JPS6365024A - Production of electrical steel sheet and single crystal manufacturing furnace to be used in said method - Google Patents

Production of electrical steel sheet and single crystal manufacturing furnace to be used in said method

Info

Publication number
JPS6365024A
JPS6365024A JP21103086A JP21103086A JPS6365024A JP S6365024 A JPS6365024 A JP S6365024A JP 21103086 A JP21103086 A JP 21103086A JP 21103086 A JP21103086 A JP 21103086A JP S6365024 A JPS6365024 A JP S6365024A
Authority
JP
Japan
Prior art keywords
crystal
plate
furnace
single crystal
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21103086A
Other languages
Japanese (ja)
Inventor
Yoshihiro Uematsu
植松 美博
Takehiko Fujimura
藤村 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21103086A priority Critical patent/JPS6365024A/en
Publication of JPS6365024A publication Critical patent/JPS6365024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve the productivity of an electrical steel sheet having the ideal cubic texture by adjusting the angle between the growing end of a single crystal and the passage direction of a stock sheet at the time of connecting a seed crystal to one end of the stock sheet, passing the same into a furnace having a temp. gradient and growing the single crystal on the stock sheet. CONSTITUTION:The sheet 2 of the seed crystal consisting of the single crystal 3 having the crystal orientation which is going to be grown to the iron (alloy) stock sheet 1 is manufactured or connected at or to one end of the stock sheet 1. The stock sheet 1 is passed in the furnace having the temp. gradient from the side of the seed crystal 2 to grow the orientation of the seed crystal 2 and the single crystal to the stock sheet 1. The angle between the growing end 5 of the single crystal 3 and the passing direction of the stock sheet 1 is adjusted to 0 deg.<theta<90 deg. at this time and the stock sheet is passed in the furnace to manufacture the single crystal sheet or coarse crystal grain sheet having the crystal orientation within the specific orientation region. The sheet is then subjected to cold rolling in a specific direction then to recrystallization annealing, by which the electrical steel sheet of the cubic texture having the fine crystal grains is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、方向性電磁鋼板の製造法およびこの方法に使
用する単結晶製作用炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing grain-oriented electrical steel sheets and a furnace for producing single crystals used in this method.

〔従来の技術〕[Conventional technology]

従来より、板面内に直交する2方向に磁化容易軸<10
0>を持つことを目的とした方向性電磁鋼板の製造法が
提案されている。しかし、微細結晶粒の各結晶の方位を
、板面内に直交する2方向に磁化容易軸<100>を持
つように揃えた理想的な立方体方位組織をもつ電磁鋼板
を工業的に製造することは非常に困難であった。
Conventionally, the axis of easy magnetization <10 in two directions perpendicular to the inside of the plate surface.
A method for manufacturing a grain-oriented electrical steel sheet has been proposed with the aim of having 0>. However, it is difficult to industrially manufacture an electrical steel sheet with an ideal cubic orientation structure in which the orientation of each crystal of fine grains is aligned so that the axis of easy magnetization <100> lies in two directions perpendicular to the sheet plane. was extremely difficult.

同一出願人に係る特願昭60−138039号において
+114]面が板面に対して15°以内となるように調
整した単結晶板または粗大結晶粒板を<401>方向ま
わりに15°以内の方向に40%以上の圧下率で冷間圧
延し次いで焼鈍して一次再結晶組織とするT4磁鋼板の
製造法を提案した。この方法によると高度に集積した立
方体方位組織をもつ微細結晶粒の電磁鋼板を製造するこ
とができ、従来の電磁t!i4板では達成できなかった
高い飽和磁束密度、低い残留磁束密度、低い抗磁力およ
び低い履歴損失並びに低い鉄損値が得られる。
In Japanese Patent Application No. 60-138039 filed by the same applicant, a single crystal plate or a coarse grain plate adjusted so that the +114] plane is within 15 degrees to the plate surface is We have proposed a method for manufacturing T4 magnetic steel sheets that is cold rolled in the direction of the steel sheet at a reduction rate of 40% or more and then annealed to obtain a primary recrystallized structure. According to this method, it is possible to produce a fine-grained electrical steel sheet with a highly integrated cubic orientation structure, and it is possible to produce electrical steel sheets with fine grains that have a highly integrated cubic orientation structure. A high saturation magnetic flux density, a low residual magnetic flux density, a low coercive force, a low hysteresis loss, and a low iron loss value, which could not be achieved with the i4 plate, can be obtained.

この特願昭60−138039号のように、結晶方位が
特定方位領域内にある単結晶板または粗大結晶粒板を製
作するには、従来より知られた単結晶製造法のうち歪焼
鈍法によるのが便宜である。この歪焼鈍法は例えば「鉄
と鋼J 52(1966)、 P、187〜203に記
載されているように、素板に軽度の加工を施して歪みを
付与したあと、その素板の一端に単結晶を種付けし、温
度勾配を有する炉中を種付は端からゆっくり通板させる
ことによって温度勾配部で単結晶を成長させてゆく方法
である0種付けのさいの結晶方位の調整は公知のDun
n法によって行われ得る。
As in this Japanese Patent Application No. 138039/1983, in order to produce a single crystal plate or a coarse grain plate whose crystal orientation is within a specific orientation region, one of the conventionally known single crystal manufacturing methods is the strain annealing method. It is convenient. This strain annealing method is described, for example, in Tetsu to Hagane J 52 (1966), P, 187-203, after applying a slight processing to a blank plate to give it a strain, one end of the blank plate is A method of seeding a single crystal and growing the single crystal in the temperature gradient area by slowly passing the plate through a furnace with a temperature gradient from the seeding end.Adjusting the crystal orientation during zero seeding is a known method. Dun
This can be done by the n method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

歪焼鈍法によって結晶方位が特定方位領域内にある単結
晶板または粗大結晶粒板を製造する場合に、炉中を通板
する速度は結晶の成長速度に関連し、その結晶の成長速
度には、固相中の拡散速度に関連して自ず限界がある。
When producing a single-crystal plate or a coarse-grain plate whose crystal orientation falls within a specific orientation region by strain annealing, the speed at which the plate passes through the furnace is related to the growth rate of the crystal; , there is a natural limit related to the rate of diffusion in the solid phase.

したがって、目的とする結晶方位をもつ単結晶板または
粗大結晶粒板を工業的に製造しようとする場合にその生
産性が問題となる。
Therefore, when attempting to industrially produce a single crystal plate or a coarse grain plate having a desired crystal orientation, productivity becomes a problem.

本発明は電磁鋼板を製造する場合の歪焼鈍法による単結
晶板または粗大結晶粒板の生産性の向上を目的としてな
されたものである。
The present invention was made for the purpose of improving the productivity of single crystal plates or coarse grain plates by strain annealing when producing electrical steel sheets.

〔問題点を解決する手段〕[Means to solve problems]

本発明は、鉄または鉄合金の素板の一端に結晶方位が特
定方位領域内にある種結晶を作製もしくは接続し、この
素板を温度勾配をもつ炉中に種結晶の側から1ffi板
して種結晶がもつ結晶方位と実質上同じ方位をもつ単結
晶を素板中に成長させ、これによって結晶方位が特定方
位領域内にある単結晶板または粗大結晶粒板を製作し、
この単結晶板または粗大結晶粒板を特定方位領域内の方
向に冷間圧延し、そして再結晶焼鈍することにより微細
結晶粒を有する立方体方位Mi織の電磁鋼板を製造する
方法において、前記素板を温度勾配をもつ炉中に通板す
るさいに、S結晶の成長端が素板の通板方向となす角度
θをQo<θ< 90’に調整して通板させることを特
徴とする電磁鋼板の製造法を提供するものである。
The present invention involves fabricating or connecting a seed crystal whose crystal orientation is within a specific orientation region to one end of a raw plate of iron or iron alloy, and placing the raw plate 1ffi from the side of the seed crystal in a furnace with a temperature gradient. A single crystal having substantially the same crystal orientation as that of the seed crystal is grown in the base plate, thereby producing a single crystal plate or a coarse crystal grain plate whose crystal orientation is within a specific orientation region,
In the method of manufacturing an electrical steel sheet with a cubic orientation Mi weave having fine crystal grains by cold rolling this single crystal plate or coarse grain plate in a direction within a specific orientation region and recrystallizing the plate, the base plate is An electromagnetic device characterized in that, when passing the S crystal through a furnace having a temperature gradient, the angle θ between the growth end of the S crystal and the passing direction of the blank plate is adjusted to Qo<θ<90'. The present invention provides a method for manufacturing steel sheets.

本発明にしたがって作成する単結晶板または粗大結晶粒
板として、結晶の+1141面が板面に平行または少な
くとも15°以内で、結晶の<401>方向が板の長手
方向に平行または少なくとも15゜以内のものとすると
、この板を長手方向に冷間圧延して一次再結晶焼鈍すれ
ば、特願昭60−138039号に述べたように、理想
的な立方体方位組織をもつ微細結晶粒の電磁鋼板を製造
できる。ここで単結晶板とは目的方位の一つの単結晶か
らなる板。
As a single crystal plate or a coarse grain plate produced according to the present invention, the +1141 plane of the crystal is parallel to the plate surface or within at least 15°, and the <401> direction of the crystal is parallel to the longitudinal direction of the plate or at least within 15°. If this plate is cold rolled in the longitudinal direction and subjected to primary recrystallization annealing, an electrical steel plate with fine grains having an ideal cubic orientation structure can be obtained, as described in Japanese Patent Application No. 138039/1983. can be manufactured. Here, a single crystal plate is a plate consisting of one single crystal in the desired orientation.

粗大結晶粒板とは目的方位をもつ大きな単結晶の複数か
らなる板をいう、電磁鋼板の製造において冷延再結晶焼
鈍する前の素板の結晶方位を通常は初方位と呼んでいる
が1本発明の実施において。
A coarse-grain plate is a plate consisting of multiple large single crystals with a desired orientation.In the production of electrical steel sheets, the crystal orientation of the raw plate before cold-rolling and recrystallization annealing is usually called the initial orientation. In practicing the invention.

この初方位を前述のように特に+1141  <401
>とすることが有利である。
As mentioned above, especially +1141 <401
> is advantageous.

このような初方位をもつ素板は幅方向に比べて長手方向
の長い帯状に作製することが以後の冷延焼純処理を行う
上で有利となるが、この帯状の素板を歪焼鈍法によって
単結晶化する処方の一例を第1図〜第3図に示した。
It is advantageous to fabricate a blank sheet with such an initial orientation into a strip shape that is longer in the longitudinal direction than in the width direction for subsequent cold-rolling and annealing treatment. An example of a recipe for single crystallization is shown in FIGS. 1 to 3.

第1図は素板1の一端に種結晶の板2を接続した状態を
示す、素板1と種結晶の板2とは例えばレーザー溶接す
る0種結晶の板2は素板1に成長させようとする単結晶
の結晶方位をもつ単結晶。
Figure 1 shows a state in which a seed crystal plate 2 is connected to one end of the blank plate 1.The blank plate 1 and the seed crystal plate 2 are, for example, laser welded.The seed crystal plate 2 is grown on the blank plate 1. A single crystal with the crystal orientation of a single crystal.

もしくはその方位をもつ単結晶を含む多結晶からなるも
のを使用する。第1図において、この目的方位をもつ種
結晶を3で示す、ついで、第2図に示すように、目的方
位の持つもつ種結晶3を残して、それ以外の方位の結晶
を切り取って除去する。
Alternatively, use one made of polycrystals including single crystals with that orientation. In Figure 1, the seed crystal with this target orientation is indicated by 3. Next, as shown in Figure 2, leave the seed crystal 3 with the target orientation and cut out and remove the crystals in other orientations. .

これによって目的方位をもつ種結晶を素板1の一端に接
続することができる0種結晶臼体は公知のDann法に
よっても作製できる。いずれがの方法によって種付けさ
れた素仮について、これを温度勾配をもつ焼鈍炉に種結
晶の側から通板してこの種結晶の方位と同じ方位の単結
晶を素板lに成長させる。
A 0-seed crystal molding body that can thereby connect a seed crystal having a desired orientation to one end of the blank plate 1 can also be produced by the well-known Dunn method. The blank seeded by either method is passed through an annealing furnace with a temperature gradient from the seed crystal side to grow a single crystal in the same orientation as the seed crystal onto the blank l.

第3図はその単結晶の成長過程を図解的に示しており、
成長過程にある単結晶を3で、また素板1の元の多結晶
部分を4で示す、5は単結晶の成長端である。焼鈍炉の
温度勾配部に単結晶の成長端5が常に通過するように図
の矢印の方向に所定の速度で通板させることにより、成
長端5は多結晶部分4に成長を続けることになる。この
ような目的方位をもつ単結晶板または粗大結晶粒板の製
造法の原理自体は歪焼鈍法としてよく知られている。し
かし、実験室的には目的方位の単結晶板または粗大結晶
粒板を製造できても工業的には生産性の面から実用され
難いのが実情である。
Figure 3 diagrammatically shows the growth process of the single crystal.
The single crystal in the growing process is indicated by 3, the original polycrystalline portion of the blank plate 1 is indicated by 4, and 5 is the growth end of the single crystal. By passing the plate at a predetermined speed in the direction of the arrow in the figure so that the growth end 5 of the single crystal always passes through the temperature gradient section of the annealing furnace, the growth end 5 continues to grow into the polycrystalline portion 4. . The principle of manufacturing a single crystal plate or a coarse grain plate having such a desired orientation is well known as the strain annealing method. However, even if it is possible to produce a single crystal plate or a coarse crystal grain plate with a desired orientation in a laboratory, the reality is that it is difficult to put this method to practical use industrially from the viewpoint of productivity.

本発明においては、第4図に示したように、目的方位の
単結晶の成長端5を素板の通板方向に対して傾斜させる
ことに特徴がある。すなわち、第3図では炉内の低温域
と高温域に挟まれた温度勾配ゾーンが素板の進行方向と
直交するように設けられ、したがって成長端5は板幅方
向に実質上直角な角度をもって成長させる(マクロ的に
見ると結晶の成長の方向は温度勾配の方向となる)のに
対し2本発明では素板の進行方向に対して成長端5を板
面内にθの角度を以て傾斜させながら成長させるもので
ある。
The present invention is characterized in that, as shown in FIG. 4, the growth end 5 of the single crystal in the target orientation is inclined with respect to the direction in which the blank sheet passes. That is, in FIG. 3, the temperature gradient zone sandwiched between the low-temperature region and the high-temperature region in the furnace is provided so as to be perpendicular to the advancing direction of the blank sheet, and therefore the growth end 5 has an angle substantially perpendicular to the width direction of the sheet. (From a macroscopic perspective, the direction of crystal growth is the direction of the temperature gradient.) In contrast, in the present invention, the growth end 5 is inclined at an angle of θ within the plate plane with respect to the direction of movement of the blank plate. It is something that can be grown while doing so.

いま、素板の通板速度をV (mIl/h)、結晶成長
端での温度勾配をΔT(℃/c■)とし、そして単結晶
が安定して成長する成長速度をG wax (T)とす
る。
Now, let the threading speed of the blank plate be V (mIl/h), the temperature gradient at the crystal growth edge be ΔT (℃/c■), and the growth rate at which the single crystal grows stably be G wax (T). shall be.

温度勾配を有する炉中を通板する際に材料の成る1点の
昇温速度は、温度勾配ΔT6通板速度■。
When passing a sheet through a furnace with a temperature gradient, the temperature increase rate at one point where the material is made is temperature gradient ΔT6 sheet passing rate ■.

のもとでは、単位時間当りΔT I’ V +となる。Under this, ΔT I' V + per unit time.

結晶の成長端が安定して成長するためには、■。In order for the growth edge of the crystal to grow stably, ■.

はGmax(T)以下となるので、■、の最大速度はそ
の温度でのGmax(T)を超えることはできない。
is less than Gmax(T), so the maximum speed of ■ cannot exceed Gmax(T) at that temperature.

G wax (T)は一般には求めることが困難でなの
でΔTIでの安定成長速度の最大値V waxを求め。
Since G wax (T) is generally difficult to obtain, the maximum value of the stable growth rate at ΔTI, V wax, is determined.

これをΔT1での最大通板速度とする。ΔT1よりも小
さな温度勾配ΔT2を考えて、ΔT、での成長速度v2
に対し。
This is taken as the maximum threading speed at ΔT1. Considering a temperature gradient ΔT2 smaller than ΔT1, the growth rate v2 at ΔT,
Against.

ΔT z V z =ΔT1vIIlaxとなるから。Because ΔTz Vz = ΔT1vIIlax.

V Z = (ΔTl/ ΔTz)  ・Vmaxとな
る。したがって、温度勾配を緩やかにすれば見掛けの成
長速度を速くすることができる。
V Z = (ΔTl/ΔTz) ・Vmax. Therefore, by making the temperature gradient gentler, the apparent growth rate can be increased.

しかし、この方法ではΔTiでの最大成長速度は理論的
にはGmax(T)以上とすることはできないので、必
ずしも有効な方法とは言えない、また温度勾配を緩やか
にすることは目的方位以外の不要粒の成長などが起こり
易くなり別の問題も生じることになる。
However, with this method, the maximum growth rate at ΔTi cannot theoretically be made higher than Gmax (T), so it cannot necessarily be said to be an effective method. Growth of unnecessary grains becomes more likely to occur, leading to other problems.

本発明においては温度勾配を変えるのではな(温度勾配
の方向を変えることによって通板速度を向上させること
に特徴がある。すなわち第4図で言えば、炉の温度勾配
域を素板の進行方向に対し例えばθの角度だけ傾斜させ
ることであり、これによって成長端5は例えばθの角度
だけ素板の進行方向とは傾斜することになるが、その単
結晶の成長方向Yは温度勾配域における温度勾配の方向
となる。
The present invention is characterized in that the sheet passing speed is improved not by changing the temperature gradient (but by changing the direction of the temperature gradient. In other words, in Fig. 4, the temperature gradient area of the furnace is For example, the growth end 5 is inclined from the direction of movement of the blank by an angle of θ, for example, but the growth direction Y of the single crystal is in the temperature gradient region. is the direction of the temperature gradient at .

いま、温度勾配ΔTが決まると結晶成長端の最大成長速
度が決まるので、それをV ssxとする。
Now, once the temperature gradient ΔT is determined, the maximum growth rate of the crystal growth edge is determined, and this is set as V ssx.

素板の長手方向(通板方向)と温度勾配域がなす角をθ
とすると、長手方向の通板速度V(θ)は。
The angle between the longitudinal direction (threading direction) of the blank sheet and the temperature gradient area is θ.
Then, the threading speed V(θ) in the longitudinal direction is.

V(θ) ” V saw/Cosθ≧V waxとな
る。すなわち、素板の長手方向に対し温度勾配域を傾け
ることによってこのθが大きければ大きいほど通板速度
を大きく高めることができることになる。表1にθの角
度を変えた場合の増加比率V(θ)/ V l1axを
示した0本発明の効果を充分に得るにはθは30°以上
とすることが好ましい。
V(θ) ” V saw/Cos θ≧V wax. That is, by tilting the temperature gradient region with respect to the longitudinal direction of the blank sheet, the larger θ is, the greater the sheet passing speed can be increased. Table 1 shows the increase ratio V(θ)/V l1ax when the angle of θ is changed. In order to fully obtain the effects of the present invention, it is preferable that θ is 30° or more.

その理由は、θが小さい場合には目的以外の方位をもつ
結晶が成長し易くなるためである。一方。
The reason for this is that when θ is small, crystals with orientations other than the intended one tend to grow. on the other hand.

θが80°を超える場合には炉の構造が複雑になり(例
えば後述の冷却スリーブが長(なり)実用的でなくなる
。このため、θは30°〈θ<80°の範囲とするのが
望ましい。
If θ exceeds 80°, the furnace structure becomes complicated (for example, the cooling sleeve described below becomes long), making it impractical. Therefore, it is recommended that θ be in the range of 30° <θ<80°. desirable.

表1 第5図は本発明法を実施するのに好適な温度傾斜炉の一
例を示したものである。 10は耐火煉瓦の筒状の炉壁
であり5竪型にしたこの筒状炉壁10の中に炉心管11
を同軸的に垂直に設置する。そしてこの炉心管11の内
部に水冷式のスリーブ12を途中まで通す、この水冷ス
リーブ12の炉内端13は炉の長手方向に対してθの角
度だけ傾斜している。そして炉心管11の外側を取り巻
くように複数本の発熱体14が取り付けられている。各
発熱体14は各々独立して発熱温度を調整できるように
しである。
Table 1 FIG. 5 shows an example of a temperature gradient furnace suitable for carrying out the method of the present invention. Reference numeral 10 denotes a cylindrical furnace wall made of refractory bricks, and a furnace tube 11 is installed inside this cylindrical furnace wall 10, which has a 5-vertical shape.
installed coaxially and vertically. A water-cooled sleeve 12 is passed partway through the furnace core tube 11, and an inner end 13 of the water-cooled sleeve 12 is inclined at an angle of θ with respect to the longitudinal direction of the furnace. A plurality of heating elements 14 are attached so as to surround the outside of the furnace core tube 11. Each heating element 14 is designed so that its heating temperature can be adjusted independently.

第6図は第5図のVl−Vl線矢視断面を示したもので
ある。この図に見られるように水冷スリーブ12も同軸
的に炉心管11の中に設置され、この水冷スリーブ12
の中には冷却水通路15が設けである。第7〜9図はこ
の水冷スリーブ12の形状をより具体的に示したもので
ある0本例では銅製の円柱体内に素板を通すスリット状
の素板通路16を軸方向に作製し、この素板通路16の
両側に冷却水通路15を設けである。各冷却水通路15
にはパイプ17を挿入し、このパイプ17の下端から冷
却水を通路15内の先端側(水冷スリーブ12の炉内端
側)に吐出し。
FIG. 6 shows a cross section taken along the line Vl--Vl in FIG. 5. As seen in this figure, a water-cooled sleeve 12 is also installed coaxially within the reactor core tube 11, and this water-cooled sleeve 12
A cooling water passage 15 is provided inside. 7 to 9 show the shape of this water-cooled sleeve 12 in more detail. In this example, a slit-shaped blank passageway 16 for passing the blank plate through a copper cylinder is created in the axial direction. Cooling water passages 15 are provided on both sides of the blank passage 16. Each cooling water passage 15
A pipe 17 is inserted into the pipe 17, and cooling water is discharged from the lower end of the pipe 17 to the distal end side of the passage 15 (the inner end side of the water cooling sleeve 12).

その戻り水はこの冷却水通路15の上方に設けた排水路
18から系外に排出するようにしである。
The return water is discharged out of the system from a drainage channel 18 provided above the cooling water passage 15.

このように構成した炉を使用して各発熱体14によって
炉心管11を加熱し水冷スリーブ12に冷却水を通水す
ると、水冷スリーブ12の炉内端13の部分で通板方向
とはθの角度だけ傾斜した温度勾配域が形成される。し
たがって素板lを水冷スリーブ12の素板通路16に外
側端(上端)から矢印の方向に下方に向けて通板すると
、水冷スリーブ12の傾斜した炉内端13の部分で単結
晶の成長端縁がこの傾斜に実質上等しい傾斜をもつこと
になり、既述の本発明法が好適に実施できる。
When the furnace core tube 11 is heated by each heating element 14 and cooling water is passed through the water-cooled sleeve 12 using the furnace configured as described above, the passing direction is different from θ at the inner end 13 of the water-cooled sleeve 12. A temperature gradient area is formed that is inclined by an angle. Therefore, when the raw plate l is passed through the raw plate passage 16 of the water-cooled sleeve 12 from the outer end (upper end) downward in the direction of the arrow, the growth end of the single crystal is formed at the inclined furnace end 13 of the water-cooled sleeve 12. The edge will have an inclination substantially equal to this inclination, and the method of the invention described above can be carried out suitably.

なお、各発熱体14は図示のように水冷スリーブ12の
炉内端13と等しい傾斜をもつようにして炉心管12を
取り巻くように設置するのが好ましいが。
It is preferable that each heating element 14 be installed so as to surround the furnace core tube 12 so as to have an inclination equal to the furnace inner end 13 of the water-cooled sleeve 12 as shown in the drawing.

場合によっては炉心管12の軸と直角方向に設置しても
よい、また2図には示していないが、炉心管11内の炉
内雰囲気をアルゴンガスなどの不活性ガス雰囲気とする
のが好ましい。そして、場合によっては水冷スリーブ1
2内に複数の素板通路を平行に設けたり、炉心管11内
に複数の水冷スリーブ12を設置したりして、複数枚の
素板を同時に処理するようにすることもできる。
Depending on the case, it may be installed in a direction perpendicular to the axis of the furnace core tube 12. Although not shown in FIG. 2, it is preferable that the furnace atmosphere inside the furnace core tube 11 be an inert gas atmosphere such as argon gas. . And in some cases, water cooling sleeve 1
It is also possible to process a plurality of blank plates at the same time by providing a plurality of blank passages in parallel in the furnace tube 2 or by installing a plurality of water cooling sleeves 12 in the furnace core tube 11.

本発明は体心立方構造の鉄または鉄合金を対象とした電
磁鋼板の製造に好適に適用されるものであり、鉄合金の
場合の合金成分としては、8%以下のSi、20%以下
のA1.5%以下のMo、 25%以下のCr、6%以
下のW、3%以下のTi、3%以下のNb、5%以下の
■のいずれかを単独または複合して使用することができ
る。これらの合金成分の材質面に及ぼす効果を概説する
と次のとおりである。Siの添加は磁気特性を改善し且
つ電気抵抗の増大による鉄損値の改善に有効である。そ
して高Stになると耐摩耗性も改善される。5%以上の
Siの添加は加工性が劣るようになるが。
The present invention is suitably applied to the production of electrical steel sheets made of iron or iron alloys with a body-centered cubic structure, and in the case of iron alloys, the alloy components include 8% or less Si, 20% or less Any of A1.5% or less Mo, 25% or less Cr, 6% or less W, 3% or less Ti, 3% or less Nb, or 5% or less ■ can be used alone or in combination. can. The effects of these alloy components on the material quality are summarized as follows. Addition of Si is effective in improving the magnetic properties and in improving the iron loss value by increasing the electrical resistance. Furthermore, when the St becomes high, the wear resistance is also improved. Addition of 5% or more of Si leads to poor processability.

温間加工により8%まで製造可能であり、8%までの含
有が許容できる。AlについてはSiと同様に透磁率の
向上、電気抵抗の増加、耐摩耗性の改善に有効であり、
さらにSiとの複合添加で耐摩耗性が著しく改善される
。しかし20%を超える添加では脆くなって製造が困難
となるので20%以下とするのがよい、Moについては
5%までの範囲でi3 iff率を向上させるが、5%
を超えるとその効果は急激に低下するacrは耐食性改
善に有効であり25%まで許容される。そのほか、6%
以下のW、3%以下のV、3%以下のNb、5%以下の
V等を添加して鋼板の物性の改善を図ることができる。
It is possible to manufacture up to 8% by warm processing, and the content up to 8% is acceptable. Like Si, Al is effective in improving magnetic permeability, increasing electrical resistance, and improving wear resistance.
Furthermore, the wear resistance is significantly improved by adding Si in combination. However, if it exceeds 20%, it becomes brittle and difficult to manufacture, so it is better to keep it below 20%.For Mo, the i3 if ratio can be improved up to 5%, but 5%
ACR is effective in improving corrosion resistance and is allowed up to 25%. Others, 6%
The physical properties of the steel sheet can be improved by adding the following W, 3% or less V, 3% or less Nb, 5% or less V, etc.

またsb≦2%、As52%、Be52%の範囲で単独
または複合で添加することができる。
Further, they can be added singly or in combination within the range of sb≦2%, As52%, and Be52%.

そして1本発明は素仮に成長させる単結晶としては、そ
の結晶の+114)面が板面に平行となるように、また
その結晶の<401>方向が板の長手方向となるように
することができ、この単結晶板または粗大結晶粒板を<
401>方向に40%以上の圧下率で圧延しそして一次
再結晶することによって、理想的な立方体方位組織をも
つ電磁鋼板を製造することができる。
1. In the present invention, as a single crystal to be grown, the +114) plane of the crystal is parallel to the plate surface, and the <401> direction of the crystal is the longitudinal direction of the plate. This single crystal plate or coarse grain plate can be
By rolling the steel sheet in the 401> direction at a reduction rate of 40% or more and performing primary recrystallization, it is possible to produce an electrical steel sheet having an ideal cubic orientation structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は歪焼鈍法によって単結晶板または粗大
結晶粒板を製造する場合の工程を図解した平面図、第4
図は本発明による単結晶の成長方法を図解した平面図、
第5図は本発明法を実施するのに好適な温度勾配炉の要
部を示す略平断面図。 第6図は第5図のVl−Vl線矢視断面図、第7図は水
冷スリーブの正面図、第8図は第7図の右側面図、第9
図は第7〜8図のIX−IX線矢視断面図である。 1・・素板、  2・・種結晶の板、  3・・目的方
位をもつ単結晶、  4・・素板の多結晶部分。 5・・成長端、10・・炉壁耐火物、  11・・炉心
管、12・・水冷スリーブ、13・・水冷スリーブの傾
斜をもつ炉内端、14・・発熱体。 15・・冷却水通路、16・・素板通路。
Figures 1 to 3 are plan views illustrating the process of manufacturing single crystal plates or coarse grain plates by strain annealing;
The figure is a plan view illustrating the single crystal growth method according to the present invention.
FIG. 5 is a schematic cross-sectional plan view showing the main parts of a temperature gradient furnace suitable for carrying out the method of the present invention. 6 is a sectional view taken along the line Vl-Vl in FIG. 5, FIG. 7 is a front view of the water cooling sleeve, FIG. 8 is a right side view of FIG. 7, and FIG.
The figure is a sectional view taken along the line IX-IX in FIGS. 7 and 8. 1. Base plate, 2. Seed crystal plate, 3. Single crystal with target orientation, 4. Polycrystalline part of base plate. 5. Growth end, 10. Furnace wall refractories, 11.. Furnace core tube, 12.. Water cooling sleeve, 13.. Furnace inner end with slope of water cooling sleeve, 14.. Heating element. 15... Cooling water passage, 16... Raw plate passage.

Claims (4)

【特許請求の範囲】[Claims] (1)鉄または鉄合金の素板の一端に結晶方位が特定方
位領域内にある種結晶を作製もしくは接続し、この素板
を温度勾配をもつ炉中に種結晶の側から通板して種結晶
がもつ結晶方位と実質上同じ方位をもつ単結晶を素板中
に成長させ、これによって結晶方位が特定方位領域内に
ある単結晶板または粗大結晶粒板を製作し、この単結晶
板または粗大結晶粒板を特定方位領域内の方向に冷間圧
延し、そして再結晶焼鈍することにより微細結晶粒を有
する立方体方位組織の電磁鋼板を製造する方法において
、 前記素板を温度勾配をもつ炉中に通板するさいに、単結
晶の成長端が素板の通板方向となす角度θを0°<θ<
90°に調整して通板させることを特徴とする電磁鋼板
の製造法。
(1) Fabricate or connect a seed crystal whose crystal orientation is within a specific orientation region to one end of an iron or iron alloy blank, and pass this blank into a furnace with a temperature gradient from the side of the seed crystal. A single crystal with substantially the same crystal orientation as that of the seed crystal is grown in a base plate, thereby producing a single crystal plate or a coarse grain plate with crystal orientation within a specific orientation region, and this single crystal plate Alternatively, in a method of manufacturing an electrical steel sheet with a cubic orientation structure having fine grains by cold rolling a coarse grained sheet in a direction within a specific orientation region and recrystallizing it, the raw sheet has a temperature gradient. When passing the sheet through the furnace, the angle θ that the growth end of the single crystal makes with the direction of passing the blank is set to 0°<θ<
A method for producing electrical steel sheets characterized by threading the sheets by adjusting the angle to 90°.
(2)θは30°<θ<80°である特許請求の範囲第
1項記載の製造法。
(2) The manufacturing method according to claim 1, wherein θ is 30°<θ<80°.
(3)単結晶板または粗大結晶粒板は、その結晶の{1
14}面が板面に対して15°以内の方位を有しており
、この単結晶板または粗大結晶粒板の冷間圧延の方向を
<401>方向まわりに15°以内の方向とする特許請
求の範囲第1項または第2項記載の製造法。
(3) A single crystal plate or a coarse grain plate is
14} plane has an orientation within 15° with respect to the plate surface, and the direction of cold rolling of this single crystal plate or coarse grain plate is within 15° around the <401> direction. The manufacturing method according to claim 1 or 2.
(4)炉内の温度勾配部に所定速度で素板を長手方向に
通板させる単結晶製作炉であって、傾斜した炉内端をも
つ水冷スリーブを炉内に挿入し、このスリーブの傾斜し
た炉内端から素板を炉内に通過させるようにした特許請
求の範囲第1項の方法に使用する単結晶製作炉。
(4) A single-crystal manufacturing furnace in which a raw plate is passed longitudinally through a temperature gradient section in the furnace at a predetermined speed, and a water-cooled sleeve with an inclined inner end of the furnace is inserted into the furnace, and the sleeve is tilted. A single crystal manufacturing furnace used in the method according to claim 1, wherein the blank plate is passed into the furnace from the inner end of the furnace.
JP21103086A 1986-09-08 1986-09-08 Production of electrical steel sheet and single crystal manufacturing furnace to be used in said method Pending JPS6365024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21103086A JPS6365024A (en) 1986-09-08 1986-09-08 Production of electrical steel sheet and single crystal manufacturing furnace to be used in said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21103086A JPS6365024A (en) 1986-09-08 1986-09-08 Production of electrical steel sheet and single crystal manufacturing furnace to be used in said method

Publications (1)

Publication Number Publication Date
JPS6365024A true JPS6365024A (en) 1988-03-23

Family

ID=16599197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21103086A Pending JPS6365024A (en) 1986-09-08 1986-09-08 Production of electrical steel sheet and single crystal manufacturing furnace to be used in said method

Country Status (1)

Country Link
JP (1) JPS6365024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006378A1 (en) * 1988-12-10 1990-06-14 Kawasaki Steel Corporation Production method of crystal member having controlled crystal orientation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006378A1 (en) * 1988-12-10 1990-06-14 Kawasaki Steel Corporation Production method of crystal member having controlled crystal orientation
US5205872A (en) * 1988-12-10 1993-04-27 Kawasaki Steel Corporation Method of producing crystal bodies having controlled crystalline orientation
US5487794A (en) * 1988-12-10 1996-01-30 Kawasaki Steel Corporation Method of producing crystal bodies having controlled crystalline orientation

Similar Documents

Publication Publication Date Title
CN100475982C (en) Method of continuous casting non-oriented electrical steel strip
CN1813074B (en) Improved method for production of non-oriented electrical steel strip.
JPS6240315A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
EP0147659B1 (en) Method for manufacturing grain-oriented silicon steel sheet
US4108694A (en) Continuously cast slabs for producing grain-oriented electrical steel sheets having excellent magnetic properties
KR20030076993A (en) Process for the production of grain oriented electrical steel strips
US4469533A (en) Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
US3948691A (en) Method for manufacturing cold rolled, non-directional electrical steel sheets and strips having a high magnetic flux density
US4437910A (en) Process for producing grain-oriented electromagnetic steel sheet
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
KR20120130172A (en) Process for the production of grain-oriented magnetic sheets
JPS6365024A (en) Production of electrical steel sheet and single crystal manufacturing furnace to be used in said method
Littmann Development of improved cube-on-edge texture from strand cast 3pct silicon-iron
JPH0323607B2 (en)
JPH066747B2 (en) Method for producing unidirectional silicon steel sheet having high magnetic flux density and low iron loss
JPS5834531B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties
JPH04350119A (en) Production of thick steel plate having homogeneous quality
JPH07122092B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPS61235512A (en) Annealing method for grain oriented structure material
JP3073598B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH0733549B2 (en) Method for manufacturing bidirectional silicon steel sheet
JPH05186829A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPS60200916A (en) Manufacture of anisotropic silicon steel plate
JPH0730398B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JPH06264135A (en) Production of high mn non-magnetic steel plate excellent in toughness at low temperature