JPS6364895B2 - - Google Patents

Info

Publication number
JPS6364895B2
JPS6364895B2 JP57013005A JP1300582A JPS6364895B2 JP S6364895 B2 JPS6364895 B2 JP S6364895B2 JP 57013005 A JP57013005 A JP 57013005A JP 1300582 A JP1300582 A JP 1300582A JP S6364895 B2 JPS6364895 B2 JP S6364895B2
Authority
JP
Japan
Prior art keywords
film
tantalum oxide
tantalum
oxide film
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57013005A
Other languages
Japanese (ja)
Other versions
JPS58131735A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57013005A priority Critical patent/JPS58131735A/en
Publication of JPS58131735A publication Critical patent/JPS58131735A/en
Publication of JPS6364895B2 publication Critical patent/JPS6364895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はコンデンサの誘電皮膜などに利用され
るタンタルオキサイド皮膜の製造法に関するもの
で、特に緻密なタンタルオキサイド皮膜の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for manufacturing a tantalum oxide film used as a dielectric film of a capacitor, and particularly to a method for manufacturing a dense tantalum oxide film.

(b) 技術の背景 タンタルオキサイド(TaOx)は勝れた誘電性
を有し、コンデンサの誘電体膜として利用され
る。その比誘電率は約11.5であり、二酸化珪素の
それの二倍以上であることから、高密度1トラン
ジスタ型ダイナミツクRAMのキヤパシタに利用
することが考えられている。
(b) Background of the Technology Tantalum oxide (TaO x ) has excellent dielectric properties and is used as a dielectric film in capacitors. Its dielectric constant is approximately 11.5, which is more than twice that of silicon dioxide, so it is being considered for use in capacitors for high-density one-transistor dynamic RAM.

(c) 従来技術と問題点 しかしながら、通常の方法で形成したタンタル
オキサイド皮膜は多孔質的なものとなるため、リ
ークが多く、耐圧も低いものであり、該皮膜を密
に形成することは困難であつた。特にICの構成
素子として、キヤパシタをシリコン(Si)基板上
或いは多結晶Si層上に形成するような場合、タン
タルオキサイド皮膜を十分に密に形成することは
殆ど不可能であつた。
(c) Conventional technology and problems However, since the tantalum oxide film formed by the usual method is porous, there are many leaks and the withstand voltage is low, making it difficult to form the film densely. It was hot. Particularly when forming a capacitor as a component of an IC on a silicon (Si) substrate or a polycrystalline Si layer, it has been almost impossible to form a sufficiently dense tantalum oxide film.

(d) 発明の目的 本発明はICの製造工程の一環として、他の素
子の形成に何等の影響を及ぼすことなく、シリコ
ン基板上或いは多結晶Si層上に、タンタルオキサ
イド皮膜を密に形成する技術を提供することであ
る。
(d) Purpose of the Invention The present invention forms a tantalum oxide film densely on a silicon substrate or polycrystalline Si layer as part of the IC manufacturing process without affecting the formation of other elements in any way. The goal is to provide technology.

(e) 発明の構成 本発明のタンタルオキサイド皮膜製造法は、基
板物体表面に被着したタンタル皮膜にイオンビー
ムを照射した後、該タンタル皮膜への電子線、レ
ーザ光等のエネルギー線照射と、該タンタル皮膜
の酸化とを行うことを特徴とする。
(e) Structure of the Invention The method for producing a tantalum oxide film of the present invention includes irradiating a tantalum film deposited on the surface of a substrate object with an ion beam, and then irradiating the tantalum film with an energy beam such as an electron beam or a laser beam. The tantalum film is oxidized.

(f) 発明の実施例 第1図〜第5図に本発明の一実施例を示す。(f) Examples of the invention An embodiment of the present invention is shown in FIGS. 1 to 5.

第1図に示すようにSi基板1の表面にタンタル
(Ta)膜2を50nmの厚さに被着する。これは真
空蒸着、スパツタリング、CVD法のいずれによ
つてもよい。また、本例では1はSi基板である
が、多結晶Si層或いはその他の材料であつても、
以下の工程を同様に実施することができる。
As shown in FIG. 1, a tantalum (Ta) film 2 with a thickness of 50 nm is deposited on the surface of a Si substrate 1. This may be done by vacuum deposition, sputtering, or CVD. In addition, in this example, 1 is a Si substrate, but even if it is a polycrystalline Si layer or other material,
The following steps can be performed similarly.

このTa膜2に窒素イオン(N+)ビームを照
射し、該皮膜をアモルフアス化する(第2図)。
照射された窒素イオンがSi基板にまで達すること
は好ましくないので、その大部分はTa膜中に留
まるよう加速エネルギーが定められる。また、ド
ーズ量は、例えば1×1016/cm2である。
This Ta film 2 is irradiated with a nitrogen ion (N+) beam to make the film amorphous (FIG. 2).
Since it is not desirable for the irradiated nitrogen ions to reach the Si substrate, the acceleration energy is determined so that most of them remain in the Ta film. Further, the dose amount is, for example, 1×10 16 /cm 2 .

使用するイオンビームの種類は窒素イオンに限
定されるものではないが、アモルフアス化を効果
的に行い、しかも電気的特性に無用の影響を及ぼ
すことが無いという条件から窒素イオンが最適で
ある。タンタルオキサイド中の窒素には其のリー
ク特性を軽減する作用もある。
Although the type of ion beam to be used is not limited to nitrogen ions, nitrogen ions are most suitable because they effectively form amorphous materials and do not unnecessarily affect electrical characteristics. Nitrogen in tantalum oxide also has the effect of reducing its leakage characteristics.

このイオンビーム照射によつてTa膜はアモル
フアス化されると共に、より高密化される。これ
らの効果を目的としてイオンビームを照射するこ
とは通常行われることである。
This ion beam irradiation makes the Ta film amorphous and makes it more dense. Irradiation with an ion beam is commonly performed for the purpose of achieving these effects.

イオンビーム照射を受けたTa膜は、続いて第
3図に示すようにレーザ光照射によつてアニール
される。該レーザ光照射に使用するレーザ3はア
ルゴンレーザが適当であり、例えば18Wの出力の
アルゴンレーザを、10cm/secの速度で、走査し
て照射する。
The Ta film that has been irradiated with the ion beam is then annealed by laser light irradiation as shown in FIG. The laser 3 used for the laser beam irradiation is suitably an argon laser, and for example, the argon laser with an output of 18 W is scanned and irradiated at a speed of 10 cm/sec.

このアニールの目的はイオンビーム照射によつ
て生じた応力の解消であるが、レーザアニールに
よれば、単なる加熱処理によつては得られない効
果、阻ち、皮膜の緻密化という効果が得られる。
これはレーザ光照射によつて皮膜中のボイドやピ
ンホールなどが潰される為である。
The purpose of this annealing is to eliminate stress caused by ion beam irradiation, but laser annealing can provide effects that cannot be obtained with simple heat treatment, such as blocking and densification of the film. .
This is because voids and pinholes in the film are crushed by the laser beam irradiation.

以上の処理を受けたTa膜が続く工程で酸化さ
れるわけであるが、タンタルはアルミニウムと同
じように、表面にオキサイド膜ができると、酸化
が進み難くなるので、第4図のように、陽極酸化
によつて酸化される。高圧酸化によつても目的を
達することができる。4は形成されたタンタルオ
キサイド膜である。
The Ta film that has undergone the above treatment is oxidized in the subsequent process, but like aluminum, when an oxide film forms on the surface of tantalum, oxidation becomes difficult to proceed, so as shown in Figure 4, Oxidized by anodic oxidation. The objective can also be achieved by high pressure oxidation. 4 is the formed tantalum oxide film.

このようにして形成されたタンタルオキサイド
皮膜は極めて緻密であり、第5図に示すように電
極5を設けてキヤパシタを構成した場合のリーク
特性は、従来のものに比べて1桁乃至2桁向上し
た。
The tantalum oxide film formed in this way is extremely dense, and when the electrode 5 is provided to form a capacitor as shown in Figure 5, the leakage characteristics are improved by one to two orders of magnitude compared to the conventional one. did.

上記工程中、レーザアニール工程と陽極酸化工
程の順序を入換え、レーザアニール工程を陽極酸
化工程の後で実施しても、同様の効果が得られる
が、タンタルオキサイド皮膜のレーザ光の吸収率
の波長依存性を考慮し、最も効率のよい波長の光
を選ぶ必要がある。
In the above steps, the same effect can be obtained even if the order of the laser annealing step and the anodizing step is changed and the laser annealing step is performed after the anodizing step, but the laser light absorption rate of the tantalum oxide film is It is necessary to consider wavelength dependence and select the most efficient wavelength of light.

(g) 発明の効果 本発明によれば、低リーク、高耐圧のタンタル
オキサイド皮膜が得られるので、ダイナミツク
RAMのキヤパシタを小面積で形成することが可
能となつた。また、既述したように、多結晶Si上
にもタンタルオキサイド皮膜の形成が可能なの
で、キヤパシタ部分を立体的に構成することも出
来る。
(g) Effects of the Invention According to the present invention, a tantalum oxide film with low leakage and high voltage resistance can be obtained, so dynamic
It has become possible to form a RAM capacitor in a small area. Furthermore, as described above, since it is possible to form a tantalum oxide film on polycrystalline Si, the capacitor portion can also be structured three-dimensionally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明の一実施例を示す図
であつて、図に於て1はSi基板、2はTa膜、3
はアルゴンレーザ、4はタンタルオキサイド皮
膜、5はキヤパシタの一方の電極である。
1 to 5 are diagrams showing an embodiment of the present invention, in which 1 is a Si substrate, 2 is a Ta film, and 3 is a diagram showing an embodiment of the present invention.
is an argon laser, 4 is a tantalum oxide film, and 5 is one electrode of a capacitor.

Claims (1)

【特許請求の範囲】 1 基板物体表面に被着したタンタル皮膜にイオ
ンビームを照射した後、該タンタル皮膜へのエネ
ルギー線照射と、該タンタル皮膜の酸化とを行う
ことを特徴とするタンタルオキサイド膜の製造
法。 2 前記イオンビーム照射が窒素イオンビームの
照射であることを特徴とする特許請求の範囲第1
項記載のタンタルオキサイド膜の製造法。
[Claims] 1. A tantalum oxide film, characterized in that after irradiating a tantalum film deposited on the surface of a substrate object with an ion beam, the tantalum film is irradiated with energy rays and the tantalum film is oxidized. manufacturing method. 2. Claim 1, wherein the ion beam irradiation is nitrogen ion beam irradiation.
A method for producing a tantalum oxide film as described in Section 1.
JP57013005A 1982-01-29 1982-01-29 Manufacture of tantalum oxide film Granted JPS58131735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013005A JPS58131735A (en) 1982-01-29 1982-01-29 Manufacture of tantalum oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013005A JPS58131735A (en) 1982-01-29 1982-01-29 Manufacture of tantalum oxide film

Publications (2)

Publication Number Publication Date
JPS58131735A JPS58131735A (en) 1983-08-05
JPS6364895B2 true JPS6364895B2 (en) 1988-12-14

Family

ID=11821057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013005A Granted JPS58131735A (en) 1982-01-29 1982-01-29 Manufacture of tantalum oxide film

Country Status (1)

Country Link
JP (1) JPS58131735A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246756A (en) * 1988-08-08 1990-02-16 Mitsubishi Electric Corp Manufacture of semiconductor capacitor
JP2786071B2 (en) * 1993-02-17 1998-08-13 日本電気株式会社 Method for manufacturing semiconductor device
KR20020058427A (en) * 2000-12-30 2002-07-12 박종섭 Method for fabricating capacitor

Also Published As

Publication number Publication date
JPS58131735A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US6118146A (en) Microelectronic capacitors having tantalum pentoxide dielectrics
Lin et al. Ta~ 2O~ 5 thin films with exceptionally high dielectric constant
JP3202893B2 (en) Method for producing tantalum oxide thin film by low temperature ozone plasma annealing
US4959745A (en) Capacitor and method for producing the same
US5780115A (en) Methods for fabricating electrode structures including oxygen and nitrogen plasma treatments
US5973911A (en) Ferroelectric thin-film capacitor
US5569619A (en) Method for forming a capacitor of a semiconductor memory cell
KR920007106A (en) Solid state electronic device and manufacturing method thereof
US5444011A (en) Method for forming a thin film capacitive memory deivce with a high dielectric constant
KR20010021015A (en) Methods of fabricating an integrated circuit device with composite oxide dielectric
JPS6364895B2 (en)
KR100588888B1 (en) Method of manufacturing a capacitor having tantalum oxide film as an insulating film
JPH0864763A (en) Capacitor and manufacture thereof
JPH01154547A (en) Production of capacitor
JPH0367346B2 (en)
JP3179779B2 (en) Method for manufacturing nitride insulating film
JPH03212976A (en) Treatment method of cis structure containing transparent conductive oxide film
KR100312996B1 (en) Insulation film manufacturing method of semiconductor device
JPS58112360A (en) Capacitor for semiconductor device and manufacture thereof
JPH06291255A (en) Semiconductor device and manufacture thereof
JPH06136495A (en) Production of aluminum material for electrolytic capacitor electrode
JP3136764B2 (en) Method for producing chalcopyrite thin film
JPH05343254A (en) Capacitor and manufacture thereof
JPH04196435A (en) Method of forming polycrystalline silicon
KR19980021242A (en) Capacitor Manufacturing Method of Semiconductor Device