JPS6365398B2 - - Google Patents

Info

Publication number
JPS6365398B2
JPS6365398B2 JP26752885A JP26752885A JPS6365398B2 JP S6365398 B2 JPS6365398 B2 JP S6365398B2 JP 26752885 A JP26752885 A JP 26752885A JP 26752885 A JP26752885 A JP 26752885A JP S6365398 B2 JPS6365398 B2 JP S6365398B2
Authority
JP
Japan
Prior art keywords
aeration
section
sludge
partition wall
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26752885A
Other languages
Japanese (ja)
Other versions
JPS62129198A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP26752885A priority Critical patent/JPS62129198A/en
Publication of JPS62129198A publication Critical patent/JPS62129198A/en
Publication of JPS6365398B2 publication Critical patent/JPS6365398B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機性汚濁物質を含む都市下水、産
業廃水又はそれに類する有機性汚水の処理方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating urban sewage, industrial wastewater, or similar organic wastewater containing organic pollutants.

〔従来の技術〕[Conventional technology]

従来、有機性汚水を処理するために、曝気部と
沈殿分離部が一体化されたコンパクトな高速曝気
沈殿装置が多用されている。
Conventionally, in order to treat organic wastewater, a compact high-speed aeration-sedimentation device in which an aeration section and a precipitation separation section are integrated has been frequently used.

例えば、高速曝気沈殿装置としては、第3図に
示すように、槽1内中央に、下部を膨出させ下端
を槽底から離隔させた隔壁2により曝気部3を形
成し、その外側を沈殿分離部4とし、沈殿分離部
4の下部は隔壁2下端の槽底との離隔部によつて
曝気部3と連通されている。また、隔壁2の上部
には連通路5が開口され、その外側に上端を水面
上に突出させたドラフトチユーブ6が垂設され、
ドラフトチユーブ6と隔壁2間にドラフト部7が
形成されてこのドラフト部7を介して曝気部3と
沈殿分離部4とが連通されている。
For example, as shown in Fig. 3, in a high-speed aeration and precipitation apparatus, an aeration section 3 is formed in the center of a tank 1 by a partition wall 2 whose lower end is bulged and whose lower end is separated from the bottom of the tank, and the outside of the partition wall 2 is used for precipitation. The lower part of the sedimentation separation part 4 is connected to the aeration part 3 by a separation part from the bottom of the tank at the lower end of the partition wall 2. Further, a communication passage 5 is opened in the upper part of the partition wall 2, and a draft tube 6 whose upper end protrudes above the water surface is vertically installed on the outside of the communication passage 5.
A draft portion 7 is formed between the draft tube 6 and the partition wall 2, and the aeration portion 3 and the precipitation separation portion 4 are communicated via the draft portion 7.

さらに、曝気部3内には、送気管8とその上部
に駆動装置9によつて駆動される撹拌機10が配
設され、制御機構11によつて送気管8中の開閉
弁12の開閉及び駆動装置9の起動、停止を制御
するようになつている。
Further, in the aeration section 3, an air supply pipe 8 and an agitator 10 driven by a drive device 9 are disposed above the air supply pipe 8, and a control mechanism 11 controls opening and closing of an on-off valve 12 in the air supply pipe 8. Starting and stopping of the drive device 9 is controlled.

図中、13は曝気部3の底部に開口する汚水流
入管、14は沈殿分離部4上部に設けられた溢流
樋、15は処理水流出管、16は余剰汚泥を排出
する排泥管を示す。
In the figure, 13 is a sewage inflow pipe that opens at the bottom of the aeration section 3, 14 is an overflow gutter provided at the top of the sedimentation separation section 4, 15 is a treated water outflow pipe, and 16 is a sludge drain pipe that discharges excess sludge. show.

このような高速曝気沈殿装置は、有機性汚水を
汚水流入管13から曝気部3に連続的に流入させ
ながら曝気して好気的処理を行い、その後沈殿分
離部4で固液分離して清澄な処理水を得る一方、
沈殿する汚泥は再び曝気部3に循環されるもので
あるが、さらに高度の処理を可能にするように、
曝気部3における曝気を間欠的に行う処理技術が
開発され、特願昭59―132904号として出願されて
いる。
Such a high-speed aeration-sedimentation device performs aerobic treatment by aerating organic wastewater while continuously flowing into the aeration section 3 from the wastewater inflow pipe 13, and then performs solid-liquid separation in the precipitation separation section 4 for clarification. While obtaining treated water,
The settled sludge is recycled to the aeration section 3 again, but in order to enable even more advanced treatment,
A treatment technique for intermittently performing aeration in the aeration section 3 has been developed and filed as Japanese Patent Application No. 132904/1983.

即ち、前記間欠曝気方式による処理技術は、曝
気時には、有機性汚水は汚水流入管13から曝気
部3内に導かれ、槽1内の活性汚泥と送気管8か
ら送られる空気と一緒に撹拌機10によつて混合
され、好気的分解を受けたのち、汚水と活性汚泥
の混合液は隔壁2上部の連通路5を通つて、ドラ
フト部7内を下降して沈殿分離部4内に流入す
る。沈殿分離部4では固液分離が行われ、分離さ
れた上澄水は処理水となつて溢流樋14に溢流し
て処理水流出管15から流出し、汚泥は沈殿して
隔壁2と槽底との離隔部を通つて再び曝気部3に
循環される。
That is, in the treatment technology using the intermittent aeration method, during aeration, organic sewage is led into the aeration part 3 from the sewage inflow pipe 13, and is passed through the agitator together with the activated sludge in the tank 1 and the air sent from the air supply pipe 8. 10 and subjected to aerobic decomposition, the mixed liquid of sewage and activated sludge passes through the communication passage 5 in the upper part of the partition wall 2, descends in the draft part 7, and flows into the sedimentation separation part 4. do. Solid-liquid separation is performed in the sedimentation separation section 4, and the separated supernatant water becomes treated water and overflows into the overflow gutter 14 and flows out from the treated water outflow pipe 15, and the sludge settles and flows between the partition wall 2 and the tank bottom. The air is circulated again to the aeration section 3 through the separated section.

また、曝気停止時には、有機性汚水は汚水流入
管13から曝気部3に連続的に流入するが、制御
機構11によつて開閉弁12を閉鎖し、駆動装置
9を停止すると、送気管8からの送気及び撹拌機
10が停止するため、曝気部3内の活性汚泥は沈
降して汚泥ゾーンが形成され、破線の如く汚泥界
面17が形成される。したがつて、汚水流入管1
3から曝気部3に流入した有機性汚水は、この汚
泥界面17の下にある汚泥ゾーンを通過して上昇
し、隔壁2上部の連通部5からドラフト部7を経
て沈殿分離部4に至り、処理水となつて溢流樋1
4を経て処理水流出管15から槽外へ流出する
が、汚水が汚泥ゾーンを通過する際に、脱窒素作
用によつて分解を受けたり、リン蓄積能を有する
細菌により曝気時に取り込まれた汚泥中のリンの
吐出しと並行して有機物が汚泥中に取り込まれ、
汚泥ゾーン通過後の汚水は比較的清澄な処理水と
なる。
Furthermore, when the aeration is stopped, organic wastewater continuously flows into the aeration section 3 from the wastewater inflow pipe 13, but when the control mechanism 11 closes the on-off valve 12 and stops the drive device 9, the organic wastewater flows from the air supply pipe 8 into the aeration section 3. Since the air supply and the agitator 10 are stopped, the activated sludge in the aeration section 3 settles to form a sludge zone, and a sludge interface 17 is formed as shown by the broken line. Therefore, the wastewater inflow pipe 1
The organic sewage that has flowed into the aeration section 3 from the sludge interface 17 rises through the sludge zone below the sludge interface 17, passes through the communication section 5 at the top of the partition wall 2, passes through the draft section 7, and reaches the sedimentation separation section 4. Overflow gutter 1 as treated water
4, the treated water flows out of the tank from the outflow pipe 15, but as the sewage passes through the sludge zone, it undergoes decomposition due to denitrification, and sludge is taken in during aeration by bacteria that have the ability to accumulate phosphorus. At the same time as the phosphorus inside is discharged, organic matter is taken into the sludge.
After passing through the sludge zone, the wastewater becomes relatively clear treated water.

このように、曝気部と沈殿分離部が一体化され
た高速曝気沈殿装置を利用して、汚水を連続的に
流入させながら曝気を間欠的に行う方法は、高速
曝気沈殿装置でそれまで困難とされていたバルキ
ング防止がはかられ、併せて窒素、リンの除去も
可能となる優れた技術であつた。
In this way, the method of using a high-speed aeration-sedimentation device with an integrated aeration section and sedimentation separation section to perform aeration intermittently while continuously inflowing wastewater has been difficult to achieve with high-speed aeration-sedimentation devices. This was an excellent technology that prevented bulking, which had previously been known, and also made it possible to remove nitrogen and phosphorus.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記のような間欠曝気方式にお
いて、特にその脱リン能力を有する細菌群を優先
させるためには、曝気停止時間(嫌気時間)を長
くとる必要があるが、曝気停止時間を長くとるに
したがつて、処理水となる上澄水側に懸濁質が多
く発生する傾向が認められ、この懸濁質は連通部
5、ドラフト部7を通つて沈殿分離部4に流入し
て分離されずにそのまま流出するため、処理水水
質が悪化する傾向があつた。特に、槽1内の深さ
が浅い場合やMLSS濃度が薄い条件下においては
懸濁質及び有機物の除去機能が低下することが甚
だしかつた。
However, in the above-mentioned intermittent aeration method, it is necessary to take a long aeration stop time (anaerobic time) in order to give priority to bacterial groups that have the ability to dephosphorize. As a result, there is a tendency for a large amount of suspended solids to be generated in the supernatant water that becomes the treated water, and these suspended solids flow into the sedimentation separation section 4 through the communication section 5 and the draft section 7 and are not separated. The quality of the treated water tended to deteriorate as it flowed out as it was. In particular, when the depth in tank 1 was shallow or under conditions where the MLSS concentration was low, the ability to remove suspended solids and organic matter was significantly reduced.

本発明は、高速曝気沈殿装置の間欠的曝気によ
るバルキング防止効果、窒素、リンの除去効果を
生かし、さらに曝気停止時間を長くとるにつれて
生じる懸濁質等の処理水への混入を防止し、常に
良好な処理水水質を得ることができる有機性汚水
の処理方法を提供しようとするものである。
The present invention takes advantage of the bulking prevention effect and nitrogen and phosphorus removal effect of intermittent aeration of the high-speed aeration-sedimentation device, and also prevents suspended solids and other substances from being mixed into the treated water as the aeration is stopped for a long time. It is an object of the present invention to provide a method for treating organic wastewater that can obtain good treated water quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、前記高速曝気沈殿装置の間欠曝気
方式について、実験室規模の装置を用いて、曝気
停止時間と上澄水中の懸濁質との関係を調べた。
即ち、実験装置としては第4図a,bに示すよう
に、槽21内を、上端を水面上とし下端を槽底か
ら離隔させた隔壁22によつて曝気部23と沈殿
分離部24とに区画し、それぞれを隔壁22の下
端を介して連通させ、曝気部23内を上端を水面
下に下端を槽底から離隔させた隔壁25によつて
仕切り、その一方23の下部に散気管28及び汚
水流入管3を開口させ、他方23′を隔壁22の
下端を介して沈殿分離部24の下部と連通させ、
沈殿分離部24の上部に処理水流出部34を設け
たものを使用した。
The present inventor investigated the relationship between the aeration stop time and suspended solids in the supernatant water using a laboratory-scale device regarding the intermittent aeration method of the high-speed aeration-sedimentation device.
That is, as shown in FIGS. 4a and 4b, as an experimental apparatus, the inside of the tank 21 is separated into an aeration section 23 and a sedimentation separation section 24 by a partition wall 22 whose upper end is above the water surface and whose lower end is separated from the tank bottom. The interior of the aeration section 23 is partitioned by a partition wall 25 whose upper end is below the water surface and whose lower end is separated from the bottom of the tank. The sewage inflow pipe 3 is opened, and the other 23' is communicated with the lower part of the sedimentation separation section 24 via the lower end of the partition wall 22,
A system in which a treated water outflow section 34 was provided above the precipitation separation section 24 was used.

そして、汚水流入管33から汚水を曝気部23
内に連続的に流入しつつ間欠曝気を行つた。
Then, the sewage is transferred from the sewage inflow pipe 33 to the aeration section 23.
Intermittent aeration was performed while continuously flowing into the tank.

曝気時においては、第4図aに示すように、散
気管28から空気を散気し、汚水は曝気部23で
好気的分解を受けたのち隔壁25の上端を越えて
曝気部23′に流入し、一部が隔壁25の下端か
ら曝気部23内に循環し、他部は隔壁22の下端
から沈殿分離部24の下方に流入し、固体分離さ
れたのち、上澄水は処理水流出部34から流出し
た。
During aeration, as shown in FIG. 4a, air is diffused from the aeration pipe 28, and the wastewater undergoes aerobic decomposition in the aeration section 23 and then passes over the upper end of the partition wall 25 to the aeration section 23'. A part of the water flows into the aeration part 23 from the lower end of the partition wall 25, and the other part flows into the lower part of the precipitation separation part 24 from the lower end of the partition wall 22, and after solid separation, the supernatant water is transferred to the treated water outflow part. It leaked from 34.

一方、曝気停止時においては、第4図bに示す
ように、散気管8からの散気を停止することによ
つて、曝気部23,23′及び沈殿分離部24の
各下部にそれぞれ汚泥界面37をもつた汚泥ゾー
ンA,B,Cが形成され、汚水流入管33から流
入させた汚水は、曝気部23に形成された汚泥ゾ
ーンAを上向きに通過し、隔壁25の上端を越え
て曝気部23′に流入して下向流となつて該部の
汚泥ゾーンBを通過し、さらに隔壁22の下端か
ら沈殿分離部24に至つて汚泥ゾーンCを上向き
に通過し、窒素、リンが除去された処理水として
処理水流出部34から流出させた。
On the other hand, when the aeration is stopped, as shown in FIG. 4b, by stopping the aeration from the aeration pipe 8, the sludge interface is formed at the lower part of each of the aeration sections 23, 23' and the sediment separation section 24. Sludge zones A, B, and C with 37 are formed, and the sewage flowing in from the sewage inflow pipe 33 passes upward through the sludge zone A formed in the aeration section 23, passes over the upper end of the partition wall 25, and is aerated. It flows into the section 23', becomes a downward flow, passes through the sludge zone B of this section, and then passes upward through the sludge zone C from the lower end of the partition wall 22 to the sedimentation separation section 24, where nitrogen and phosphorus are removed. The treated water was discharged from the treated water outlet 34.

このように、汚水を連続的に流しながら間欠曝
気処理を行つて汚泥を馴養したのち、曝気のみ停
止後(第4図b)の曝気部23′及び沈殿分離部
24の上澄水b及びcの濁度を時間経過と共に調
べた結果は第5図に示す通りであつた。この第5
図からも分かるように、曝気部23′では曝気停
止後約15分より上澄水bの濁度が次第に増加する
ことが示された。一方、沈殿分離部24では曝気
停止後80分程してから上澄水cの濁度が増加
し、曝気部23′より65分程濁度増加が遅れるの
が示された。この結果から懸濁質は汚泥ゾーンを
2度通ることで、かなり減少されることが判明し
た。
In this way, after the sludge is acclimatized by intermittent aeration treatment while flowing sewage continuously, the supernatant water b and c of the aeration section 23' and the sedimentation separation section 24 after only aeration is stopped (Fig. 4b). The results of examining the turbidity over time were as shown in Figure 5. This fifth
As can be seen from the figure, in the aeration section 23', the turbidity of the supernatant water b gradually increased from about 15 minutes after the aeration stopped. On the other hand, in the precipitation separation section 24, the turbidity of the supernatant water c increased about 80 minutes after the aeration stopped, and the increase in turbidity was shown to be delayed by about 65 minutes compared to the aeration section 23'. These results revealed that suspended solids can be significantly reduced by passing through the sludge zone twice.

本発明は、前記実験の観察結果に基づいてなさ
れたものであつて、槽内に、底部に汚水の流入部
を備えた曝気部と処理水流出部を備えた沈殿分離
部を形成し、前記曝気部の上下部と前記沈殿分離
部を連通せしめて槽内水を循環せしめるようにし
た高速曝気沈殿装置を用い、汚水を連続的に流入
させながら間欠的に曝気する方法において、曝気
停止時には、前記曝気部上部から前記沈殿分離部
への流出を停止せしめ、前記曝気部下部からのみ
前記沈殿分離部へ流出せしめることを特徴とする
有機性汚水の処理方法を提供するものである。
The present invention was made based on the observation results of the above-mentioned experiments, and includes forming in the tank a sedimentation separation section having an aeration section with a sewage inflow section at the bottom and a treated water outflow section; In a method of intermittently aerating while continuously inflowing sewage using a high-speed aeration-sedimentation device in which the upper and lower parts of the aeration part are connected to the sedimentation separation part to circulate the water in the tank, when the aeration is stopped, The present invention provides a method for treating organic wastewater, characterized in that the outflow from the upper part of the aeration part to the precipitation separation part is stopped, and the flow is allowed to flow only from the lower part of the aeration part to the precipitation separation part.

〔実施例〕〔Example〕

次に本発明の一実施例を第1図を参照しながら
説明すれば、第1図に示す高速曝気沈殿装置の大
部分は前述した第3図示例の従来例と同様である
が、隔壁2上部の連通部5に開閉機構18を設け
たものである。開閉機構18としては自動開閉機
構とするのが好ましく、制御機構11と連動させ
て送気管8の開閉弁12の閉鎖と、撹拌機10の
駆動装置9の停止時に、開閉機構18を閉鎖す
る。
Next, an embodiment of the present invention will be described with reference to FIG. 1. Most of the high-speed aeration precipitation apparatus shown in FIG. An opening/closing mechanism 18 is provided in the upper communication portion 5. The opening/closing mechanism 18 is preferably an automatic opening/closing mechanism, and is closed in conjunction with the control mechanism 11 when the opening/closing valve 12 of the air supply pipe 8 is closed and when the drive device 9 of the stirrer 10 is stopped.

したがつて、曝気停止時においては開閉機構1
8を閉鎖し、汚水を隔壁2の下端から沈殿分離部
4下部へ流入するようにすれば、汚水は汚泥界面
17の下の曝気部3及び沈殿分離部4の汚泥ゾー
ンを通過して懸濁質が効果的に捕捉されながら、
沈殿分離部4を上昇して溢流樋14を経て処理水
流出管15から良好な処理水となつて流出する。
また、曝気時には、開閉機構18を開放状態と
し、従来と同様に混合液は曝気部3から連通部5
及びドラフト部7を通つて沈殿分離部4へ流れ、
汚泥は曝気部3に循環される。
Therefore, when the aeration is stopped, the opening/closing mechanism 1
8 is closed and the sewage flows from the lower end of the partition wall 2 to the lower part of the sedimentation separation section 4, the sewage passes through the aeration section 3 below the sludge interface 17 and the sludge zone of the sedimentation separation section 4 and becomes suspended. While quality is effectively captured,
The water rises through the sediment separation unit 4, passes through the overflow gutter 14, and flows out from the treated water outflow pipe 15 as good treated water.
In addition, during aeration, the opening/closing mechanism 18 is opened, and the mixed liquid is transferred from the aeration part 3 to the communication part 5 as in the past.
and flows through the draft section 7 to the precipitation separation section 4,
The sludge is circulated to the aeration section 3.

開閉機構18の開閉は、撹拌機10の起動、停
止及び送気管8の開閉弁12の開閉と共に、制御
機構11によつてコントロールされるとよいが、
開閉機構18の開閉は、曝気の開始及び停止とは
必ずしも時間的に一致させる必要はなく、開閉機
構18の開は曝気開始と同時に行われるのが好ま
しいが、閉は曝気停止後5〜10分後にしてもよ
い。
The opening/closing of the opening/closing mechanism 18 is preferably controlled by the control mechanism 11 along with the starting and stopping of the agitator 10 and the opening/closing of the opening/closing valve 12 of the air pipe 8.
The opening/closing mechanism 18 does not necessarily have to be opened and closed at the same time as the start and stop of aeration; it is preferable that the opening/closing mechanism 18 is opened at the same time as the aeration starts, but it is closed 5 to 10 minutes after the aeration stops. You can do it later.

なお、第1図に示したように、槽底の汚水流入
管13の開口部の上部又は撹拌機10の周囲を、
上下端が開放されたバツフル筒19で囲むこと
で、曝気停止時に流入する汚水は、矢印のよう
に、一度汚泥ゾーンを通つて汚泥界面17の上部
に出たのち、再度曝気部3の汚泥ゾーンにもぐり
込んで沈殿分離部4の汚泥ゾーンに至り、処理水
に同伴される懸濁質の除去効果をさらに向上させ
ることができる。
In addition, as shown in FIG.
By surrounding it with a double-sided cylinder 19 with open upper and lower ends, the sewage that flows in when the aeration is stopped passes through the sludge zone and exits to the upper part of the sludge interface 17, as shown by the arrow, and then returns to the sludge zone of the aeration section 3. It can penetrate into the sludge zone of the sedimentation separation section 4 and further improve the effect of removing suspended solids entrained in the treated water.

また、第2図は本発明の他の実施例を示すもの
であり、有機性汚水の流入部を、上端が水面上で
下端が槽底近くで離隔された隔壁38で槽1の一
側に区画形成し、この隔壁38と隔壁2によつて
曝気部3を形成し、さらにドラフトチユーブ6に
より形成されたドラフト部7を介して曝気部3の
上下を沈殿部4に連通させた装置を使用するもの
であり、その作用も前記実施例とほとんど同様で
ある。
FIG. 2 shows another embodiment of the present invention, in which the inlet of organic sewage is connected to one side of the tank 1 by a partition wall 38 whose upper end is above the water surface and whose lower end is near the bottom of the tank. An aeration section 3 is formed by the partition wall 38 and the partition wall 2, and the top and bottom of the aeration section 3 are communicated with the settling section 4 through a draft section 7 formed by a draft tube 6. The operation is almost the same as that of the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、高速曝気
沈殿装置を利用して間欠曝気を行い、バルキング
防止効果、窒素、リンの除去効果を生かしつつ、
曝気停止時間を長くとるにつれて生じる懸濁質を
効果的に除去し、常に良好な処理水を得ることが
できるものである。
As described above, according to the present invention, intermittent aeration is performed using a high-speed aeration precipitation device, and while taking advantage of the bulking prevention effect and the nitrogen and phosphorus removal effect,
It is possible to effectively remove suspended solids that occur as the aeration stop time is increased, and to always obtain good quality treated water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体説明図、
第2図は本発明の他の実施例を示す説明図、第3
図は従来例を示す全体説明図で、第4図a及びb
は実験例を示す説明図、第5図は実験例における
汚水の流入時間と上澄水の濁度の関係を示す線図
である。 1…槽、2…隔壁、3…曝気部、4…沈殿分離
部、5…連通部、6…ドラフトチユーブ、7…ド
ラフト部、8…送気管、9…駆動装置、10…撹
拌機、11…制御機構、12…開閉弁、13…汚
水流入管、14…溢流樋、15…処理水流出管、
16…排泥管、17…汚泥界面、18…開閉機
構、19…バツフル筒、21…槽、22…隔壁、
23,23′…曝気部、24…沈殿分離部、25
…隔壁、28…散気管、33…汚水流入管、34
…処理水流出部、37…汚泥界面、38…隔壁。
FIG. 1 is an overall explanatory diagram showing one embodiment of the present invention;
FIG. 2 is an explanatory diagram showing another embodiment of the present invention, and FIG.
The figure is an overall explanatory diagram showing a conventional example, and Fig. 4 a and b
is an explanatory diagram showing an experimental example, and FIG. 5 is a diagram showing the relationship between the inflow time of wastewater and the turbidity of supernatant water in the experimental example. 1... Tank, 2... Partition wall, 3... Aeration section, 4... Precipitation separation section, 5... Communication section, 6... Draft tube, 7... Draft section, 8... Air supply pipe, 9... Drive device, 10... Stirrer, 11 ...control mechanism, 12...on/off valve, 13...sewage inflow pipe, 14...overflow gutter, 15...treated water outflow pipe,
16... Sludge drainage pipe, 17... Sludge interface, 18... Opening/closing mechanism, 19... Buttful tube, 21... Tank, 22... Partition wall,
23, 23'... Aeration section, 24... Precipitation separation section, 25
…Partition wall, 28…Diffuser pipe, 33…Sewage inflow pipe, 34
... Treated water outflow section, 37 ... Sludge interface, 38 ... Partition wall.

Claims (1)

【特許請求の範囲】[Claims] 1 槽内に、底部に汚水の流入部を備えた曝気部
と処理水流出部を備えた沈殿分離部を形成し、前
記曝気部の上下部と前記沈殿分離部を連通せしめ
て槽内水を循環せしめるようにした高速曝気沈殿
装置を用い、汚水を連続的に流入させながら間欠
的に曝気する方法において、曝気停止時には、前
記曝気部上部から前記沈殿分離部への流出を停止
せしめ、前記曝気部下部からのみ前記沈殿分離部
へ流出せしめることを特徴とする有機性汚水の処
理方法。
1. In a tank, an aeration part with a sewage inflow part at the bottom and a sedimentation separation part with a treated water outflow part are formed, and the upper and lower parts of the aeration part communicate with the sedimentation separation part to drain water in the tank. In a method in which wastewater is intermittently aerated while continuously flowing in using a high-speed aeration-settling device configured to circulate, when the aeration is stopped, the outflow from the upper part of the aeration section to the sedimentation separation section is stopped, and the aeration is stopped. A method for treating organic wastewater, characterized in that the organic wastewater is allowed to flow out only from the lower part of the section to the precipitation separation section.
JP26752885A 1985-11-29 1985-11-29 Method for treating organic sewage Granted JPS62129198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26752885A JPS62129198A (en) 1985-11-29 1985-11-29 Method for treating organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26752885A JPS62129198A (en) 1985-11-29 1985-11-29 Method for treating organic sewage

Publications (2)

Publication Number Publication Date
JPS62129198A JPS62129198A (en) 1987-06-11
JPS6365398B2 true JPS6365398B2 (en) 1988-12-15

Family

ID=17446081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26752885A Granted JPS62129198A (en) 1985-11-29 1985-11-29 Method for treating organic sewage

Country Status (1)

Country Link
JP (1) JPS62129198A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862679B2 (en) * 1990-12-11 1999-03-03 富士通株式会社 Storage disk module

Also Published As

Publication number Publication date
JPS62129198A (en) 1987-06-11

Similar Documents

Publication Publication Date Title
US2242139A (en) Method and apparatus for water purification
CA2061416C (en) Method and apparatus for clarifying liquid using a pulsating sludge bed and part of concentrated sludge
EP0161041A3 (en) Anaerobic reactor
PL186772B1 (en) Sewage treating process
JPS6084198A (en) Activated sludge treating apparatus
JPS6365398B2 (en)
JP2000117285A (en) Anaerobic treatment device for organic wastewater
JP3281161B2 (en) Water purification equipment
JP4019277B2 (en) Method and apparatus for treating organic wastewater generated from fishing ports and fish markets
JPH03188993A (en) Sewage treating device
KR100856907B1 (en) Cohesion type settling tank and cohesion type apparatus for purification of waste water having that
JPH0615079B2 (en) Sewage treatment equipment
KR200371017Y1 (en) Dissolved airfloatation system for treatment waste water
RU1853U1 (en) Dairy Biological Wastewater Treatment Station
JPH05301005A (en) Precipitation tank for advanced wastewater treatment
JPS6125439B2 (en)
JPH0523664A (en) Method for automatically controlling backwashing of biological activated-carbon treating tower
JPS62176597A (en) Apparatus for biological treatment of waste water
KR960037587A (en) Advanced biological and chemical circulation treatment of sewage and wastewater using integrated reactor and water quality control tank
JPH06198295A (en) Biological treatment of organic sewage
SU548574A1 (en) Device for biological treatment and clarification of wastewater
SU1699957A1 (en) Device for biological sewage treatment
JPH0852486A (en) Sludge returning method for anaerobic waste water treatment
JPH0398688A (en) Water treatment method
JPH057895A (en) Aeration tank for anaerobic and aerobic treatment and method for discharging scum in the tank