JPS6365225A - Pulverized coal burning device - Google Patents

Pulverized coal burning device

Info

Publication number
JPS6365225A
JPS6365225A JP20974186A JP20974186A JPS6365225A JP S6365225 A JPS6365225 A JP S6365225A JP 20974186 A JP20974186 A JP 20974186A JP 20974186 A JP20974186 A JP 20974186A JP S6365225 A JPS6365225 A JP S6365225A
Authority
JP
Japan
Prior art keywords
pulverized coal
coal
air
load
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20974186A
Other languages
Japanese (ja)
Inventor
Manabu Orimoto
折本 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP20974186A priority Critical patent/JPS6365225A/en
Publication of JPS6365225A publication Critical patent/JPS6365225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To secure a steady burning condition even if the load is low for a coal pulverizer by attaching a vent tube to the pulverizer to allow the extraction of a certain amount of primary air, and regulating the amount of extraction relative to the reduction of load. CONSTITUTION:In a case where the load fluctuation is to be coped with by a burner cut, the amount of finely pulverized coal flowing into the vent air is minimized since the inlet of the vent tube concentrically disposed relative to the coal feed pipe 28 is placed in an area where the coal concentration is leanest in the classifier due to the centrifugal force. Therefore, the rate of venting can be regulated corresponding to the number of burners which are cut off, and so the amount of primary air to the burners in use does not increase unnecessarily. The extracted vent air is supplied to a cyclone separator 6 to separate finely pulverized coal contained therein. This way, the coal/air concentration is raised, and the burner nozzle speed reduced, by starting venting. In this manner, a high coal/air concentration can be maintained, and the burner nozzle speed maintained at a proper level, even under low load conditions.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は微粉炭を燃焼させる装置に係り、特に負荷制御
範囲を広く設定することができる微粉炭燃焼装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for burning pulverized coal, and particularly to a pulverized coal combustion device that can set a wide load control range.

〔従来の技術〕[Conventional technology]

火力発電所におけるボイラをはじめとして事業所用の大
型の燃焼装置においても、石油系燃料から石炭への燃料
転換が積極的に推進され”Cいる。
Fuel conversion from petroleum-based fuels to coal is being actively promoted in large-scale combustion equipment for business offices, including boilers in thermal power plants.

この場合、石炭は燃焼性、制御性を向上させるため微粉
化されてバーナに供給される。
In this case, the coal is pulverized and supplied to the burner in order to improve combustibility and controllability.

特に火力発電所においては原子力発電のベースロード化
により微粉炭燃焼用の大型ボイラも中間負荷運用される
ことが多い。更に最近の傾向として、工場の操業状態、
家庭における生活習慣の変化等により電力需要はかなり
微妙に変化する。
In particular, in thermal power plants, large boilers for pulverized coal combustion are often operated with intermediate loads due to the shift to base load nuclear power generation. Furthermore, as a recent trend, the operational status of factories,
Electricity demand changes quite subtly due to changes in household lifestyle habits.

ここで、微粉炭燃焼方式としては微粉炭機(ミル)から
微粉炭を直接バーナに供給して燃焼すさせるダイレクト
ファイアリング方式と、微粉炭を一部ビンに貯蔵した後
、バーナに供給するビンシステムとがあるが、前記負荷
変動に対応する方法もこれらの方式を考慮して構成され
ている。
Here, the pulverized coal combustion methods include the direct firing method, in which pulverized coal is directly supplied from a pulverizer (mill) to the burner and burned, and the other is the direct firing method, in which pulverized coal is partially stored in a bin and then supplied to the burner. However, the methods for dealing with the load fluctuations are also configured in consideration of these methods.

即ち、(1)ダイレクトファイアリング方式から成る微
粉炭燃焼装置とビンシステムからなる微粉炭燃焼装置と
を併設し、これらの方式を適宜組み合わせることにより
負荷変動に対応する方法。
That is, (1) a method of dealing with load fluctuations by installing a pulverized coal combustion device using a direct firing method and a pulverized coal combustion device using a bin system, and combining these methods as appropriate.

(2)ダイレクトファイアリング方式から成る微粉炭燃
焼装置における微粉炭供給経路に対して、微粉炭機の粉
砕能力の例えば5〜20%程度の供給能力を有する微粉
炭ビンを配置し、常時はこの微粉炭ビンから微粉炭機粉
砕能力の10%程度の微粉炭を供給する方法等である。
(2) A pulverized coal bin with a supply capacity of, for example, 5 to 20% of the pulverizing capacity of the pulverized coal machine is placed in the pulverized coal supply path in a pulverized coal combustion device that uses a direct firing method, and is used at all times. This method involves supplying pulverized coal of approximately 10% of the pulverizing capacity of a pulverized coal machine from a pulverized coal bin.

(1)及び(2)の方式のうち、(2)の方式はあくま
でもダイレクトファイアリング方式が中心であって、こ
れに対して比較的小規模のビンシステムを設置したもの
であるため、2の異なるシステムを併設する場合に比較
して装置に無駄が無く合理的であるといえる。即ら(2
)の方式では、電気の需要が急激かつ小幅である負荷デ
マントにおいては微粉炭ビンから微粉炭を供給すること
により対応し、大幅かつ比較的ゆったりとした変化に&
=I L、 ’(は微粉炭機の負荷を調整することによ
り対応する。
Among methods (1) and (2), method (2) is mainly a direct firing method, and in contrast, it is a relatively small-scale bin system installed. Compared to the case where different systems are installed together, it can be said that there is no waste in the equipment and it is rational. That is (2
) method, when the demand for electricity is sudden and small, it is handled by supplying pulverized coal from the pulverized coal bin.
=I L, '( is handled by adjusting the load of the pulverizer.

第3図は上記(2)の方式を長体的に示1−ものである
FIG. 3 shows the method (2) above in a long view.

この方式においては、複数設置された微わ)炭機のうち
一部の微粉炭機に対し゛ζ微粉炭ビンを接続することに
より製造した微粉炭の一部を貯蔵し、負荷変動に対応す
るように構成している。fill I:+、石炭バンカ
1を出た石炭は給炭機2を経−ご微粉炭機3に至り所定
の粒径に微粉砕される。粉砕された微粉炭は微粉炭機出
口ダンパ13、微わ)炭(ハ給管4を経て微粉炭バーナ
5に気流輸送され、火炉50において燃焼する。この微
粉炭管4に対しCは微粉炭ビン7が接続しており、負荷
変動に対応して適宜ビン内の微粉炭を供給するように構
成しである。
In this system, a part of the pulverized coal produced by connecting a pulverized coal bin to some of the multiple pulverized coal machines installed is stored to cope with load fluctuations. It is configured as follows. fill I: + Coal leaving the coal bunker 1 passes through a coal feeder 2 to a coal pulverizer 3 where it is pulverized to a predetermined particle size. The pulverized pulverized coal is air-flow-transported to the pulverized coal burner 5 through the pulverized coal machine outlet damper 13 and the charcoal supply pipe 4, and is burned in the furnace 50. A bin 7 is connected, and the structure is such that the pulverized coal in the bin is appropriately supplied in response to load fluctuations.

即ち、別の微粉炭機3aから供給された微わ)炭は微粉
炭管4aを経てサイクロンセパレータ6に至り、ここに
おいて気流中の微粉炭は分離されて微粉炭ビン7に貯蔵
され、負荷の変動に対応して微粉炭供給機8、ロータリ
シール9を経て前記微粉炭管4中に供給される。なお、
サイクロンセパレータ6において分離されなかった微粉
炭は後続のハックフィルタ11において分離される。
That is, the fine coal supplied from another pulverizer 3a passes through the pulverized coal pipe 4a and reaches the cyclone separator 6, where the pulverized coal in the airflow is separated and stored in the pulverized coal bin 7, where the load is reduced. The pulverized coal is supplied into the pulverized coal pipe 4 via the pulverized coal feeder 8 and the rotary seal 9 in response to fluctuations. In addition,
Pulverized coal that has not been separated in the cyclone separator 6 is separated in the subsequent hack filter 11.

以上の従来構成では第4図に示すように負荷変動の大き
なうねりLlに対してはダイレクトファイアリング用の
微粉炭機3の負荷を変動させることにより対応し、小刻
み上下する負荷変動し2に対しては微粉炭ビン7からの
微粉炭供給量を調節することにより対応する。また更に
、前記微粉炭管4は通常−基の微粉炭機3に対して複数
本接続し、これら微粉炭管を2〜3群に分割して制御可
能に構成し、これによりバーナ中の燃焼本数を制御する
ことによっても負荷変動に対応するように構成しである
In the above conventional configuration, as shown in Fig. 4, the load of the pulverizer 3 for direct firing is coped with by changing the load of the pulverizer 3 for direct firing in response to large undulations Ll of load fluctuations, and the load fluctuations 2 with small up and down load fluctuations are dealt with. This can be handled by adjusting the amount of pulverized coal supplied from the pulverized coal bin 7. Furthermore, a plurality of the pulverized coal pipes 4 are usually connected to the pulverized coal machine 3, and these pulverized coal pipes are divided into two or three groups and configured to be controllable. It is configured to cope with load fluctuations by controlling the number of lines.

第3図は以上の構成に於ける風量、石炭供給量等の関係
を示す。
FIG. 3 shows the relationship between air volume, coal supply amount, etc. in the above configuration.

従来の構成では、−次風量W1と石炭(微粉炭)供給量
Cとが予め設定されており、微粉炭機の負荷率が50%
以下で一部風量W1は70%とし、かつ最低負荷率は約
40%となっていた。この構成は負荷率が低下する段階
でバーナカットする際には、燃焼中のバーナに対する微
粉炭管中の気流の流速を一定以上に保持することが可能
となり、微粉炭管中に微粉炭が堆積するのを防止するこ
とができて有利であるという利点がある。なお図中線図
CA、は微粉炭の粒度が低い場合の微粉炭機負荷と石炭
/空気比との関係を、またCへ2は微粉炭の粒度が高い
場合の微粉炭機it 4iiと石炭/空気比との関係を
各々示し、更に線図1−81 はハーナカソト有りの場
合のバーナ噴1・I iI度を、13□はバーナカット
無しの場合のバーナ噴1・1速度を各々示す。この従来
構成においCは以−Lに示したような利点を有する反面
、次のような問題点が指摘されており、その解決が望ま
れている。
In the conventional configuration, the negative air volume W1 and the coal (pulverized coal) supply amount C are set in advance, and the load factor of the pulverized coal machine is 50%.
In the following, part of the air volume W1 was set to 70%, and the minimum load factor was about 40%. With this configuration, when the burner is cut when the load factor decreases, it is possible to maintain the flow velocity of the airflow in the pulverized coal tube to a certain level or higher relative to the burning burner, and pulverized coal accumulates in the pulverized coal tube. It is advantageous to be able to prevent this from happening. In addition, line diagram CA in the figure shows the relationship between the pulverizer load and coal/air ratio when the pulverized coal particle size is low, and line C to 2 shows the relationship between the pulverizer it 4ii and the coal when the pulverized coal particle size is high. /air ratio, and diagram 1-81 shows the burner injection 1.IiI degree with burner cut, and 13□ shows the burner injection 1.1 speed with no burner cut. Although C has the advantages shown below in this conventional configuration, the following problems have been pointed out, and it is desired to solve them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

微粉炭機の負荷率が50%以下におい゛(は、微粉炭機
中のパイライト量の増加を防止するため、−次風量W1
を前記の如く70%に設定しているわけであるが、この
ように−・次風mWlを一定に設定しているため、微粉
炭機に対する給炭量が低下するとバーナカットの有無に
関わり無(石炭/空気比が低下する。この結果低負荷時
においては微粉炭の着火性、保炎性に問題が生じる。
When the load factor of the pulverizer is 50% or less, the -th air volume W1 is increased to prevent the amount of pyrite from increasing in the pulverizer.
is set to 70% as mentioned above, and since the second wind mWl is set constant, if the amount of coal fed to the pulverizer decreases, it will change regardless of whether burner cut is used or not. (The coal/air ratio decreases. As a result, problems arise with the ignitability and flame stability of pulverized coal at low loads.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以上に示した問題点を解決すべく構成したもの
である。
The present invention is constructed to solve the problems described above.

即ち本発明は、以下の事項のうち少なくともその一部を
構成要素として有する微粉炭燃焼装置である。
That is, the present invention is a pulverized coal combustion apparatus having at least some of the following items as constituent elements.

(a)微粉炭機内の分離器ホッパの一部に微粉炭機内の
一次空気の一部を抽出するベント管を設置する。
(a) A vent pipe is installed in a part of the separator hopper in the pulverized coal machine to extract a part of the primary air in the pulverized coal machine.

(b)ベント管は分離器内の遠心力により微粉炭濃度が
最も薄(なる中心部に配置し、その抽出光はサイクロン
セパレータとする。
(b) The vent pipe is placed in the center where the concentration of pulverized coal is the lowest due to the centrifugal force within the separator, and the extracted light is used as a cyclone separator.

(C)この−次空気の抽出を制御可能に構成し、特にバ
ーナカット無しの通常運転じには抽出を行わず、バーナ
カット信号により操作されるように構成する。
(C) The extraction of this secondary air is configured to be controllable, and in particular, extraction is not performed during normal operation without burner cut, and is configured to be operated by a burner cut signal.

(d)ベント管中に流入した微粉炭はバンクフィルタ等
の分離手段により気流中から分離する。
(d) The pulverized coal that has flowed into the vent pipe is separated from the air stream by a separation means such as a bank filter.

〔作用〕[Effect]

本発明は以上にその構成を示すように、微粉炭機に対し
てベント管を設置し、−次空気の所定量を抽出可能に構
成しであるので微粉炭機の負荷−低下に対応して抽出量
を調節することにより、バーナ部に対して供給する一次
空気量を調節し、これにより微粉炭機の負荷の如何に関
わり無くバーナ部において常時適切な石炭/空気比を保
持することができる。
As shown above, the present invention is configured such that a vent pipe is installed in the pulverizer to extract a predetermined amount of secondary air, so that it can be used in response to a decrease in the load on the pulverizer. By adjusting the amount of extraction, the amount of primary air supplied to the burner section can be adjusted, thereby making it possible to maintain an appropriate coal/air ratio in the burner section at all times, regardless of the load on the pulverizer. .

〔実施列〕[Implementation row]

以下本発明の実施例を具体的に説明する。 Examples of the present invention will be described in detail below.

第1図において、符号27は微粉炭機3の中央部に配置
した分離器ホッパであり、この分離器ポソパ27の中心
には給炭管28が配置しである。
In FIG. 1, reference numeral 27 is a separator hopper disposed at the center of the coal pulverizer 3, and a coal feed pipe 28 is disposed at the center of the separator hopper 27.

35はこの給炭管28に対して同心円状に配置したベン
ト管であり、このベント管は微粉炭器3を出てサイクロ
ンセパレータ6に接続している(第2図参照)。45は
このベント管35に設けた1に弁、36は大気吸引管、
37はこの大気吸引管36に設けた大気吸引弁である。
A vent pipe 35 is arranged concentrically with respect to the coal feed pipe 28, and this vent pipe exits the pulverizer 3 and is connected to the cyclone separator 6 (see FIG. 2). 45 is a valve 1 provided on this vent pipe 35, 36 is an atmospheric suction pipe,
37 is an atmospheric suction valve provided in this atmospheric suction pipe 36.

次にこの微粉炭機の作動に付いて説明すると、給炭管2
8を経て供給される原料炭は装置下部の粉砕部に落下す
る。この粉砕部は、駆動装置21、減速機22により回
転する下部粉砕輪30と、この下部粉砕輪30上に複数
個配置した粉砕用ボール24と、加圧装置32によりこ
れら粉砕用ポール24側に押圧力を加える上部固定輪2
5とから成っている。粉砕部に落下した石炭は上下の粉
砕輪の間で転動する粉砕用ボール24により粉砕される
。粉砕された石炭は一次空気ダクト29から供給される
一次空気(加熱空気)より装置上部に飛散し、ガイドベ
ーン26に於いて旋回力を与えられた後分離器ホッパ2
7に流入する。分離器ホッパ27においては〜この旋回
流により粉砕された石炭の分級が行われる。即ち、大き
な粒子の石炭はその自重により気流に逆らってホッパ内
壁面に沿って下降して粉砕部に再度落下し、再粉砕され
る。−万機粒子は気流と共に微粉炭管4に流入してバー
ナ部に気流輸送される。
Next, to explain the operation of this pulverized coal machine, the coal feed pipe 2
The raw coal supplied through 8 falls into the crushing section at the bottom of the device. This crushing section includes a lower crushing wheel 30 rotated by a drive device 21 and a speed reducer 22, a plurality of crushing balls 24 arranged on this lower crushing wheel 30, and a pressurizing device 32 that moves the crushing balls 24 toward the crushing poles 24. Upper fixed ring 2 that applies pressing force
It consists of 5. The coal that has fallen into the crushing section is crushed by crushing balls 24 that roll between upper and lower crushing wheels. The pulverized coal is scattered to the upper part of the device by the primary air (heated air) supplied from the primary air duct 29, and after being given a swirling force by the guide vane 26, it is sent to the separator hopper 2.
7. In the separator hopper 27, the pulverized coal is classified by this swirling flow. That is, the large particles of coal move down along the inner wall surface of the hopper against the airflow due to their own weight, fall again into the crushing section, and are crushed again. - The pulverized coal particles flow into the pulverized coal pipe 4 along with the airflow and are transported to the burner section.

次に、第2図を用いてプラント全体の作動に付いて説明
する。
Next, the operation of the entire plant will be explained using FIG.

先ず定常運転時においては、石炭バンカ1を出た石炭は
給炭機2を経て微粉炭機3に至り粉砕される。粉砕され
た石炭は前述のように、微粉炭機に内蔵されている分級
器に於いて分級される。このうち分級された微粉炭は微
粉炭機出口ダンパ13、微粉炭供給管4を経て微粉炭バ
ーナ5に気流輸送され、火炉50において燃焼する。こ
の微粉炭管4に対しては微粉炭ビン7が接続しており、
負荷変動に対応するように構成しである。また微粉炭機
3に対して接続しているベント管35の他端はサイクロ
ンセパレータ6に接続している。
First, during steady operation, coal leaving the coal bunker 1 passes through the coal feeder 2 and reaches the coal pulverizer 3 where it is pulverized. As mentioned above, the pulverized coal is classified in a classifier built into the pulverizer. The classified pulverized coal is airflow-transported to the pulverized coal burner 5 through the pulverized coal machine outlet damper 13 and the pulverized coal supply pipe 4, and is burned in the furnace 50. A pulverized coal bin 7 is connected to this pulverized coal pipe 4.
It is configured to respond to load fluctuations. The other end of the vent pipe 35 connected to the pulverizer 3 is connected to the cyclone separator 6.

一方、別の微粉炭機3aから供給された微粉炭は微粉炭
管4aを経てこのサイクロンセパレータ6に至り、ここ
において気流中の微粉炭は分離されて微粉炭ビン7に貯
蔵される。このビン中の微粉炭は負荷の変動に対応して
微粉炭供給a8.1:I−タリシール9を経て前記微粉
炭管4中に供給される。次にバーナカットを行って負荷
変動に対応する場合には、ベント管35に設けたベント
止弁45を開とし、所定量の一次空気をベント管35に
抽出する。この場合、第1図に示すようにベント管の流
入部は給炭管の周囲、つまり遠心力によって分級器の中
で最も石炭濃度の薄い部分に設置しであるので、ベント
空気に流入する微粉炭量を最小限に押さえることができ
る。このようにしてカプトするバーナ本数に対応してベ
ント量を調節し、燃焼中のバーナに対する一次空気量が
不必要に多くならないようにする。なお抽出したベント
空気はサイクロンセパレータ6に供給され、含有する微
粉炭を分離する。
On the other hand, pulverized coal supplied from another pulverized coal machine 3a passes through a pulverized coal pipe 4a and reaches this cyclone separator 6, where the pulverized coal in the airflow is separated and stored in a pulverized coal bin 7. The pulverized coal in this bottle is supplied into the pulverized coal pipe 4 via the pulverized coal supply a8.1: I-Talyseal 9 in response to load fluctuations. Next, when a burner cut is performed to cope with load fluctuations, a vent stop valve 45 provided in the vent pipe 35 is opened, and a predetermined amount of primary air is extracted into the vent pipe 35. In this case, as shown in Figure 1, the inflow part of the vent pipe is installed around the coal feed pipe, that is, in the part of the classifier where the concentration of coal is the lowest due to centrifugal force, so the fine powder that flows into the vent air is The amount of charcoal can be kept to a minimum. In this way, the amount of venting is adjusted in accordance with the number of burners to be emptied, so that the amount of primary air for the burners during combustion does not become unnecessarily large. Note that the extracted vent air is supplied to a cyclone separator 6 to separate the contained pulverized coal.

このようにして、例えば第6図に示すように、ベント開
始により石炭/空気濃度を約0.1上昇させ、かつバー
ナ噴出速度を約2〜3m/SeC低下させることができ
る。これより低負荷時においても高い石炭/空気濃度を
保持し、かつバーナ噴出速度も適正に保持できるため、
低負荷時でも安定した燃焼を保証することができる。な
お、線図中の斜線部はベント状態を示す。
In this way, for example, as shown in FIG. 6, the coal/air concentration can be increased by about 0.1 and the burner jet velocity can be decreased by about 2 to 3 m/SeC by starting the vent. This allows a high coal/air concentration to be maintained even at low loads, as well as an appropriate burner jetting speed.
Stable combustion can be guaranteed even under low loads. Note that the shaded area in the diagram indicates the vent state.

〔効果〕〔effect〕

本発明は以上にその構成を具体的に示したよJ)に、微
粉炭機の負荷が低い場合でも、−次空気の一部を抽出す
ることにより適正な石炭/空気濃度及びバーナ噴出速度
を保持することができるため、安定した燃焼を確保する
ことが可能である。
The structure of the present invention has been specifically shown above. J) Even when the load on the pulverizer is low, a proper coal/air concentration and burner jetting speed can be maintained by extracting a part of the secondary air. Therefore, it is possible to ensure stable combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す微粉炭機の縦断面図、第
2図は第1図に示す微粉炭機を組み込んだ微粉炭燃焼プ
ラントの系統図、第31¥1は従来構成を示す微粉炭燃
焼プラントの系統図、第4図は燃焼装置の負荷変動の一
例を示す線図、第5図は微粉炭機の負荷変動に対する、
−天空気量、石炭量、バーナ噴出速度、及び石炭/空気
潤度の関係を示す線図、第6図は本発明に係る装置を作
動させた場合の微粉炭機負荷変動率と石炭/空気濃度及
びバーナ噴出速度の関係を示す線図である。 3.3・・・微粉炭機  4・・・微粉炭管5・・・バ
ーナ   6・・・・サイクロンセパレータ  7・・
・微粉炭ビン  27・・・分級器ホッパ  28・・
・給炭管 35・・・ベント管 第1図 Zj                  21第4図 一升r81 第5図 I   Wl  ′ 刀 − 文     −一一一 炭叡 1号 (/、X°ム)                  
   ゛シーー′        (/、)IIJ+−
− 2ノ′ 21で 第6図 猷粋ハ1f1牽(’/、) 徴粋炊層契箇十
Fig. 1 is a vertical cross-sectional view of a pulverized coal machine showing an embodiment of the present invention, Fig. 2 is a system diagram of a pulverized coal combustion plant incorporating the pulverized coal machine shown in Fig. 1, and No. 31\1 shows a conventional configuration. A system diagram of a pulverized coal combustion plant shown in FIG. 4, a line diagram showing an example of load fluctuation of the combustion equipment, and FIG.
- A diagram showing the relationship between the amount of sky air, the amount of coal, the burner ejection speed, and the moisture content of coal/air. FIG. 3 is a diagram showing the relationship between concentration and burner ejection speed. 3.3... Pulverized coal machine 4... Pulverized coal pipe 5... Burner 6... Cyclone separator 7...
・Pulverized coal bin 27...Classifier hopper 28...
・Coal feed pipe 35...Vent pipe Figure 1 Zj 21 Figure 4 Issho r81 Figure 5 I Wl' Katana - Text - 111 Charcoal No. 1 (/, X°mu)
゛C' (/,)IIJ+-
- 2ノ' 21 and Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)微粉炭機で製造した微粉炭をバーナ部に対して一
次空気により気流輸送して燃焼させ、かつバーナの点火
本数を制御することにより負荷制御を行う燃焼装置にお
いて、微粉炭機に対して一次空気の一部を抽出するベン
ト管を接続したことを特徴とする、微粉炭燃焼装置。
(1) In a combustion device that pneumatically transports pulverized coal produced in a pulverized coal machine to a burner part using primary air and burns it, and also controls the load by controlling the number of ignitions of the burner. A pulverized coal combustion device characterized in that a vent pipe is connected to extract a part of the primary air.
(2)前記ベント管の気体流入部を、微粉炭機内に設置
した分級器のほぼ中心部に配置したことを特徴とする特
許請求の範囲第(1)項記載の微粉炭燃焼装置。
(2) The pulverized coal combustion apparatus according to claim (1), wherein the gas inflow portion of the vent pipe is arranged approximately at the center of a classifier installed in the pulverized coal machine.
(3)前記ベント管の気体流出側端部を、微粉炭供給の
微調整を行う微粉炭ビンシステムのサイクロンセパレー
タに接続したことを特徴とする特許請求の範囲第(1)
項または第(2)項記載の微粉炭燃焼装置。
(3) Claim (1) characterized in that the gas outflow side end of the vent pipe is connected to a cyclone separator of a pulverized coal bin system that finely adjusts the supply of pulverized coal.
The pulverized coal combustion device according to item or item (2).
JP20974186A 1986-09-08 1986-09-08 Pulverized coal burning device Pending JPS6365225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20974186A JPS6365225A (en) 1986-09-08 1986-09-08 Pulverized coal burning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20974186A JPS6365225A (en) 1986-09-08 1986-09-08 Pulverized coal burning device

Publications (1)

Publication Number Publication Date
JPS6365225A true JPS6365225A (en) 1988-03-23

Family

ID=16577869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20974186A Pending JPS6365225A (en) 1986-09-08 1986-09-08 Pulverized coal burning device

Country Status (1)

Country Link
JP (1) JPS6365225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658589A1 (en) * 1990-02-20 1991-08-23 Stein Industrie Method for feeding a boiler combustion chamber with powdered coal and with air, separator for implementing this method, and device for feeding a boiler combustion chamber with powdered coal and with air according to this method
CN104613494A (en) * 2014-08-06 2015-05-13 上海明华电力技术工程有限公司 Powder storage device for fast load variation of supercritical or ultra-supercritical coal-fired boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658589A1 (en) * 1990-02-20 1991-08-23 Stein Industrie Method for feeding a boiler combustion chamber with powdered coal and with air, separator for implementing this method, and device for feeding a boiler combustion chamber with powdered coal and with air according to this method
CN104613494A (en) * 2014-08-06 2015-05-13 上海明华电力技术工程有限公司 Powder storage device for fast load variation of supercritical or ultra-supercritical coal-fired boiler
CN104613494B (en) * 2014-08-06 2017-08-25 上海明华电力技术工程有限公司 Storage powder device for super or ultra supercritical coal-burning boiler quick load change

Similar Documents

Publication Publication Date Title
CN105509085B (en) A kind of tertiary air air-coal separating reduces the system and method for emission of NOx of boiler
JP5594941B2 (en) Biomass crusher and control method of the apparatus
JP2011245357A (en) Biomass pulverizing device and biomass/coal co-combustion system
WO2020105629A1 (en) Pulverized coal drying system for coal pulverizer and pulverized coal drying method therefor, and pulverized coal drying program, coal pulverizer, and gasification combined cycle facility
CN109539246A (en) A kind of coal dust medium temperature circulating bed boiler
CN113280361A (en) Powder preparation system suitable for deep peak shaving and powder feeding method thereof
JPS6233485B2 (en)
JPS62288405A (en) Fluidized-bed combustion apparatus and operation method thereof
JPS6365225A (en) Pulverized coal burning device
JP2012083016A (en) Biomass crusher and biomass-coal mixed combustion system
CN2527866Y (en) Composite circulating fluidized bed boiler
CN104807004B (en) A kind of device of pulverized coal channel thickness coal dust segregated combustion
CN202037125U (en) Online pulverized coal refining separation device
JPS63259316A (en) Pulverized coal distributor of vertical type mill
CN209801470U (en) low-nitrogen combustion system of circulating fluidized bed boiler
EP0225157A2 (en) Method and apparatus for reduced NOx emissions from coal furnaces
CN103965968A (en) Undok pulverized coal gasification furnace with steam pressurizing device
US20180216818A1 (en) Ash treatment and reinjection system
CN216224800U (en) Pre-separation combined type medium-speed coal powder separator
US3467036A (en) Steam generator and coal pulverizing apparatus
CN215637281U (en) Powder process system suitable for degree of depth peak regulation
CN116817261A (en) Intermediate storage bin type hot furnace smoke drying steel ball milling powder making system and method
JPH0225487Y2 (en)
JPS62225256A (en) Vertical type mill and operation method thereof
JP2004340570A (en) Combustion method for coal burning boiler