり、容易に均質な成膜が可
能でり、しかも電子線に対する感度に優れており、電子
線リソグラフィーに用いるのに好適なものである。
The resist made of the metal phthalocyanine derivative of the present invention has a single composition that does not require additives to increase sensitivity unlike conventional resists, can easily form a homogeneous film, and is sensitive to electron beams. It has excellent properties and is suitable for use in electron beam lithography.

また、本発明の電子線レジストは、ドライプロセスで処
理でき、かつ従来のレジストのように現像処理を必要と
しないので、これを用いれば、パターニング工程を大幅
に簡略化することができる。
Further, since the electron beam resist of the present invention can be processed by a dry process and does not require development treatment unlike conventional resists, its use can greatly simplify the patterning process.

更に、本発明の方法によれば、微細にパターニングされ
た金属フタロシアニン誘導体膜を簡易に成膜性良く形成
可能であり、フタロシアニン化合物の機能膜としての利
用を大きく拡大することができる。
Further, according to the method of the present invention, a finely patterned metal phthalocyanine derivative film can be easily formed with good film formation properties, and the use of phthalocyanine compounds as functional films can be greatly expanded.

〔実施例〕〔Example〕

実施例1 ジシアノコバルトフタロシアニンナトリウムをジメチル
ホルムアミド中に2 X 10−2Mとなるように溶解
し、電解液とした。この電解液中に一対の白金電極を挿
入し、−方を直流電源の陽極に、他方を陰極に接続し、
定電圧(1,5V)にて30分間電気分解を行ない、陽
極表面上に結晶を得た6 (元!分析(i : C[%
] =62.0. Hl =3.0 、 N [%]=
 21.4) このようにして得られた結晶を用い、真空度:10−2
mmHg、結晶の加熱温度、 400℃、基板温度;O
″Cの条件で、洗剤、水、アセトンをこの順に用いた超
音波洗浄によって十分に洗浄し、乾燥しておいたガラス
からなる基板上に電解生成物の基若1!2(膜厚;1μ
)を形成・した、(元素分析値、C1=87.1. H
[$1 =2.2 、 N($1 =20.0.灰分9
.5%) 次に、基板上の電解生成物の革着膜に、各耳幅の線状パ
ターンを形成できる露光マスクを介して、該蒸M膜での
照射量が2 X IOA Aとなるように電子線を、パ
ターン露光した。
Example 1 Sodium dicyanocobalt phthalocyanine was dissolved in dimethylformamide to a concentration of 2 x 10-2M to prepare an electrolytic solution. A pair of platinum electrodes are inserted into this electrolyte, the - side is connected to the anode of a DC power supply, and the other is connected to the cathode.
Electrolysis was carried out for 30 minutes at a constant voltage (1.5 V) to obtain crystals on the anode surface.
] =62.0. Hl = 3.0, N [%] =
21.4) Using the crystal thus obtained, vacuum degree: 10-2
mmHg, crystal heating temperature, 400℃, substrate temperature; O
The electrolytic product was deposited on a substrate made of glass that had been thoroughly cleaned by ultrasonic cleaning using detergent, water, and acetone in this order under the conditions of ``C'' and dried.
) was formed (elemental analysis value, C1=87.1.H
[$1 = 2.2, N ($1 = 20.0. Ash content 9
.. 5%) Next, an exposure mask capable of forming a linear pattern of each edge width is applied to the leather film of the electrolytic product on the substrate so that the irradiation amount with the vaporized M film is 2 X IOA A. A pattern was exposed to an electron beam.

すると、電子線が照射された部分の基若脱が基板上から
除去され、線幅1−のパターンが形成された。
Then, the radicals in the portions irradiated with the electron beam were removed from the substrate, forming a pattern with a line width of 1-.

実施例2 ジシアノコ/へルトフタロシアニンカリウムをアセトニ
トリル中で飼料溶液とし、電界液とした。
Example 2 Dicyanoco/heltophthalocyanine potassium was made into a feed solution in acetonitrile and used as an electrolyte.

この電界液中に一対の白金電極を挿入して、−方を直流
電源の陽極に、他方を陰極に接続して定電圧(3v)で
1時間電気分解を行なったところ、wA極表面に針状結
晶が析出した( 10uX 70JLII X 20μ
s)。
A pair of platinum electrodes were inserted into this electrolyte, the - side was connected to the anode of a DC power supply, and the other was connected to the cathode, and electrolysis was performed at a constant voltage (3V) for 1 hour. crystals were precipitated (10uX 70JLII X 20μ
s).

このようにして得られた結晶を用い、真空度10″To
rr、結晶の加熱温度380℃、基板温度−10℃の条
件でHF水溶液で洗浄したシリコン基板上に電解生成物
の蒸着膜(l鱗)を形成した。
Using the crystal thus obtained, the vacuum degree was 10″To
rr, a vapor deposition film (1 scale) of the electrolytic product was formed on a silicon substrate washed with an HF aqueous solution under conditions of a crystal heating temperature of 380° C. and a substrate temperature of −10° C.

次に、基板上のこの電解生成物の蒸着膜に、各種線幅の
線状パターンを形成できる露光マスクを介して該蒸着膜
での照射量が4 X to” Aとなる様に電子線を照
射し、パターン露光を実施した。すると電子線が照射さ
れた部分の蒸着膜が基板上から除去され、線幅l−のパ
ターンが形成された。
Next, an electron beam is applied to the vapor deposited film of the electrolytic product on the substrate through an exposure mask that can form linear patterns of various line widths so that the irradiation amount on the vapor deposited film is 4 Then, the deposited film on the part irradiated with the electron beam was removed from the substrate, and a pattern with a line width l- was formed.

Claims (1)

【特許請求の範囲】 1)金属フタロシアニン誘導体からなることを特徴とす
る自己現像型のポジ型電子線レジスト。 2)金属フタロシアニン誘導体の蒸着膜からなる特許請
求の範囲第1項記載の自己現像型のポジ型電子線レジス
ト。 3)前記金属フタロシアニン誘導体の蒸着膜が、金属フ
タロシアニン誘導体の電解生成物の蒸着膜である特許請
求の範囲第2項記載の自己現像型のポジ型電子線レジス
ト。 4)基板上に形成した金属フタロシアニン誘導体膜に電
子線を照射して、該照射部を前記基板上から除去し、該
膜の非照射部からなるパターンを該基板上に形成する過
程を含むことを特徴とするパターンの形成方法。 5)前記金属フタロシアニン誘導体膜が該誘導体の蒸着
膜である特許請求の範囲第4項記載のパターンの形成方
法。 6)前記金属フタロシアニン誘導体の蒸着膜が、金属フ
タロシアニン誘導体の電解生成物の蒸着膜である特許請
求の範囲第5項記載のパターンの形成方法。
[Scope of Claims] 1) A self-developing positive electron beam resist comprising a metal phthalocyanine derivative. 2) A self-developing positive electron beam resist according to claim 1, comprising a vapor-deposited film of a metal phthalocyanine derivative. 3) The self-developing positive electron beam resist according to claim 2, wherein the vapor-deposited film of the metal phthalocyanine derivative is a vapor-deposited film of an electrolysis product of the metal phthalocyanine derivative. 4) A step of irradiating a metal phthalocyanine derivative film formed on a substrate with an electron beam, removing the irradiated portion from the substrate, and forming a pattern consisting of the non-irradiated portion of the film on the substrate. A method for forming a pattern characterized by: 5) The method for forming a pattern according to claim 4, wherein the metal phthalocyanine derivative film is a vapor-deposited film of the derivative. 6) The pattern forming method according to claim 5, wherein the vapor-deposited film of the metal phthalocyanine derivative is a vapor-deposited film of an electrolysis product of the metal phthalocyanine derivative.
JP14948886A 1986-06-27 1986-06-27 Self-developing positive type electron beam resist and pattern forming method using the same Pending JPS636545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14948886A JPS636545A (en) 1986-06-27 1986-06-27 Self-developing positive type electron beam resist and pattern forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14948886A JPS636545A (en) 1986-06-27 1986-06-27 Self-developing positive type electron beam resist and pattern forming method using the same

Publications (1)

Publication Number Publication Date
JPS636545A true JPS636545A (en) 1988-01-12

Family

ID=15476248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14948886A Pending JPS636545A (en) 1986-06-27 1986-06-27 Self-developing positive type electron beam resist and pattern forming method using the same

Country Status (1)

Country Link
JP (1) JPS636545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256818A (en) * 1990-11-19 1993-10-26 Tetsuzo Tomioka Method for making β-mercaptopropionic acid
US5391820A (en) * 1994-04-13 1995-02-21 Hampshire Chemical Corp. Preparation of 3-mercaptopropionitrile and 3-mercaptopropionic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256818A (en) * 1990-11-19 1993-10-26 Tetsuzo Tomioka Method for making β-mercaptopropionic acid
US5391820A (en) * 1994-04-13 1995-02-21 Hampshire Chemical Corp. Preparation of 3-mercaptopropionitrile and 3-mercaptopropionic acid

Similar Documents

Publication Publication Date Title
Winter et al. Study of substituent effects on the photoconductivity of soluble 2,(3)-and 1,(4)-substituted phthalocyaninato-and naphthalocyaninatotitanium (IV) oxides
US5821017A (en) Method of deposition
US6051702A (en) Organic dyes for photovoltaic cells and for photoconductive electrophotography systems
US4312935A (en) Class of E-beam resists based on conducting organic charge transfer salts
JPH02245755A (en) Conductive resist material, manufacturing method and application of the same
US4082552A (en) Process of optically printing highly conductive character utilizing a medium containing a halogenated hydrocarbon photoactivator and a tetrathiafulvalene or a related compound thereof
JPH0788482B2 (en) Method for producing titanyl phthalocyanine
JPS636545A (en) Self-developing positive type electron beam resist and pattern forming method using the same
JP4769680B2 (en) Pattern forming composition comprising metal fine particle dispersion and pattern forming method
JPS6245969B2 (en)
US4312936A (en) Class of E-beam resists based on conducting organic charge transfer salts
US4338392A (en) Class of E-beam resists based on conducting organic charge transfer salts
JPS59226350A (en) Manufacture of electrophotographic sensitive body
US4052272A (en) Method of depositing metal conducting patterns on large area surfaces
US4508650A (en) Process for the preparation of high purity phthalocyanine pigments
JPS62133462A (en) Electrophotographic sensitive body using phthalocyanine compound
KR910004843B1 (en) Photosensitive cuprous halide materials and method for their preparation
JPH0335064A (en) Production of titanyl phthalocyanine by crystallization
JP2776041B2 (en) Preparation method of phthalocyanine thin film
FR2613169A1 (en) MICROLITHOGRAPHIC PROCESS FOR PRODUCING CIRCUITS USING ORGANIC, CONDUCTIVE FILMS SENSITIVE TO ELECTROMAGNETIC RADIATION AND CHARGED PARTICLES AND THE CIRCUITS AND COMPONENTS OBTAINED THEREBY
JPS61246393A (en) Production of metallophthalocyanine crystal
JP2000063696A (en) Production of oxotitanium phthalocyanine crystal, and laminate-type electrophotographic photoreceptor obtained by using same
KR910004842B1 (en) Photosensitive cuprous halide materials and methods for their preparation
JPH02153354A (en) Conductivity imparting material, its use method, and thin film forming method using the same
JPH1073939A (en) Photosensitive body for laminated type electrophotograph and manufacture therefor