JPS636540B2 - - Google Patents

Info

Publication number
JPS636540B2
JPS636540B2 JP54096665A JP9666579A JPS636540B2 JP S636540 B2 JPS636540 B2 JP S636540B2 JP 54096665 A JP54096665 A JP 54096665A JP 9666579 A JP9666579 A JP 9666579A JP S636540 B2 JPS636540 B2 JP S636540B2
Authority
JP
Japan
Prior art keywords
compound according
basic compound
reaction
lithium
structural formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54096665A
Other languages
Japanese (ja)
Other versions
JPS5620552A (en
Inventor
Tetsuya Myake
Kunihiko Takeda
Keiji Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9666579A priority Critical patent/JPS5620552A/en
Publication of JPS5620552A publication Critical patent/JPS5620552A/en
Publication of JPS636540B2 publication Critical patent/JPS636540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 本発明は、眮換アミノ基を有する新芏な化合物
およびその補造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel compound having a substituted amino group and a method for producing the same.

゚ポキシ暹脂等の硬化剀ずしおは、倧別しお脂
肪族ポリアミン、芳銙族ポリアミン等のアミン
類、無氎フタル酞を始めずする酞無氎物、ポリア
ミド暹脂、ポリスルフむド暹脂等がある。甚いら
れる硬化剀の皮類によ぀お暹脂の物理的性質はか
わ぀おくるが、このうち、よく甚いられおいるも
のゝ䞀぀にポリアミンがある。
Hardening agents for epoxy resins and the like can be broadly classified into amines such as aliphatic polyamines and aromatic polyamines, acid anhydrides including phthalic anhydride, polyamide resins, polysulfide resins, and the like. The physical properties of the resin vary depending on the type of curing agent used, and one of the most commonly used curing agents is polyamine.

このような背景に立ち、本発明者らは、䞋蚘の
構造匏で瀺される塩基性化合物〔以䞋、
「化合物」ず略す〕を芋い出すに至぀た。
Against this background, the present inventors developed a basic compound represented by the following structural formula () [hereinafter referred to as
``Compound ()''] was discovered.

匏䞭、は氎玠、炭玠数からのアルキル
基、ハロゲンたたはニトロ基、およびはか
らの敎数を衚わす。 すなわち、本発明は、構造匏 匏䞭、、およびは前蚘ず同じ意味を衚わ
す。で瀺される新芏な塩基性化合物である。
(In the formula, X represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen or a nitro group, and m and n represent integers of 1 to 4.) This is a novel basic compound represented by the formula (wherein, X, m and n have the same meanings as above).

化合物においおおよびの奜たしい態
様の䟋は、がからの敎数である。
ずしお奜たしい態様の䟋は、氎玠、メチル基、
゚チル基たたはクロル基である。
A preferred embodiment of m and n in compound () is that (m+n) is an integer from 2 to 5.
Preferred embodiments of X include hydrogen, methyl group,
It is an ethyl group or a chloro group.

たた本発明は、䞋蚘の構造匏で瀺される
アミンを、それに察応する構造匏で瀺され
るアルカリ金属アミドの共存䞋に、スチレン眮換
䜓ず反応させるこずを特城ずする䞋蚘の構
造匏で瀺される新芏な塩基性化合物の補造
法である。
Further, the present invention is characterized in that an amine represented by the following structural formula () is reacted with a styrene substituted product () in the coexistence of an alkali metal amide represented by the corresponding structural formula (). This is a method for producing a novel basic compound represented by the structural formula ().

匏䞭、は氎玠、炭玠数からのアルキル
基、ハロゲンたたはニトロ基、およびはか
らの敎数を衚わす。 アルカリ金属アミドに察する奜たしい態
様の䞀぀はリチりムアミドである。
(In the formula, X represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen or a nitro group, and m and n represent integers of 1 to 4.) One of the preferred embodiments for the alkali metal amide () is lithium amide. be.

構造匏で瀺されるアミンをリチりムアミ
ドぞず反応させるための奜たしい詊薬の䞀぀はア
ルキルリチりムであり、アルキルリチりムずしお
奜たしい詊薬の䞀぀はノルマル−ブチルリチりム
である。
One of the preferred reagents for reacting the amine represented by the structural formula () to lithium amide is an alkyl lithium, and one of the preferred reagents as the alkyl lithium is n-butyl lithium.

本反応は䞍掻性有機液䜓の共存䞋に反応を行な
うこずもできる。䞍掻性有機液䜓ずしお、ヘキサ
ン、シクロヘキサン、テトラヒドロフラン、゚ヌ
テル、ベンれン、トル゚ンのいずれか、たたは
皮以䞊の液䜓の混合物を甚いるこずが望たしい。
This reaction can also be carried out in the presence of an inert organic liquid. As an inert organic liquid, hexane, cyclohexane, tetrahydrofuran, ether, benzene, toluene, or 2
It is desirable to use a mixture of more than one species of liquid.

反応の手法ずしおは、構造匏で瀺される
アミンずアルキルリチりムの混合物にスチレン眮
換䜓を加える方法が奜たしい手法の䞀぀である。
One of the preferred reaction methods is to add a styrene substitute to a mixture of an amine represented by the structural formula () and an alkyl lithium.

以䞋に化合物を補造する䞀般的な方法の
䟋を瀺す。
Examples of general methods for producing compound () are shown below.

本反応は、䞋蚘の構造匏で瀺されるアミ
ン〔以䞋「アミン」たたは単に「アミン」
ず略称する〕を、それに察応するアルカリ金属ア
ミドの共存䞋に、スチレン眮換䜓ず
反応させるものである。
This reaction is performed using an amine represented by the following structural formula () [hereinafter referred to as "amine ()" or simply "amine"]
] is reacted with a styrene substituted product () in the coexistence of the corresponding alkali metal amide ().

アルカリ金属ずしおは、リチりムが反応性の高
さ、反応操䜜の容易さ等から奜たしい。リチりム
アミドの奜たしい調補法は、アミンずアルキルリ
チりム、プニルリチりム、氎玠化アルミニりム
リチりム、氎玠化リチりム等を反応させる方法で
あるが、この䞭でも、溶媒ぞの溶解床、操䜜性等
からアルキルリチりムを䜿甚するこずが特に奜た
しい。化合物に盞圓するリチりムアミド
を、以䞋単に「リチりムアミド」ず呌称する。
As the alkali metal, lithium is preferred due to its high reactivity and ease of reaction operation. A preferred method for preparing lithium amide is to react an amine with alkyl lithium, phenyl lithium, aluminum lithium hydride, lithium hydride, etc. Among these, alkyl lithium is used because of its solubility in solvents, operability, etc. It is particularly preferable to do so. The lithium amide corresponding to the compound () will be simply referred to as "lithium amide" hereinafter.

スチレン眮換䜓の䟋ずしおは、スチレン、メチ
ルスチレン、゚チルスチレン等のアルキルスチレ
ン、クロロスチレン、ブロモスチレンを始めずす
るハロゲン化スチレン、ニトロ化スチレン等を甚
いるこずができる。この䞭でもさらに奜たしい態
様の䟋は、スチレンおよびクロルスチレンであ
る。
Examples of styrene substitutes include styrene, alkylstyrenes such as methylstyrene and ethylstyrene, halogenated styrenes including chlorostyrene and bromostyrene, and nitrated styrenes. Among these, one example of a more preferred embodiment is styrene and chlorostyrene.

アミンの奜たしい䟋ずしおは、が
であるゞ゚チレントリアミンを始めずしお、
が、およびのアミンである。
As a preferable example of the amine, (m+n) is 2
Starting with diethylenetriamine, (m
+n) are 3, 4 and 5 amines.

本反応においおは、リチりムアミドは觊
媒的䜜甚を行なう。このこずは、本反応の倧きな
特城の䞀぀である。すなわち、リチりムアミド
はスチレン眮換䜓に察しお等モル以䞋の䜿
甚で十分であり、奜たしくはモル比で0.001倍な
いし0.5倍量、さらに奜たしくは0.01倍ないし0.2
倍量である。この際、リチりムアミドの濃
床が反応速床を支配するこずは銘蚘されるべきで
ある。
In this reaction, lithium amide () acts as a catalyst. This is one of the major features of this reaction. That is, it is sufficient to use lithium amide () in an amount equal to or less than the molar amount of the styrene substituted product, preferably 0.001 to 0.5 times the molar ratio, and more preferably 0.01 to 0.2 times the molar ratio.
It's double the amount. At this time, it should be kept in mind that the concentration of lithium amide () controls the reaction rate.

リチりムアミドは反応系に共存する氎、
アルコヌル、酞等の掻性氎玠を有する物質ず反応
しお倱掻するため、䜿甚する原料、溶媒は、予め
脱氎等粟補するこずが奜たしいが、やむをえず、
これら掻性氎玠を有する物質を混入しおいる時
は、リチりムアミドを所期量以䞊䜿甚する
こずが望たしい。すでに述べたように、リチりム
アミドはたずえばアルキルリチりムずアミンを反
応させるこずにより容易に調補できる。アルキル
リチりムずしおは、メチルリチりム、゚チルリチ
りム、ブチルリチりム等を甚いるこずができる
が、この䞭でも入手の容易さからは、工業的にも
補造されおいる−ブチルリチりムが特に奜たし
い。
Lithium amide () contains water coexisting in the reaction system,
Since it is deactivated by reacting with substances containing active hydrogen such as alcohols and acids, it is preferable that the raw materials and solvents used be purified by dehydration in advance, but if it is unavoidable,
When these active hydrogen-containing substances are mixed, it is desirable to use more than the intended amount of lithium amide. As already mentioned, lithium amides can be easily prepared, for example, by reacting an alkyllithium with an amine. As the alkyl lithium, methyl lithium, ethyl lithium, butyl lithium, etc. can be used, but among these, n-butyl lithium, which is also produced industrially, is particularly preferred from the viewpoint of easy availability.

アミンのスチレン眮換䜓に察する䜿甚量
は、モル比で0.5倍ないし倍量が奜たしく、さ
らに奜たしくは0.8倍ないし倍量である。アミ
ンの量が過少であるず、生成物の収
量が枛少するず同時に、アミンに個
の堎合は䞋蚘構造匏で瀺されるないし
個以䞊のスチレン眮換䜓が付加した副生成物が
生成する可胜性があるので奜たしくない。
The amount of amine () to be used relative to the styrene substituted product is preferably 0.5 to 5 times, more preferably 0.8 to 2 times, in terms of molar ratio. If the amount of amine () is too small, the yield of product () will decrease and at the same time the amine will contain two (m=n=
In the case of I, it is not preferable because there is a possibility that by-products having three or more styrene substituents (represented by the following structural formula ()) or to which three or more styrene substituents are added may be produced.

リチりムアミドずアミンの混合液
ずスチレン眮換䜓を反応させるための操䜜方法に
は、たずえば次の二぀の方法がある。第の方法
は、スチレン眮換䜓に前者の混合液を加える方法
である。たた第の方法は、リチりムアミドずア
ミンの混合物にスチレン眮換䜓を加える方法であ
る。
There are, for example, the following two methods for reacting the mixture of lithium amide () and amine () with the styrene substitute. The first method is to add a mixture of the former to the styrene substituted product. The second method is to add a styrene substitute to a mixture of lithium amide and amine.

第の方法は、副生成物の生成が倚くな
るずいう欠点をも぀おいるのに察しお、第の方
法は、必芁は反応容噚が噚ですむこず、リチり
ムアミド液の移しかえの操䜜が䞍芁であるこずな
どの長所があるため、第の方法がより掚奚され
る。
The first method has the disadvantage of increasing the production of by-products (), whereas the second method requires only one reaction vessel and the need to transfer the lithium amide solution. The second method is more recommended because it has advantages such as not requiring any additional operations.

本発明での反応は、䞍掻性溶媒の存圚䞋に行な
うこずもできる。溶媒ずしおは、ペンタン、ヘキ
サン、シクロヘキサン、ヘプタン、オクタン等の
脂肪族炭化氎玠、ベンれン、トル゚ン、キシレン
等の芳銙族炭化氎玠、ゞ゚チル゚ヌテル、ゞブチ
ル゚ヌテル、ゞオキサン、テトラヒドロフラン等
の゚ヌテル類、ゞメチルスルホキシド、・−
ゞメチルホルムアミド、ヘキサメチルホスホリツ
クトリアミド等の非プロトン性極性溶媒等、反応
条件䞋でリチりムアミドず反応しない液䜓を甚い
るこずができる。この䞭でもヘキサン、シクロヘ
キサン、ベンれン、テトラヒドロフラン、゚ヌテ
ル、トル゚ン等がより奜たしい。ヘキサン等の脂
肪族炭化氎玠は、完党に䞍掻性な溶媒ずしお汎甚
される。
The reaction in the present invention can also be carried out in the presence of an inert solvent. Examples of solvents include aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, and octane, aromatic hydrocarbons such as benzene, toluene, and xylene, ethers such as diethyl ether, dibutyl ether, dioxane, and tetrahydrofuran, dimethyl sulfoxide, N・N-
Liquids that do not react with lithium amide under the reaction conditions can be used, such as aprotic polar solvents such as dimethylformamide and hexamethylphosphoric triamide. Among these, hexane, cyclohexane, benzene, tetrahydrofuran, ether, toluene and the like are more preferred. Aliphatic hydrocarbons such as hexane are commonly used as completely inert solvents.

甚いる溶媒の量は、䜓積でスチレン眮換䜓の
0.1倍ないし50倍が奜たしく、より奜たしくは0.5
倍ないし20倍である。
The amount of solvent used is the volume of the styrene substituted product.
Preferably 0.1 to 50 times, more preferably 0.5
It is 20 to 20 times larger.

本発明の反応を行なう枩床に぀いおは特に制限
はないが、−10℃ないし150℃が奜たしく、さらに
奜たしくは20℃ないし80℃である。溶媒の沞点以
䞊で反応を行なう堎合には、耐圧容噚の䜿甚が必
芁である。たた反応混合物は撹拌たたは振ずうす
るこずが奜たしい。
The temperature at which the reaction of the present invention is carried out is not particularly limited, but is preferably -10°C to 150°C, more preferably 20°C to 80°C. When carrying out the reaction above the boiling point of the solvent, it is necessary to use a pressure vessel. It is also preferred that the reaction mixture be stirred or shaken.

反応時間に制限はないが、分ないし10時間が
奜たしく、さらに分ないし時間が奜たしい。
反応速床は、枩床、アミンの皮類、原料の濃床、
溶媒の皮類等に倧きく支配されるため、反応時間
は条件により蚭定されるべきであるが、反応䞭、
経時点にサンプリングを行ない、ガスクロマトグ
ラフむヌや液䜓クロマトグラフむヌ等で原料や生
成物の定量を行な぀お、反応の終了時間を決定す
るこずが掚奚される。反応を停止させるために
は、メタノヌル、゚タノヌル等のアルコヌル類や
氎等でリチりム化合物を倱掻させるこずが必芁で
ある。
Although there is no restriction on the reaction time, it is preferably 1 minute to 10 hours, more preferably 5 minutes to 6 hours.
The reaction rate depends on temperature, type of amine, concentration of raw materials,
The reaction time should be set depending on the conditions, as it is largely controlled by the type of solvent, etc., but during the reaction,
It is recommended that the end time of the reaction be determined by sampling at regular intervals and quantifying the raw materials and products using gas chromatography, liquid chromatography, etc. In order to stop the reaction, it is necessary to deactivate the lithium compound with an alcohol such as methanol or ethanol, water, or the like.

生成物である化合物を単離するには、再
結晶、カラムクロマトグラフむヌ、抜出等の䞀般
の有機化孊的分離法を甚いるこずができる。たた
塩酞たたは塩化氎玠ガスを加えるこずにより、化
合物の塩酞塩ずしお析出させる方法もあ
る。
In order to isolate the product compound (), general organic chemical separation methods such as recrystallization, column chromatography, extraction, etc. can be used. There is also a method of precipitating the compound () as a hydrochloride salt by adding hydrochloric acid or hydrogen chloride gas.

本発明によ぀お埗られる化合物は、゚ポ
キシ暹脂等の硬化剀ずしお䜿甚するこずができ
る。
The compound () obtained by the present invention can be used as a curing agent for epoxy resins and the like.

以䞋本発明の実斜䟋を瀺すが、本発明は、これ
らの実斜䟋の範囲に限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to the scope of these Examples.

実斜䟋  内容積800mlの耐圧ガラス容噚に、ナトリりム
金属䞊で也燥、蒞留したテトラヒドロフラン356
mlを入れた埌、ゞ゚チレントリアミン149
1.44モルを加え、容噚内を窒玠眮換した。次
に44.6ml0.072モルの−ブチルリチりムの
15−ヘキサン溶液を導入した埌に、合成れオ
ラむトにより也燥、脱氎したスチレン74.8
0.72モルを導入した。
Example 1 Tetrahydrofuran 356 dried and distilled over sodium metal was placed in a pressure-resistant glass container with an internal volume of 800 ml.
After adding ml, diethylenetriamine 149g
(1.44 mol) was added, and the inside of the container was purged with nitrogen. Next, 44.6 ml (0.072 mol) of n-butyllithium
74.8g of styrene dried and dehydrated with synthetic zeolite after introducing 15% n-hexane solution
(0.72 mol) was introduced.

反応容噚を40℃の氎槜に入れ、時間撹拌を続
けた埌、反応混合物に100mlのメタノヌルを加え
お、反応を停止させた。のアセトンを加える
ず沈柱が生じたので、これを過埌、物をアセ
トンで充分に掗浄し、真空也燥機で也燥させ137
の反応生成物を埗た。
The reaction vessel was placed in a water bath at 40° C., and stirring was continued for 3 hours, and then 100 ml of methanol was added to the reaction mixture to stop the reaction. When acetone was added in Step 5, a precipitate formed, so after removing this, the object was thoroughly washed with acetone and dried in a vacuum dryer.137
g of reaction product was obtained.

この反応生成物を、さらにのメタノヌルに
溶解させ、のアセトンを加え、再沈させた
埌、過し、物をアセトンで掗浄した埌、真空
也燥機で也燥し、12685の反応生成物を
埗た。
This reaction product was further dissolved in methanol (1), added with acetone (5), reprecipitated, filtered, washed with acetone, and dried in a vacuum dryer to yield 126 g (85%). A reaction product was obtained.

この反応生成物を、䞀般の有機化孊的分析法に
より分析した結果、次の構造をも぀生成物である
こずがわか぀た。
As a result of analyzing this reaction product using a general organic chemical analysis method, it was found that the product had the following structure.

以䞋に分析の結果を瀺す。 The results of the analysis are shown below.

元玠分析C69.5769.52、H10.1410.21、
N20.2920.27 たゞし、ここで括匧内の数倀は理論倀を瀺す。
Elemental analysis; C69.57 (69.52), H10.14 (10.21),
N20.29 (20.27) However, the numbers in parentheses here indicate the theoretical values.

マススペクトルM+207M+、130、
102、77他 赀倖吞収スペクトルcm-1690、742、1038、
1360、1450、1492、1601、2805、3300付近幅
広い 栞磁気共鳎スペクトルΎ−倀7.2付近倚重
線、5H、〜3.5倚重線、12H、1.10䞀重
線、4H 実斜䟋  内容積800mlの耐圧ガラス容噚に、ナトリりム
金属䞊で也燥、蒞留したテトロヒドロフラン356
mlを入れた埌、ゞ゚チレントリアミン112
1.09モルを加え、容噚内を窒玠眮換した。次
に45ml0.072モルの−ブチルリチりムの15
−ヘキサン溶液を導入した埌、合成れオラむ
トにより也燥脱氎したスチレン750.72モル
を導入した。
Mass spectrum (M + /e); 207 (M + ), 130,
102, 77 and other infrared absorption spectra (cm -1 ); 690, 742, 1038,
Around 1360, 1450, 1492, 1601, 2805, 3300 (wide range) Nuclear magnetic resonance spectrum (ÎŽ-value); around 7.2 (multiplet, 5H), 2-3.5 (multiplet, 12H), 1.10 (singlet, 4H) ) Example 2 Tetrohydrofuran 356 dried and distilled over sodium metal was placed in a pressure-resistant glass container with an internal volume of 800 ml.
After adding ml, diethylenetriamine 112g
(1.09 mol) was added, and the inside of the container was purged with nitrogen. Then 45 ml (0.072 mol) of n-butyllithium 15
75 g (0.72 mol) of styrene dried and dehydrated with synthetic zeolite after introducing %n-hexane solution
introduced.

反応容噚を20℃の氎槜に入れ、時間撹拌を続
けた。反応混合物から実斜䟋ず同様の手法にお
生成物を単離したずころ11879の無色固
䜓を埗た。このものは実斜䟋で埗た物質ず同じ
ものであるこずを、液䜓クロマトグラフむヌおよ
び赀倖スペクトルから確認した。
The reaction vessel was placed in a 20°C water bath, and stirring was continued for 5 hours. The product was isolated from the reaction mixture in the same manner as in Example 1, yielding 118 g (79%) of a colorless solid. It was confirmed from liquid chromatography and infrared spectroscopy that this substance was the same as the substance obtained in Example 1.

実斜䟋  内容積800mlの耐圧ガラス容噚に、ナトリりム
金属䞊で也燥、蒞留したテトラヒドロフラン356
mlを入れた埌、ゞ゚チレントリアミン149
1.44モルを加え、容噚内を窒玠眮換した。次
に29.8ml0.048モルの−ブチルリチりムの
15−ヘキサン溶液を導入した埌、合成れオラ
むトにより也燥、脱氎したスチレン49.90.48
モルを導入した。
Example 3 Tetrahydrofuran 356 dried and distilled over sodium metal was placed in a pressure-resistant glass container with an internal volume of 800 ml.
After adding ml, diethylenetriamine 149g
(1.44 mol) was added, and the inside of the container was purged with nitrogen. Next, 29.8 ml (0.048 mol) of n-butyllithium
After introducing a 15% n-hexane solution, 49.9 g (0.48 g) of styrene was dried and dehydrated using synthetic zeolite.
mol) was introduced.

反応容噚を60℃の氎槜に入れ、時間撹拌を続
けた埌、反応混合物にのメタノヌルを加え
お、反応を停止させた。
The reaction container was placed in a water bath at 60° C., and stirring was continued for 2 hours, and then 1 part of methanol was added to the reaction mixture to stop the reaction.

この反応混合物を蒞留により、原料のスチレン
およびゞ゚チレントリアミン等を陀き、残留物95
95を埗た。この残留物を100mlのメタノ
ヌルに溶かした埌、塩化氎玠ガスを吹きこむず、
沈柱が生じたのでこれを過した。埗られた物
に4N−NaOH400mlを加え溶解させた埌、カチオ
ン亀換暹脂を通した埌に濃瞮し、8181の
反応生成物を埗た。
This reaction mixture was distilled to remove raw materials such as styrene and diethylenetriamine, leaving a residue of 95%.
g (95%) was obtained. After dissolving this residue in 100ml of methanol and blowing hydrogen chloride gas into it,
This was rejected because a precipitate formed. After adding 400 ml of 4N-NaOH to the obtained product and dissolving it, the mixture was passed through a cation exchange resin and concentrated to obtain 81 g (81%) of a reaction product.

この反応生成物は、液䜓クロマトグラフむヌず
赀倖スペクトルの結果から、実斜䟋ず同䞀の生
成物であるこずがわか぀た。
This reaction product was found to be the same product as in Example 1 from the results of liquid chromatography and infrared spectroscopy.

実斜䟋  内容積800mlの耐圧ガラス容噚に、ナトリりム
金属䞊で也燥、蒞留したベンれン390mlを入れた
埌、ゞ゚チレントリアミン1491.44モルを
加え、容噚内を窒玠眮換した。次に45ml0.072
モルの−ブチルリチりムの15−ヘキサン
溶液を導入した埌、合成れオラむトにより也燥、
脱氎した−クロルスチレン99.80.72モル
を導入した。
Example 4 390 ml of benzene dried and distilled over sodium metal was placed in a pressure-resistant glass container with an internal volume of 800 ml, and then 149 g (1.44 mol) of diethylenetriamine was added, and the inside of the container was purged with nitrogen. Then 45ml (0.072
After introducing a 15% n-hexane solution of n-butyllithium (mol), drying with synthetic zeolite,
Dehydrated p-chlorostyrene 99.8g (0.72mol)
introduced.

反応容噚を40℃の氎槜に入れ、時間撹拌を続
けた埌、反応混合物から実斜䟋ず同様の方法に
お単離し、13980の反応生成物を埗た。
The reaction vessel was placed in a water bath at 40° C., and stirring was continued for 4 hours, followed by isolation from the reaction mixture in the same manner as in Example 1 to obtain 139 g (80%) of the reaction product.

この反応生成物を䞀般の有機化孊的分析法によ
り分析した結果、次の構造をも぀生成物であるこ
ずがわか぀た。
As a result of analyzing this reaction product using a general organic chemical analysis method, it was found that the product had the following structure.

以䞋に分析の結果を瀺す。 The results of the analysis are shown below.

元玠分析C59.6359.62、H8.288.34、N17.39
17.38、Cl14.7014.66 たゞし、括匧内の数倀は理論倀を瀺す。
Elemental analysis; C59.63 (59.62), H8.28 (8.34), N17.39
(17.38), Cl14.70 (14.66) However, the numbers in parentheses indicate theoretical values.

マススペクトル241M+、206−Cl、
130−C6H4Cl、111C6H4Cl、102
C4H12N3 赀倖吞収スペクトルcm-1690、742、830、
1038、1360、1450、1492、1601、2805、3300付
近幅広い他 実斜䟋  還流噚、滎䞋ロヌトおよび撹拌棒を備えた200
mlの䞉぀口フラスコに、ナトリりム金属で脱氎し
たベンれン100mlおよび11.60.05モルのペ
ンタ゚チレンヘキサミンを入れる。容噚内を窒玠
眮換した埌、3.1ml0.005モルの−ブチルリ
チりムの15ヘキサン溶液を撹拌しながら加え
た。次に、7.450.05モルのメタ−ニトロス
チレンを30mlのベンれンにずかし、撹拌しながら
滎䞋ロヌトから玄10分かか぀お反応噚内に導入し
た。その埌、玄時間、ベンれンの還流枩床で撹
拌を続けた埌、反応混合物に10mlのメタノヌルを
加えお反応を停止させた。反応混合物党䜓の䜓積
の1/10を濃瞮埌、カラムクロマトグラフむヌによ
぀お分離したずころ、0.65換算で34の生
成物を埗た。液䜓クロマトグラフむヌによ぀お分
析したずころ、この生成物はほゞ同量づ぀の二぀
の成分の混合物であるこずがわか぀た。分析の結
果、これらのものは・14−ゞアミノ−N3−
−−ニトロプニル゚チル−・・・
12−テトラアザ−−テトラデカン、
たたは、および・14−ゞア
ミノ−N6−−−ニトロプニル゚チル
−・・・12−テトラアザ−−テトラデカ
ン、たたは、であ
るこずがわか぀た。分析結果は䞋蚘のずおりであ
る。
Mass spectrum; 241 (M + /e), 206 (M-Cl),
130 (M-C 6 H 4 Cl), 111 (C 6 H 4 Cl), 102
(C 4 H 12 N 3 ) Infrared absorption spectrum (cm -1 ); 690, 742, 830,
1038, 1360, 1450, 1492, 1601, 2805, around 3300 (wide range) and others Example 5 200 equipped with a reflux vessel, dropping funnel and stirring bar
100 ml of benzene dehydrated over sodium metal and 11.6 g (0.05 mol) of pentaethylenehexamine are placed in a 3-necked flask. After purging the inside of the container with nitrogen, 3.1 ml (0.005 mol) of a 15% hexane solution of n-butyllithium was added with stirring. Next, 7.45 g (0.05 mol) of meta-nitrostyrene was dissolved in 30 ml of benzene and introduced into the reactor through the dropping funnel for about 10 minutes while stirring. After that, stirring was continued for about 8 hours at the reflux temperature of benzene, and then 10 ml of methanol was added to the reaction mixture to stop the reaction. After concentrating 1/10 of the total volume of the reaction mixture and separating it by column chromatography, 0.65 g (calculated as 34%) of the product was obtained. Analysis by liquid chromatography showed that the product was a mixture of two components in approximately equal amounts. As a result of analysis, these substances are 1,14-diamino-N 3 -{2
-(m-nitrophenyl)ethyl}-3.6.9.
12-tetraaza-n-tetradecane (m=1, n
=4 or m=4, n=1) and 1,14-diamino- N6- {2-(m-nitrophenyl)ethyl}
It was found to be -3,6,9,12-tetraaza-n-tetradecane (m=2, n=3 or m=3, n=2). The analysis results are as follows.

元玠分析C56.4256.67、H9.299.25、N25.98
25.70 赀倖吞収スペクトル単䜍cm-1742、830、
1038、1332、1450、1530、1601、2805、3300付
近幅広い他 実斜䟋  還流噚、滎䞋ロヌトおよび流動パラフむンでシ
ヌルされた撹拌棒を備えた200mlの䞉぀口フラス
コに、100mlの脱氎ベンれンおよび8.030.055
モルのトリ゚チレンテトラミンを入れた埌、泚
射噚で3.1ml0.005モルの−ブチルリチりム
の15ヘキサン溶液を撹拌しながら加えた。次
に、8.00.05モルのパラ−−ブチルスチ
レンを30mlのベンれンにずかし、滎䞋ロヌトから
加えた。ベンれンの還流枩床で時間撹拌を続け
た埌、mlのメタノヌルで反応を停止させた。実
斜䟋ず同様の手法にお1.09換算で71の
生成物を埗た。液䜓クロマトグラフむヌによ぀お
分析したずころ、この生成物は単䞀の成分から成
぀おいるこずがわか぀た。䞋蚘の分析結果から、
このものは・−ゞアミノ−N3−−パラ
−−ブチル゚チル−・−ゞアザ−−
オクタンであるこずがわか぀た。分析結果は䞋蚘
のずおりである。
Elemental analysis; C56.42 (56.67), H9.29 (9.25), N25.98
(25.70) Infrared absorption spectrum (unit cm -1 ); 742, 830,
Around 1038, 1332, 1450, 1530, 1601, 2805, 3300 (wide range) and others Example 6 100 ml of dehydrated benzene was placed in a 200 ml three-necked flask equipped with a reflux, dropping funnel, and a stirring bar sealed with liquid paraffin. and 8.03g (0.055
mol) of triethylenetetramine was added, and then 3.1 ml (0.005 mol) of a 15% hexane solution of n-butyllithium was added with stirring using a syringe. Next, 8.0 g (0.05 mol) of para-n-butylstyrene was dissolved in 30 ml of benzene and added through the dropping funnel. After continued stirring for 8 hours at the reflux temperature of benzene, the reaction was stopped with 2 ml of methanol. In the same manner as in Example 5, 1.09 g (71% in terms of conversion) of a product was obtained. Analysis by liquid chromatography showed that the product consisted of a single component. From the analysis results below,
This product is 1,8-diamino-N 3 -{2-(para-n-butyl)ethyl}-3,6-diaza-n-
Turns out it's octane. The analysis results are as follows.

元玠分析C70.3170.54、H11.3511.18、
N18.4518.28 赀倖吞収スペクトル単䜍cm-1742、830、
1038、1450、1601、2804、3300付近幅広い
他
Elemental analysis; C70.31 (70.54), H11.35 (11.18),
N18.45 (18.28) Infrared absorption spectrum (unit cm -1 ); 742, 830,
Around 1038, 1450, 1601, 2804, 3300 (wide range)
other

Claims (1)

【特蚱請求の範囲】  構造匏 匏䞭、は氎玠、炭玠数からのアルキル
基、ハロゲンたたはニトロ基、およびはか
らの敎数を衚わす。 で瀺される新芏な塩基性化合物。  がからの敎数である特蚱請求
の範囲第項蚘茉の塩基性化合物。  が氎玠、メチル基、゚チル基たたはクロル
である特蚱請求の範囲第項たたは第項蚘茉の
塩基性化合物。  構造匏 匏䞭、およびはからの敎数を衚わす。 で瀺されるアミンを、それに察応する構造匏
 匏䞭、およびはからの敎数を衚わす。 で瀺されるアルカリ金属アミドの共存䞋に、構造
匏 匏䞭、は氎玠、炭玠数からのアルキル
基、ハロゲンたたはニトロ基を衚わす。 で瀺されるスチレン眮換䜓ず反応させるこずを特
城ずする構造匏 匏䞭、は氎玠、炭玠数からのアルキル
基、ハロゲンたたはニトロ基、およびはか
らの敎数を衚わす。 で瀺される新芏な塩基性化合物の補造法。  アルカリ金属アミドずしおリチりムア
ミドを甚いる特蚱請求の範囲第項蚘茉の塩基性
化合物の補造法。  構造匏で瀺されるアミンずアルキルリ
チりムから調補したリチりムアミドを甚いる特蚱
請求の範囲第項蚘茉の塩基性化合物の補造法。  アルキルリチりムずしお−ブチルリチりム
を甚いる特蚱請求の範囲第項蚘茉の塩基性化合
物の補造法。  䞍掻性有機液䜓の共存䞋に反応を行なう特蚱
請求の範囲第項ないし第項のいずれかに蚘茉
の塩基性化合物の補造法。  䞍掻性有機液䜓ずしおヘキサン、シクロヘキ
サン、テトラヒドロフラン、゚ヌテル、ベンれ
ン、トル゚ンのいずれか、たたは皮以䞊の混合
物を甚いる特蚱請求の範囲第項蚘茉の塩基性化
合物の補造法。  構造匏で瀺されるアミンずアルキル
リチりムの混合物にスチレン眮換䜓を加え
る特蚱請求の範囲第項ないし第項のいずれか
に蚘茉の塩基性化合物の補造法。
[Claims] 1 Structural formula () (wherein, X represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen or a nitro group, and m and n represent integers of 1 to 4). 2. The basic compound according to claim 1, wherein (m+n) is an integer from 2 to 5. 3. The basic compound according to claim 1 or 2, wherein X is hydrogen, methyl group, ethyl group, or chloro. 4 Structural formula () (In the formula, m and n represent integers from 1 to 4.) An amine represented by the corresponding structural formula () (In the formula, m and n represent integers from 1 to 4.) In the coexistence of an alkali metal amide represented by the structural formula () (In the formula, X represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen, or a nitro group.) (In the formula, X represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen or a nitro group, and m and n represent integers of 1 to 4.) 5. The method for producing a basic compound according to claim 4, using lithium amide as the alkali metal amide (). 6. A method for producing a basic compound according to claim 4, using a lithium amide prepared from an amine represented by the structural formula () and an alkyl lithium. 7. The method for producing a basic compound according to claim 4, using n-butyllithium as the alkyllithium. 8. A method for producing a basic compound according to any one of claims 4 to 7, wherein the reaction is carried out in the presence of an inert organic liquid. 9. The method for producing a basic compound according to claim 8, wherein any one of hexane, cyclohexane, tetrahydrofuran, ether, benzene, toluene, or a mixture of two or more thereof is used as the inert organic liquid. 10. The method for producing a basic compound according to any one of claims 4 to 9, which comprises adding a styrene substitute () to a mixture of an amine represented by the structural formula () and an alkyl lithium.
JP9666579A 1979-07-31 1979-07-31 Novel basic compound and its preparation Granted JPS5620552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9666579A JPS5620552A (en) 1979-07-31 1979-07-31 Novel basic compound and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9666579A JPS5620552A (en) 1979-07-31 1979-07-31 Novel basic compound and its preparation

Publications (2)

Publication Number Publication Date
JPS5620552A JPS5620552A (en) 1981-02-26
JPS636540B2 true JPS636540B2 (en) 1988-02-10

Family

ID=14171102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9666579A Granted JPS5620552A (en) 1979-07-31 1979-07-31 Novel basic compound and its preparation

Country Status (1)

Country Link
JP (1) JPS5620552A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW539661B (en) * 2000-09-12 2003-07-01 Mitsubishi Gas Chemical Co Amino compound and process for producing the same
JP4797345B2 (en) * 2003-08-13 2011-10-19 䞉菱瓊斯化孊株匏䌚瀟 Method for producing amino composition

Also Published As

Publication number Publication date
JPS5620552A (en) 1981-02-26

Similar Documents

Publication Publication Date Title
JPS58201779A (en) Novel n-alkyl-norscopine
KR870001929B1 (en) Process for preparation of 1,3-dialkyl-2-imidazolidinone
JPS636540B2 (en)
US4614829A (en) Process for the preparation of α-chlorinated chloroformates
JP2654516B2 (en) Method for producing silicon azide compound
US5274091A (en) ADMPT and its synthesis
JPS60132933A (en) Manufacture of nitrodiarylamine
US20230072446A1 (en) Lithium selective organogels
CN115925554B (en) Synthesis method of N-trifluoromethyl amine
CA1113111A (en) Process for the industrial synthesis of vinyl and isopropenyl chloroformate and thiochloroformate
JPS597699B2 (en) Method for producing indolines
US20240025839A1 (en) Method of synthesis
JP3790880B2 (en) Novel trilithium salt or tripotassium salt hydrate of 2,4,6-trimercapto-1,3,5-triazine, and method for producing hydrate and anhydride
JP4526275B2 (en) Method for producing tetra-substituted phosphonium tetrakisaroyloxyborate and its precursor
JP4571740B2 (en) Method for producing 1,6-dicyanohexane
US3088976A (en) Bis (omicron-phenylenediamino) diboron
Dehui et al. A polypyrrolic molecular cage consisting of irreversible amide and C―N single bonds: Structure and anion binding properties.
JPH04224525A (en) Production of 9,9-dialkylfluorene
JPH0665260A (en) Production of sodium bistrimethylsilylamide
CN114555615A (en) Complexes
JPH0443063B2 (en)
CN110698365A (en) Method for synthesizing sulfonylguanidine from tetra-substituted urea in one step
JPH02304094A (en) Preparation of bis(aminopropyl)tetraorganodisiloxane
JPH0776559A (en) Preparation of m-aminophenol from resorcinol
JPS6056133B2 (en) Separation method for aminoalkyl acidic sulfate esters