JPS636509B2 - - Google Patents
Info
- Publication number
- JPS636509B2 JPS636509B2 JP55157733A JP15773380A JPS636509B2 JP S636509 B2 JPS636509 B2 JP S636509B2 JP 55157733 A JP55157733 A JP 55157733A JP 15773380 A JP15773380 A JP 15773380A JP S636509 B2 JPS636509 B2 JP S636509B2
- Authority
- JP
- Japan
- Prior art keywords
- agent
- surface treatment
- treatment agent
- functional group
- reactive functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012756 surface treatment agent Substances 0.000 claims description 23
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 239000003365 glass fiber Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 20
- 125000000524 functional group Chemical group 0.000 claims description 17
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 17
- 239000011118 polyvinyl acetate Substances 0.000 claims description 17
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 10
- 238000004132 cross linking Methods 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 claims description 5
- 229910000077 silane Inorganic materials 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- -1 methylol group Chemical group 0.000 claims description 4
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical group [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 4
- 125000005372 silanol group Chemical group 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000007795 chemical reaction product Substances 0.000 claims description 3
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 claims description 3
- 239000000047 product Substances 0.000 description 17
- 239000011521 glass Substances 0.000 description 15
- 239000003677 Sheet moulding compound Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000004412 Bulk moulding compound Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Description
【発明の詳細な説明】
本発明は、補強効果が高く、集束性の高いガラ
ス繊維を提供することができるガラス繊維用表面
処理剤およびその調製法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface treatment agent for glass fibers that can provide glass fibers with a high reinforcing effect and high cohesiveness, and a method for preparing the same.
現在、ガラス繊維製品は各種強化プラスチツク
ス製品の補強材として広く用いられている。ガラ
ス繊維製品は、通常、ガラス溶解前炉の底部に設
置されている多数のノズル孔を有するブツシング
より、多数本のガラスフイラメントを引き出し、
その直後に、フイルム形成剤、カツプリング剤、
潤滑剤、帯電防止剤等を含む処理剤で、それぞれ
のガラスフイラメントを表面処理し、ガイドで数
束に束ねた後捲き取り、この捲き取り物を加熱乾
燥する方法で製造されている。 Currently, glass fiber products are widely used as reinforcing materials for various reinforced plastic products. Glass fiber products are usually produced by pulling out a large number of glass filaments from a bushing with many nozzle holes installed at the bottom of a glass melting forefurnace.
Immediately after that, a film forming agent, a coupling agent,
It is manufactured by surface-treating each glass filament with a treatment agent containing a lubricant, an antistatic agent, etc., bundling it into several bundles with a guide, winding them up, and heating and drying the rolled up products.
ガラス繊維用表面処理剤に要求される性能とし
ては、その処理剤組成物がガラス繊維との接着性
が高く、かつ高集束性のガラス繊維製品を製造で
きること、処理剤皮膜と樹脂マトリツクスとの接
着力が強く高強度のガラス繊維強化プラスチツク
ス製品(以下FRP製品という)を提供できるこ
と等があげられる。 The performance required of a surface treatment agent for glass fibers is that the treatment agent composition has high adhesion to glass fibers, can produce highly cohesive glass fiber products, and has high adhesion between the treatment agent film and the resin matrix. Among these are the ability to provide strong and high-strength glass fiber reinforced plastic products (hereinafter referred to as FRP products).
しかしながら、現在ガラス繊維用表面処理剤の
フイルム形成剤として広く用いられているポリ酢
酸ビニル系樹脂をフイルム形成剤として使用した
処理剤で表面処理されたガラス繊維では、補強効
果に限界があつて、このガラス繊維で強化された
FRP製品、特にシートモールデイングコンパウ
ンド(以下SMCという)およびバルクモールデ
イングコンパウンド(以下BMCという)などを
用いたFRP成形品では、その傾向が大きく、市
場が要求するに十分なFRP強度を得ることは、
困難であるという問題点を有している。 However, there is a limit to the reinforcing effect of glass fibers that have been surface-treated with a treatment agent that uses polyvinyl acetate resin, which is currently widely used as a film-forming agent in surface treatment agents for glass fibers, as a film-forming agent. This glass fiber reinforced
This tendency is large in FRP products, especially FRP molded products using sheet molding compound (hereinafter referred to as SMC) and bulk molding compound (hereinafter referred to as BMC), and it is difficult to obtain sufficient FRP strength to meet market demands. ,
The problem is that it is difficult.
高強度のFRP製品を製造する従来技術として
は、FRP製品のガラス繊維含有率を高くする方
法が知られているが、この方法では例えばSMC
等の場合、設備費の上昇、作業能率の低下、材料
費の上昇等のコスト競争力の低下につながる問題
が多い。また、高強度のFRP製品を提供するこ
とを目的として、ガラス繊維の表面処理剤に関す
る険討も行なわれて居り、表面処理剤のフイルム
形成剤成分としてポリエステル樹脂、エポキシ樹
脂またはポリウレタン樹脂を使用することによ
り、ポリ酢酸ビニル系樹脂の場合より補強効果の
高いガラス繊維製品が得られることが知られてい
るが、充分に満足できるほどの補強効果が達成で
きず、しかも、処理剤の材料費が高くなるという
問題点を有している。 As a conventional technique for manufacturing high-strength FRP products, a method of increasing the glass fiber content of FRP products is known, but in this method, for example, SMC
In such cases, there are many problems that lead to a decline in cost competitiveness, such as increases in equipment costs, decreases in work efficiency, and increases in material costs. In addition, with the aim of providing high-strength FRP products, research has been conducted on surface treatment agents for glass fibers, and polyester resins, epoxy resins, or polyurethane resins are used as the film forming agent component of the surface treatment agents. It is known that by using polyvinyl acetate resin, glass fiber products with a higher reinforcing effect can be obtained than in the case of polyvinyl acetate resin. It has the problem of being expensive.
本発明者等は、上記した従来技術の問題点を解
決し、補強効果の高いガラス繊維製品を得るため
に、比較的安価なポリ酢酸ビニル系樹脂をフイル
ム形成剤の主成分として使用した表面処理剤につ
いて鋭意検討を行なつた結果、反応性官能基を有
するポリ酢酸ビニル系樹脂とシラン系カツプリン
グ剤で架橋反応せしめた反応物をフイルム形成剤
成分として使用した表面処理剤で表面処理したガ
ラス繊維製品が極めて補強効果が高いことを見い
出し本発明に到つた。 In order to solve the problems of the prior art described above and obtain a glass fiber product with a high reinforcing effect, the present inventors have developed a surface treatment using a relatively inexpensive polyvinyl acetate resin as the main component of the film forming agent. As a result of extensive research on the agent, we have developed a glass fiber surface treated with a surface treatment agent that uses a crosslinking reaction product of a polyvinyl acetate resin with reactive functional groups and a silane coupling agent as a film-forming agent component. It was discovered that the product has an extremely high reinforcing effect, leading to the present invention.
本発明の表面処理剤に配合される反応性官能基
を有するポリ酢酸ビニル系樹脂としてはシラノー
ル基、グリシジル基、メチロール基等の官能基を
有するものが好ましい。 As the polyvinyl acetate resin having a reactive functional group to be incorporated into the surface treatment agent of the present invention, one having a functional group such as a silanol group, a glycidyl group, or a methylol group is preferable.
本発明の表面処理剤に配合される架橋剤である
シラン系カツプリング剤としては、アクリルシラ
ン、ビニルシラン、アミノシラン、エポキシシラ
ン、パーオキシシラン、メルカプトシラン等が好
ましい。 As the silane coupling agent which is a crosslinking agent to be incorporated into the surface treatment agent of the present invention, acrylic silane, vinyl silane, amino silane, epoxy silane, peroxy silane, mercapto silane, etc. are preferable.
反応性官能基を有するポリ酢酸ビニル系樹脂の
反応性官能基の含有量は0.5〜10重量%の範囲が
好ましく、架橋剤であるシラン系カツプリング剤
の配合割合は、反応性官能基を有するポリ酢酸ビ
ニル系樹脂の配合量に対して、1〜15重量%の範
囲が望ましい。 The content of reactive functional groups in the polyvinyl acetate resin having reactive functional groups is preferably in the range of 0.5 to 10% by weight, and the blending ratio of the silane coupling agent, which is a crosslinking agent, is The amount is desirably in the range of 1 to 15% by weight based on the blended amount of the vinyl acetate resin.
シラノール基を官能基として有するポリ酢酸ビ
ニル系樹脂を処理剤のフイルム形成剤として用い
る場合には、架橋剤としてアクリルシランおよび
ビニルシランが特に好ましく、グリシジル基また
はメチロール基を官能基として有するポリ酢酸ビ
ニル系樹脂を処理剤のフイルム形成剤として用い
る場合には、架橋剤としてアミノシランが特に好
ましい。また反応性官能基を有するポリ酢酸ビニ
ル系樹脂の水分散液に、シラン系カツプリング剤
を配合してかきまぜながら架橋反応を行なわせる
際、当該水分散液の濃度を薄くするほど、その架
橋反応に長時間を要し、表面処理剤の調製能率が
低下するようになるので、1〜6時間以内に架橋
反応を終了させるためには、当該水分散液の濃度
を固形分で20重量%以上にする必要がある。 When a polyvinyl acetate resin having a silanol group as a functional group is used as a film forming agent for a treatment agent, acrylic silane and vinyl silane are particularly preferred as crosslinking agents, and polyvinyl acetate resins having a glycidyl group or a methylol group as a functional group are particularly preferred as crosslinking agents. When the resin is used as a film forming agent for a treatment agent, aminosilane is particularly preferred as the crosslinking agent. Furthermore, when a silane coupling agent is blended into an aqueous dispersion of polyvinyl acetate resin having a reactive functional group and a crosslinking reaction is carried out while stirring, the thinner the concentration of the aqueous dispersion is, the more the crosslinking reaction is Since it takes a long time and the preparation efficiency of the surface treatment agent decreases, in order to complete the crosslinking reaction within 1 to 6 hours, the concentration of the aqueous dispersion must be set to 20% by weight or more in terms of solid content. There is a need to.
以下実施例で本発明を説明する。 The present invention will be explained below with reference to Examples.
実施例 1
(1) 表面処理剤の調製
12重量部のシラノール基を官能基として有す
るポリ酢酸ビニル樹脂の水分散液(固形分=50
%)を容器に取り、0.6重量部のr−メタクリ
ルオキシプロピルトリメトキシシラン(固形分
=80%)をかきまぜながら徐々に添加し、3時
間室温で架橋反応を行なう。その後、別容器に
57重量部の脱イオン水を取り、適量の酢酸を添
加してPHを3.5〜4.0の範囲に調整し、0.1重量部
のr−メタクリルオキシプロピルトリメトキシ
シランと1.8重量部のカチオン系界面活性剤を
加え20分間充分にかきまぜる。調合が終了した
ら前記2種の配合液を混合し充分にかきまぜ、
さらに残水として27.7重量部の脱イオン水を加
えて充分にかきまぜて表面処理剤を調製する。Example 1 (1) Preparation of surface treatment agent 12 parts by weight of an aqueous dispersion of polyvinyl acetate resin having a silanol group as a functional group (solid content = 50
%) in a container, 0.6 parts by weight of r-methacryloxypropyltrimethoxysilane (solid content = 80%) was gradually added while stirring, and the crosslinking reaction was carried out at room temperature for 3 hours. Then put it in a separate container
Take 57 parts by weight of deionized water, add an appropriate amount of acetic acid to adjust the pH to a range of 3.5-4.0, add 0.1 parts by weight of r-methacryloxypropyltrimethoxysilane and 1.8 parts by weight of cationic surfactant. Add and stir thoroughly for 20 minutes. When the preparation is completed, mix the two types of blended liquids and stir thoroughly.
Further, 27.7 parts by weight of deionized water is added as residual water and thoroughly stirred to prepare a surface treatment agent.
(2) ガラスチヨツプドストランドおよびSMCの
調製
800個のノズル孔を有する白金製ブツシング
より溶解ガラスを引き出した直後(1)で調製した
表面処理剤を施し装置によりガラスフイラメン
トに施し、800本のガラスフイラメントを2束
にして捲き取つた後、130℃で9時間加熱乾燥
し、ガラスストランド捲体を調製する。このよ
うにして得られたガラスストランド捲体よりガ
ラスストランドを引き出し、2.5cmに切断する。
この切断長さ2.5cmのガラスチヨツプドストラ
ンドを、ポリエステル樹脂配合物(不飽和ポリ
エステル樹脂60重量部、低収縮剤40重量部、炭
酸カルシウム150重量部、硬化剤1重量部、潤
滑剤4重量部および増粘剤0.5重量部を充分に
混合した配合物)を塗布したポリエステルフイ
ルム上に均等に分散させその上に前記ポリエス
テル樹脂配合物を均等に流下して、さらにその
上にポリエステルフイルムをかぶせた後、圧延
ロールを通して脱泡し、50℃で12時間保存して
ガラス繊維含有率30%のSMCを調製する。(2) Preparation of glass chopped strands and SMC Immediately after drawing out the molten glass from a platinum bushing with 800 nozzle holes, the surface treatment agent prepared in (1) was applied to the glass filament using an application device, and 800 strands were prepared. After winding the glass filaments into two bundles, they were heated and dried at 130°C for 9 hours to prepare a glass strand roll. The glass strand is pulled out from the glass strand roll thus obtained and cut into 2.5 cm pieces.
This glass chopped strand with a cut length of 2.5 cm was mixed with a polyester resin compound (60 parts by weight of unsaturated polyester resin, 40 parts by weight of low shrinkage agent, 150 parts by weight of calcium carbonate, 1 part by weight of hardening agent, 4 parts by weight of lubricant). 0.5 parts by weight of a thickener) is evenly dispersed on a coated polyester film, the polyester resin composition is evenly poured onto it, and then a polyester film is further placed on top of the polyester film. After covering, it is degassed through a rolling roll and stored at 50°C for 12 hours to prepare SMC with a glass fiber content of 30%.
(3) SMC成形品(FRP板)の成形およびその機
械特性
(2)で得られたSMCを用いて金型温度150℃プ
レス圧100Kg/cm2、型締め時間10分のプレス成
形条件で厚さ3mmのFRP板を成形した。この
FRP板の機械特性を測定した結果引張り強度
が7.1Kg/mm2で、曲げ強度が19.8Kg/mm2、シヤ
ルビー衝撃強度が68.0Kg・cm/cm2であつた。(3) Molding of SMC molded product (FRP plate) and its mechanical properties Using the SMC obtained in ( 2 ), the thickness was A 3mm thick FRP board was molded. this
As a result of measuring the mechanical properties of the FRP board, the tensile strength was 7.1 Kg/mm 2 , the bending strength was 19.8 Kg/mm 2 , and the shear ruby impact strength was 68.0 Kg·cm/cm 2 .
これに対し、従来の反応性官能基を有してい
ない一般のポリ酢酸ビニル樹脂をフイルム形成
剤として配合した表面処理剤で表面処理して得
られる従来のガラスチヨツプドストランドを用
いて、実施例1と全く同一の条件でSMCを調
製し、FRP板を成形して、その機械特性を測
定した結果、引張り強度が5.3Kg/cm2、曲げ強
度が15.8Kg/mm2シヤルビー衝撃強度が51.6Kg・
cm/cm2と本発明の表面処理剤で表面処理したガ
ラスチヨツプドストランドを用いた場合より、
強度が低かつた。 In contrast, using conventional glass chopped strands obtained by surface treatment with a surface treatment agent containing a general polyvinyl acetate resin that does not have conventional reactive functional groups as a film forming agent, SMC was prepared under exactly the same conditions as in Example 1, and an FRP plate was formed and its mechanical properties were measured. As a result, the tensile strength was 5.3 Kg/cm 2 , the bending strength was 15.8 Kg/mm 2 , and the Sialby impact strength was 5.3 Kg/cm 2 . 51.6Kg・
cm/cm 2 and glass chopped strands surface-treated with the surface treatment agent of the present invention.
The strength was low.
実施例 2
(1) 表面処理剤の調製
11.4重量部のグリシジル基を官能基として有
するポリ酢酸ビニル樹脂の水分散液(固形分=
55%)を容器に取り、0.6重量部のr−pミノ
プロピルトリエトキシシラン(固形分=30%)
をかきまぜながら徐々に添加し、3時間室温で
架橋反応を行なう。その後、別容器に57重量部
の脱イオン水を取り、適量の酢酸を添加してPH
を3.5〜4.0の範囲に調整し、0.25重量部のr−
メタクリルオキシプロピルトリメトキシシラン
と1.8重量部のカチオン系界面活性剤と0.25重
量部の塩化リチウムを加え20分間充分にかきま
ぜる。調合が終了したら前記2種の配合液を混
合し、充分にかきまぜ、さらに残水として28.7
重量部の脱イオン水を加えて充分にかきまぜて
表面処理剤を調製する。Example 2 (1) Preparation of surface treatment agent 11.4 parts by weight of an aqueous dispersion of polyvinyl acetate resin having a glycidyl group as a functional group (solid content =
55%) in a container and add 0.6 parts by weight of r-p minopropyltriethoxysilane (solid content = 30%).
was gradually added while stirring, and the crosslinking reaction was carried out at room temperature for 3 hours. After that, take 57 parts by weight of deionized water in a separate container, add an appropriate amount of acetic acid, and adjust the pH.
was adjusted to a range of 3.5 to 4.0, and 0.25 parts by weight of r-
Add methacryloxypropyltrimethoxysilane, 1.8 parts by weight of a cationic surfactant, and 0.25 parts by weight of lithium chloride, and stir thoroughly for 20 minutes. When the preparation is completed, mix the above two types of blended liquids, stir thoroughly, and add 28.7% as residual water.
A surface treatment agent is prepared by adding parts by weight of deionized water and stirring thoroughly.
(2) ガラスチヨツプドストランドおよびSMCの
調製
実施例11と全く同一の条件でガラスチヨツプ
ドストランドおよびSMCを調製する。(2) Preparation of glass chopped strands and SMC Glass chopped strands and SMC are prepared under exactly the same conditions as in Example 11.
(3) SMC成形品(FRP板)の成形およびその機
械特性
(2)で調整れたSMCを用いて実施例1と全く
同一の条件でFRP板を成形し、その機械特性
を測定した結果、引張り強度が7.3Kg/mm2で、
曲げ強度が20.1Kg/mm2、シヤルビー衝撃強度が
70.3Kg・cm/cm2と極めて高いことが判つた。(3) Molding of SMC molded product (FRP board) and its mechanical properties Using the SMC adjusted in (2), an FRP board was molded under exactly the same conditions as in Example 1, and its mechanical properties were measured. Tensile strength is 7.3Kg/ mm2 ,
The bending strength is 20.1Kg/mm 2 and the Shyalby impact strength is
It was found to be extremely high at 70.3Kg・cm/cm 2 .
比較のために、実施例2に用いたグリシジル
基を官能基として有するポリ酢酸ビニル樹脂の
水分散液を用いて、実施例2と全く同一の配合
でr−アミノプロピルトリエトキシシランを架
橋させないで調整した表面処理剤(ポリ酢酸ビ
ニル樹脂水分散液の濃度が20重量%以下になる
ように脱イオン水を加えた後シラン系カツプリ
ング剤を加えて調製)で表面処理して得られる
ガラスチヨツプドストランドを用いて、実施例
2と全く同一の条件でSMCを調製した。FRP
板を成形して、その機械特性を測定した結果、
引張り強度が5.5Kg/mm2、曲げ強度が16.3Kg/
mm2、シヤルビー衝撃強度が53.3Kg・cm/cm2と本
発明の表面処理剤で表面処理したガラスチヨツ
プドストランドを用いた場合より、極度に強度
が低いことが判る。 For comparison, an aqueous dispersion of polyvinyl acetate resin having a glycidyl group as a functional group used in Example 2 was used, and r-aminopropyltriethoxysilane was prepared in exactly the same formulation as in Example 2 without crosslinking. Glass chips obtained by surface treatment with a prepared surface treatment agent (prepared by adding deionized water so that the concentration of polyvinyl acetate resin aqueous dispersion is 20% by weight or less, and then adding a silane coupling agent). SMC was prepared under exactly the same conditions as in Example 2 using the pud strands. FRP
As a result of forming a plate and measuring its mechanical properties,
Tensile strength is 5.5Kg/ mm2 , bending strength is 16.3Kg/
mm 2 and Shalby impact strength of 53.3 Kg·cm/cm 2 , which is extremely lower than when using glass chopped strands surface-treated with the surface treatment agent of the present invention.
Claims (1)
をシラン系カツプリング剤で架橋反応せしめた反
応物をフイルム形成剤として使用したガラス繊維
用表面処理剤。 2 反応性官能基がシラノール基であり、シラン
系カツプリング剤がアクリルシランまたはビニル
シランである特許請求の範囲第1項記載のガラス
繊維用表面処理剤。 3 反応性官能基がグリシジル基であり、シラン
系カツプリング剤がアミノシランである特許請求
の範囲第1項記載のガラス繊維用表面処理剤。 4 反応性官能基がメチロール基であり、シラン
系カツプリング剤がアミノシランである特許請求
の範囲第1項記載のガラス繊維用表面処理剤。 5 固形分が20%以上の反応性官能基を有するポ
リ酢酸ビニル系樹脂の水分散液にシラン系カツプ
リング剤を配合し、充分に混合して架橋反応を行
なわせた後、この架橋反応物をフイルム形成剤と
して用いて、所定の配合の処理剤を調製するガラ
ス繊維用表面処理剤の調製法。[Scope of Claims] 1. A surface treatment agent for glass fibers using a reaction product obtained by subjecting a polyvinyl acetate resin having a reactive functional group to a crosslinking reaction with a silane coupling agent as a film forming agent. 2. The surface treatment agent for glass fibers according to claim 1, wherein the reactive functional group is a silanol group, and the silane coupling agent is acrylic silane or vinyl silane. 3. The surface treatment agent for glass fibers according to claim 1, wherein the reactive functional group is a glycidyl group and the silane coupling agent is aminosilane. 4. The surface treatment agent for glass fibers according to claim 1, wherein the reactive functional group is a methylol group and the silane coupling agent is aminosilane. 5 Add a silane coupling agent to an aqueous dispersion of a polyvinyl acetate resin having a reactive functional group with a solid content of 20% or more, mix thoroughly to carry out a crosslinking reaction, and then add this crosslinking reaction product. A method for preparing a surface treatment agent for glass fibers, which is used as a film forming agent to prepare a treatment agent having a predetermined composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55157733A JPS5782147A (en) | 1980-11-11 | 1980-11-11 | Surface treating agent for glass fiber and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55157733A JPS5782147A (en) | 1980-11-11 | 1980-11-11 | Surface treating agent for glass fiber and its preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5782147A JPS5782147A (en) | 1982-05-22 |
JPS636509B2 true JPS636509B2 (en) | 1988-02-10 |
Family
ID=15656164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55157733A Granted JPS5782147A (en) | 1980-11-11 | 1980-11-11 | Surface treating agent for glass fiber and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5782147A (en) |
-
1980
- 1980-11-11 JP JP55157733A patent/JPS5782147A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5782147A (en) | 1982-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100453576C (en) | Metal-acylates as curing agents for polybutadiene, melamine and epoxy compounds | |
DE69014139T2 (en) | Polymer compositions that have improved oxidative stability. | |
JPS6189216A (en) | Polymer produced from oligomer of anhydride bonded polypropylene | |
JPH026616B2 (en) | ||
JPH06511227A (en) | size composition | |
DE1953062B2 (en) | Low-shrinkage curable polyester molding compounds | |
US4382991A (en) | Sizing composition and sized strand useful as reinforcement | |
EP3747937A1 (en) | Prepreg and manufacturing method for prepreg molded article | |
FI61180B (en) | GLASFIBER VARS YTA AOTMINSTONE DELVIS AER OEVERDRAGEN MED ETT APPRETURMEDEL | |
US4473618A (en) | Chrome-free sizing composition containing titanium acetyl acetonate for glass fiber gun roving | |
JPS6036557A (en) | Glass fiber-reinforced abs-molding compositions | |
JPS636509B2 (en) | ||
JPH0627204B2 (en) | Polyoxymethylene reinforcing fiber | |
JPS636508B2 (en) | ||
US3702276A (en) | Method of making high impact strength glass fiber-plastic composites | |
US3705125A (en) | Material for bonding resins to glass fibers and composites made therefrom | |
JP3491225B2 (en) | Sizing agent, glass fiber treated therewith and polyamide resin composition reinforced with the glass fiber | |
KR102662466B1 (en) | PUR composite material composition combining polyurethane and glass fiber and its manufacturing method | |
JPH0686316B2 (en) | Glass fiber for rubber reinforcement | |
CN117024006A (en) | Impregnating compound for glass fibers and preparation method, product and application thereof | |
GB2030611A (en) | Storage Stable Polyolefin Compatible Size for Fibre Glass Strands | |
JPS6055023A (en) | Epoxide compound-containing composition and manufacture | |
KR960010046B1 (en) | Adhesive composition for polyester fibre | |
DE2553839A1 (en) | Polyurethane ionomer dispersion size for glass fibres - used to reinforce thermoplastic synthetic materials | |
DE1964538B2 (en) | Process for the production of composites with improved strength based on silicate materials and polyolefins |